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Abstract 

 

This paper describes CELLAR, a language for cellular 
programming which extends the cellular automata model 
through the concept of regions. Regions are spatio-
temporal objects that define zones of the automaton (set of 
cells), containing interesting and meaningful data patterns 
or trends that can be defined as events. Each cell of the 
automaton can monitor regions for a given period and 
observe their evolution by global functions (max, min, sum 
etc.). Furthermore, each cell can have an associated 
attribute called its perception rating, that indicates how 
far that cell can ‘see’. On the basis of this value and the 
cell’s position in the cellular space, we can define the 
regions that are visible to the cell. Using these constructs, 
a cell can define significant events to extract data of 
interest in one or more regions and perform actions when 
an event is detected.  In the paper, we show that regions 
simplify programming and allow the building of more 
complex models. After describing the main constructs of 
CELLAR, the paper illustrates the region-based 
programming model by describing the design of a parallel 
model of animal migration. Performance results of the 
model implemented on a Meiko CS-2 are also given. 
 

 
1. Introduction 
 

Cellular computing [1] is an emergent parallel 
programming paradigm based on the computational model 
cellular automata (CA) that is effective both for scientific 
and engineering computations and as a framework to 
enable fine-grained parallel computations.  

A CA is composed of an array of interacting cells, 
either one-dimensional or multidimensional. Each cell can 
have a finite number of states. The states of all the cells 
are updated synchronously according to a local rule, called 

a transition function, according to which, the state of a 
cell at a given time depends only on its own state at the 
previous time step and the states of its “nearby” neighbors  
(however defined) at that previous step. Thus, the state of 
the entire automaton advances in discrete time steps. The 
global behavior of the system is determined by the 
evolution of the states of all the cells as a result of 
multiple interactions.  

CA model has been applied to a wide range of practical 
applications such as freeway traffic flow, landslides, lava 
flow, particle dynamics, forest fire, and soil 
bioremediation. However, to support a larger number of 
real applications several extensions and modifications to 
the basic model have been proposed. A detailed 
description of these extensions is presented in [2]. The 
main changes concern: the possibility to have a more 
complex representation of the state of a cell instead of a 
few bits, temporal and spatial inhomogeneity both in the 
transition function and in the neighborhood, asynchrony 
so that each cell can in each step non-deterministically 
choose between changing its state according to the 
transition function or keeping its current state, complex 
time-dependent neighborhood (i.e. block rule), 
probabilistic and hierarchical transition functions. 
Moreover, many phenomena, especially those studied in 
biology, ecology and sociology, require information from 
other cells which do not belong to the cell’s 
neighborhood. 

Research activities on implementation of cellular 
automata models was mainly focused on algorithms and 
applications. For many years, the programming issues 
were not considered one of the major issues to be faced 
and solved. However, in recent years a number of cellular 
programming language such as CELLANG [3], CDL[4], 
CARP [5], and CEPROL [6] have been defined. 

In our previous works [7,8,9] we defined and 
implemented a parallel cellular programming environment 



  

and a special language, named CARPET, to support both 
practical development of computational science 
applications and parallel algorithms in artificial 
intelligence. CARPET is a high-level language based on C 
with additional constructs to describe the rule of the state 
transition function of a single cell of a cellular automaton. 
The main features of CARPET are: the possibility to 
describe the state of a cell as a record of typed substates, 
the simple definition of complex neighborhoods (e.g., 
hexagonal, Margolus) that can be also time dependent and 
the specification of non-deterministic, time-dependent and 
non-uniform transition functions. In CARPET, the 
approach used in order to have a longer range of 
interaction among the cells consists in considering the 
cell’s neighborhood within a larger radius. This method is 
very expensive because it significantly increases the 
overhead due to the communications.  

This paper describes a new region-based approach for 
extending the interactions among the cells. Regions are 
spatio-temporal objects that define zones of the automaton 
(set of cells) containing interesting and meaningful data 
patterns or trends that can be defined as events. Each cell 
can monitor regions for a given period and observe their 
evolution by global functions (max, min, sum etc.). 
Moreover, each cell can define significant events that 
involve one or more regions and take actions when an 
event is detected. Occurrences of these events are 
automatically detected by runtime support system.  

To exploit the concept of regions we defined and 
implemented an extension of the CARPET language, 
called CELLAR, with new constructs to handle region-
based programming.  The ZPL language also uses the 
concept of regions for expressing array computation [10]. 

The paper is organized as follows. Section 2 introduces 
the cellular programming model and presents the 
extension of the model with regions. Section 3 presents an 
overview of the CARPET language whereas section 4 
illustrates the CELLAR language constructs for 
programming cellular algorithms using the concept of 
regions. Section 5 describes the programming 
environment and the parallel run-time system of 
CELLAR. Finally, section 6 illustrates the region-based 
programming model by describing the design of a parallel 
model of animal migration, and presents performance 
results. 

 
2. Cellular programming model with regions 

 
Cellular algorithms are performed by concurrent 

programs composed of numerous, fine-grained, iterative 
processes locally interacting according to usually simple 
rules (transition function). Local interaction between 
processes results in complex patterns of evolution of the 

state of the entire system. Termination of a cellular 
algorithm may be triggered by reaching a maximum 
number of generations or by finding an acceptable 
solution.  

A problem can be described by a cellular algorithm 
defining the local transition function and the initial 
configuration of the state of each cell. Moreover, the 
global characteristics of the model, such as the border 
conditions or the size of the cellular array, must be 
defined. If the CA is homogeneous, the cellular algorithm 
is constituted by a collection of identical transition 
functions applied to all the cells of the automaton; 
otherwise, different transition functions must be defined 
for the non-uniform cells.  

In traditional CA a cell can interact only with the cells 
defined within its neighborhood. CELLAR extends the 
range of interaction among the cells introducing the 
concept of region. Regions are spatio-temporal objects, 
statically defined, which allow a cell to know, by global 
functions (max, min, sum, avg, and, or, etc.), the behavior 
of a set of cells put within a defined area. At each iteration 
cells can update their own state not only with the state of 
the neighbor cells but also considering the global values 
obtained by global functions defined on substates of  the 
cells of a region. A cell can also define events which 
involve variables, defined as substates of the cells of a 
region, and take actions when an event is detected. An 
event expression is composed of logical connectives (and, 
or, not) that combine the global functions applied to the 
event variables, where for each function it is checked if it 
is less-than, greater-than or equal to a constant value.  

Each cell can have an associated attribute called 
perception rating, that indicates how far that cell can 
‘see’. On the basis of this value and the cell’s position in 
the cellular space, we can define the regions that are 
visible to the cell. Figure 1 shows the region-based 
programming model used in CELLAR. 

 

Figure 1. The CELLAR programming model with 
regions. 
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3. Overview of CARPET  
 

The CARPET language allows to define the transition 
function of a cell of the automaton. It handles three kinds 
of objects: state, neighborhood and parameters that are 
defined inside the cadef declaration section.  

State objects are passive entities composed of a set of 
typed substates. They are structured as a record in which 
the C basic types: char, shorts, integers, floats, doubles 
and mono-dimensional arrays of these types can be used 
to store the physical quantities of a model or the data 
structures of a parallel algorithm. The predefined variable 
cell refers to the current cell in the n-dimensional space 
under consideration. A substate can be referred appending 
to the reserved word cell the substate’s name by the 
underscore symbol ‘_’ (i.e, cell_substate). Cell substates 
are updated at each iteration only by the update function, 
in order to guarantee the semantics of cell updating in 
cellular automata. After an update  statement, the value of 
the substate, in the current iteration, is unchanged. The 
new value takes effect at the beginning of the next 
iteration. The neighborhood of a cell is defined as the 
maximum number of cells that a cell can access in 
reading. For example, in a 2-dimensional automaton 
defining the radius equal to 1 the number of the neighbors 
can be up to 8. To define transition functions or 
neighborhood time dependent, the predefined variable step 
is used. Step is automatically updated by the system. 
Initially the value of step is 0 and it is incremented by 1 at 
each iteration.  To allow a user to define spatially 
inhomogeneous CA, CARPET defines the GetX, GetY 
and GetZ operations that return the value of X,Y and Z 
coordinates of a cell in the automaton. 

Parameter objects describe some global features of the 
system. CARPET allows to define global parameters and 
to initialize them to specific values. The value of a global 
parameter is the same in each cell of the automaton. 
Parameters can be modified by user interface (UI), 
described in section 4, during the automaton execution.  

cadef 
{  

dimension 2;  /* bidimensional lattice */ 
radius 1; 
state (short value); 
neighbor cross[4]([0,-1]North,[-1,0]West, 
                  [0,1]South,[1,0]East); 

} 
 int i; short N = 0; 
{  

for (i=0; i<4; i++) 
  N = cross_value[i] + N; 
if (N % 2 == 1) 
  update(cell_value, 0);  

}      

Figure 2. The parity rule game. 

The example in figure 2 shows how the CARPET 
constructs can be used to implement the parity rule 
program. In this example the cells can have ‘0’ or ‘1’ 
values only. Let us call N the number of ‘1’ cells among 
the four nearest neighbors of a given cell. The transition 
rule is the following: given a cell, if N is odd, the new 
value of the cell will be 0; if N is even the cell’s value 
does not change. 
 
4. The CELLAR language  

 
CELLAR is an extension of the CARPET language. It 

inherits all the CARPET constructs and extends the 
cellular programming introducing new constructs to 
handle the region-based model of programming.  

In CELLAR, region objects are statically defined, 
inside the cadef section, by the region declaration and 
identified by the name of a vector with dimension equal to 
the number of regions defined in the automaton. Inside a 
region declaration, the areas of interest are enclosed in 
round brackets and separated by commas.  

A d-dimensional region is defined by a sequence of 
indices which represent the geometric coordinates, the 
time period (starting time and ending time) in which the 
region is defined, and the interval of monitoring. 

The following example defines three separated regions: 
  
region  zone[3]  ( area1(10,20,10,30, 0,0,10,300,5), 

        area2(50,60,10,20,0,0,10,300,5), 
                              area3(10,20,40,50,1,1,10,300,5)) 

 
The region area1 is a rectangular area defined by the 

x-y-z coordinates, and it is defined only during the time 
period from 10 to 300 with a monitoring interval equal to 
5. The global behavior of the substates of the cells of a 
region can be observed by global functions that return a 
numerical value. CELLAR implements the functions 
MaxRegion, MinRegion, SumRegion, AndRegion, 
OrRegion, AvgRegion, which respectively allow to 
calculate the maximum, the minimum, the sum, the logical 
and, the logical or, and the average value of substates of 
the cells belonging to a region. Other functions can be 
added in the future. In the following example, the 
MaxRegion function is applied to the temperature substate  

 
max = MaxRegion (area1_temperature, &success) 

 
In the example given above the function MaxRegion 

assigns to max the maximum of the values that cells, 
belonging to the area1 region, take for the temperature 
substate. The success variable takes a true value only if 
the function is performed during the time period specified. 
In the previous example, if the current iteration is 320, the 



  

value returned by the success variable is false and max 
equals to 0.  

To know if a cell belongs to a spatial region we have 
defined the InRegion function. For example, the function: 

 
val = InRegion(area1) 

 
returns a true value if the cell belongs to the area1 

region; otherwise a false value is returned.  
To check if a certain region can be monitored in the 

current iteration we have defined the InTempRegion 
function. In the following example  

               
InTemp = InTempRegion(area1) 

 
the  InTemp variable is true if the current iteration is 
within the temporal window and the monitoring step is 
that defined for the area1 region.   

Regions that are visible to a cell are calculated by the 
Distance function. The Distance function returns the 
distance between the cell and the region considered. The 
Distance function is calculated by taking the integer part 
of the Euclidean distance between the coordinates of the 
cell and the coordinates of the cell that represents the 
center of a region. The center of a region is calculated by 
taking the average value of the three spatial coordinates. 
Distance function returns zero if the cell is within the 
region; otherwise it returns the distance value. The 
following example: 

 
if (Distance(area1) < 20) 

 
allows to check if the area1 region is visible for the 

current cell. For example, the cell can define if the value 
returned from the Distance function is lower than 20 then 
the area1 region is visible where 20 represents its 
perception rating. 

Significant events can be defined on one or more 
regions by defining expressions that contain the above 
defined functions.  The basic event-action control 
structure of CELLAR is  

 
if <event-expr> then < action> 

 
An event-expr is an expression that combines the global 

functions defined on a region by basic numerical 
expressions as well as relational and logical operators. 
Actions consist of changing the value of some substates of 
the current cell or event definitions.  

The example in figure 3 describes a simple simulation 
of the propagation of a forest fire and shows how the main 
constructs of the  CELLAR language can be used. In this 
example each cell represents a portion of the land. Cells in 

the lattice can have values included between '0' and '2'. 
The ground is represented by '0' value, the tree is 
represented by '1' value and the fire is represented by '2' 
value. Fire spreads from a cell which is on fire to a von 
Neumann neighbour that has trees, but not on fire. The 
area1 region represents the zone that must be controlled. 
A user-defined trigger on the area1 region  allows a user 
to monitor the presence of fire in the zone. The region is 
isolated when the fire is present. The fire is detected 
calculating the maximum of the area1 region for the land 
substate because the fire is represented by '2' value. If the 
event is verified, then all the cells located at  a distance 
from 30 to 20 from the region with the fire, change their 
value to ground in order to prevent the propagation of the 
fire. The max and min parameters can be changed to 
simulate different areas that isolate the region on fire. 

#define ground 0 
#define tree 1 
#define fire 2 
cadef  
{  
   dimension 2; 
   radius 1;  
   state (short land); 
   neighbor cross[4]([0,-1]North,[-1,0]West, 
                     [0,1]South,[1,0]East); 
   parameter (min 20.0, max 30.0); 
   region (area1(40,60,30,40,1,1,1,200,1)); 
}  
int succ, dist; 
{  
 dist = Distance(area1); 
  if((MaxRegion(area1_land,&succ)==fire) && 
       dist < max )&&(dist > min)) 
     update(cell_land, ground); 
    else  
     if((cell_land==tree)&&(North_land==fire) ||  
        (East_land == fire) ||(West_land == fire) 
          || (South_land == fire ))  
        
        update(cell_land, fire); 
          else  
           if (cell_land== fire) 
                         update(cell_land, ground); 
} 

Figure 3. The forest fire simulation. 
 

5. The parallel environment 
 

The interactive parallel environment that allows the 
development and running of CELLAR programs on 
parallel architectures is called CARAVEL. The main goal 
of CARAVEL is to integrate computation, visualization 
and control into one environment to allow interactive 
steering of scientific applications [11]. CARAVEL 
consists of 

 
• a graphical user interface (GUI) for editing, 

compiling, configuring, executing and steering the 
computation;  



• a run-time support for the parallel execution of 
CELLAR programs; 

• a load balancing strategy to evenly distribute the 
computation among processors of the parallel 
machine. 

CARAVEL's GUI provides a development window for 
editing, compiling and configuring a cellular program and 
a simulation window for the running and the exploratory 
steering of the simulation.  

To configure an application we use he configure menu 
of the development window defines the dimensions of the 
CA engine, the number of processes in which the CA is 
divided, the number of processors on which to allocate the 
processes and the numbers of folds which define the 
regions for the load balancing strategy described in the 
section 5.1.  

When the simulation window is started the user can 
execute the simulation for a number of steps defined (by 
clicking  the go button) or for an infinite number of steps 
(by clicking the loop button). During the execution of the 
simulation the results are visualised on multiple displays 
and the user can steer the computation stopping the 
execution of the application (by clicking the pause 
button), change parameters and/or the value of some 
substates and restart the execution. Figure 4 shows how 
the interface is used to change the value of a parameter. 
After entering the new parameter values, the user clicks 
on the ok button to send the steering command to the 
application which uses the parameter value for 
computations in the next time step. 

 

 
Figure 4. Simulation window of CARAVEL's GUI. 

Moreover, the current version of  CARAVEL allows  

• to choose the colours that can be assigned to the 
cell substates to support the graphical 
visualization of their values; 

• to change the visualization step to reduce the 
visualization time;  

• to save at regular time the state of the CA in a file. 
 

5.1. The parallel runtime system  
 
The CELLAR run-time system maps CA programs on 

a parallel computer hiding the architecture issues to a user. 

Parallel computers are the best practical support for the 
effective implementation of high-performance CA [12]. 
The CELLAR run-time support is implemented as a 
SPMD (Single Program Multiple Data) program. The 
current implementation is based on the C language plus 
the standard MPI library and can be executed on different 
machines such as the Meiko CS-2, CRAY T3E and 
LINUX cluster of workstations. The concurrent program 
which implements the architecture of the system is 
composed by a set of macrocell processes, a controller 
process and a GUI process. Each macrocell process, 
which contains a strip of cells of the CA, runs on a single 
processing element of the parallel and executes the 
updating of the state of cells belonging to its partition. The 
synchronization of the automaton and the execution of the 
commands, provided by a user through the GUI interface, 
are carried out by the controller process. MPI primitives 
handle all the communications among the processes using 
MPI communicators. CARAVEL uses the capability of 
the MPE graphics library of MPI, that allows a set of 
processes to share an X display, in order to visualise the 
results of a simulation on line.  

At each iteration, the region operations are performed 
in two steps. In the first step, the operations are performed 
on local data. Each processor performs that portion of the 
computation applicable to the index values of the data of a 
region stored in its memory. In the next step these data are 
combined  using the MPI AllReduce function that applies 
the operations to local data and returns the final result to 
all processors. For example, in a SumRegion operation 
before the sum of the values stored on each processor is 
computed locally. Then these partial sums are combined 
and distributed to all processors. In this way, at the 
beginning of each iteration, the result is available for each 
cell of the automaton.  

To improve the performance of applications that have a 
diffusive behavior such as CFD, the CELLAR run-time 
system implements the same load balancing strategy for 
mapping lattice partitions on the processing elements used 
in CARPET [13].  

This load balancing strategy is a trade-off between the 
static and dynamic approach. In fact, the cells partitioning 
is static, whereas the amount of cells mapped on each 
partition is dynamic. In CARAVEL, the grid of cells  is 
first divided into n vertical folds; each fold is then 
partitioned into  N strips, where N  is the number of 
processors of the multicomputer. The i-th strip of each 
fold is assigned to the generic processor Pi. To avoid 
useless computation the user may change, at run time, the 
set of folds on which the state transition function must be 
applied. Each macrocell process will compute only the 
strips of the specified folds. The set of active fold will be 
augmented or restricted just before some cells become 
active or passive. The choice of the active folds can be 
automatic including some tests.  



  

6. Example: a parallel model of animal 
migration  

 
We illustrate the CELLAR programming model by 
describing a parallel model of animal migration. The 
example is based on the NOYELP model developed by a 
group of modelers and biologists at the University of 
Tennessee [14]. NOYELP is a spatially-explicit 
individual-based model that simulates the search, 
movement and foraging activities of groups of animals 
across a landscape. The landscape is composed of a grid 
of  cells where a cell represents a portion of the landscape. 
An initial quantity of available forage is assigned to each 
grid cell based on its habitat type and burn status at the 
beginning of each simulation. The algorithm used in 
NOYELP to simulate forage search and movement of the 
animals assumes that if an animal is located on a cell with 
available forage then the animal stops and grazes. 
Otherwise, the animal  will search in concentric squares, 
up to a radius equal to the maximum moving distance, for 
another cell with available forage. NOYELP model does 
not consider some real features of the animals such as the 
possibility to use the sense of smell and the sight to 
determinate the availability of forage. In our model the 
animals can see in all directions up to a value equal to the 
perception rating and all the regions included within this 
radius can be monitored. We suppose that the forage is 
distributed only in some areas of the landscape defined as 
rectangular regions.  

#define NumRegion 6 
#define perception_rate 20 
#define NumAnim 50 
 
cadef 
{  
 dimension 2;    
 radius 1; 
 state(float forage, short animaldir[NumAnim]); 
 neighbor Moore[8]([0,-1]North, [1,-1]NE, 
         [1,0]East,[1,1]SE,[0,1]South, 
         [-1,1]SW, [-1,0] West, [-1,-1]NW); 

 
 parameter (thres_forage 0.1); 
 
 region  sight[6](  
  meadow1 (10,20,10,30 ,0,0,1,2000,5), 
  meadow2 (10,20,10,30 ,0,0,1,2000,5), 
  meadow3 (10,20,10,30 ,0,0,1,2000,5), 
  meadow4 (10,20,10,30 ,0,0,1,2000,5), 

   meadow5 (10,20,10,30 ,0,0,1,2000,5), 
     meadow6 (10,20,10,30 ,0,0,1,2000,5)); 
} 

Figure 5. The CELLAR declarations of animal 
migration model. 

Figure 5 shows the CELLAR declarations for the 
model of animal migration. The cell state is composed of 
2 substates which describe the quantity of forage and the 
moving direction of 50 animals. The cell’s neighborhood 

contains 8 cells. Regions are six and represent the zones 
where is distributed the forage. They can be monitored 
each five iterations.  

Figure 6 shows an outline of the transition function of 
the model. It is composed of two steps because CELLAR 
does not allow to modify the state of the neighbour cells. 
In the first step, for each cell where there are animals 
(cell_animaldir[k] != 0), we calculate the direction of 
movement of the animals. In the second step, the cell 
indicated as destination “transports” the animal from the 
neighbour site containing the animal toward itself.  

If the cell contains animals and the value of the current 
iteration is included in the time period from 1 to 2000 and 
the monitor step is equals to 5 then the current cell 
calculates, by the distance function, its visible regions. For 
each visible region, by the SumRegion function, the 
available quantity of forage is calculated. If an animal is 
within a region and the amount of forage is greater than a 
threshold (thres_forage) then it stops and grazes, 
otherwise it moves at random within the region. However, 
if the quantity of forage available in the region is less than 
a threshold then the animal migrates to the nearest region 
that has an amount of forage above the threshold. An 
animal located outside a region moves in the direction in 
which the rate amount of forage/distance is maximized.  

 
7. Performance  
 
In this section we present the performance results of the 
CELLAR program that simulates the animal migration 
model. The model has been implemented on a Meiko CS-
2 parallel machine. The CS-2 is a distributed memory 
MIMD parallel computer. It consists of Sparc based 
processing nodes running the Solaris operating system on 
each node, so it resembles a cluster of workstations 
connected by a fast network. Each node is composed of 
one or more Sparc processors, a communication co-
processor, the Elan processor, that connects each node to a 
fat tree network built from Meiko 8x8 crosspoint switches. 
Our machine is a 12 processors CS-2 based on 200 Mhz 
Hypersparc processors with 256 Mbytes of memory on 
each processor and  running Solaris 2.5.1. The model has 
been tested with different grid sizes and with six regions. 
Figure 7 shows a snapshot of migration animal model 
simulated by the CARAVEL environment. Table 1 shows 
the elapsed time of the execution of 100 steps, and the 
speedup measures of the parallel model implementation 
using different grid sizes on 1, 2, 4 and 8 processors. The 
performance showed for the 128x64 grid are better than 
the 64x128 grid. In fact, the automaton is subdivided 
along the x-axis and this implies that a smaller number of 
messages is exchanged between two consecutive 
partitions allocate on different nodes. 
 



if (step %2 == 1)  
{ 
 for (k=0; k < NumAnim; k++) 
    {  
     if (cell_animaldir[k] !=0 ) 
     { 
      if((InTempRegion(meadow1)&&(InTempRegion(meadow2)&& 
       (InTempRegion(meadow3)&&(InTempRegion(meadow4)&& 
       (InTempRegion(meadow5)&& (InTempRegion(meadow6)) 
        {  
         for (i=0; i < NumRegion; i++) 
        { 
         dist[i]= distance(sight[i]); 
         if (dist[i] < perception_rate) 
         { 
           sum[i] = SumRegion(sight[i]_forage, &suc); 
             see[i] = TRUE; 
         } 
         else  
          see[i]=FALSE; 

      } 
     if ((InRegion(meadow1)|| InRegion(meadow2) ||InRegion(meadow3)|| 
          InRegion(meadow4) ||InRegion(meadow5)|| InRegion(meadow6)) 
      { 
       if (cell_forage <= tresh_forage) 
          dir = random_migration (dist,sum,see); 
          else  
            { 
              grazes(cell_forage); 
              dir = motionless; 
            } 
        }  
       else  
         dir = choose_direction (dist, sum, see); 
       update(cell_animaldir[k], dir); 
      } 
     } 
    }  
       else /* movement rule of the animals */ 
       { 
        for(k=0; k <NumAnimal ; k++) 
         if (cell_animaldir[k] != motionless) 
           {  

     animtemp = 0; 
             for (i=1; i<= 8; i++) 
               if(moore[i]_animaldir[k] == i) 
                   animtemp=i; 
             update(cell_animaldir[k], animtemp); 
          } 
    } 
 
 

Figure 6. The CELLAR transition function of animal migration model. 



 
Figure 7. A snapshot of  migration animal simulation. 

 
PEs 64x64 64x128 128x64 

 Time  

(sec.) 

Speedup Time 

(sec.) 

Speedup Time 

(sec.) 

Speedup

1 220.50 1 438.25 1 439.81 1 

2 113.07 1.95 223.60 1.96 222.13 1.98

4 60.41 3.65 117.03 3.74 114.02 3.85

8 36.81 5.99 67.10 6.53 63.11 6.97

Table 1. Elapsed time and speedup for different grid 
sizes of the cellular automaton. 

 

8. Conclusions 
 

In this paper we have presented the constructs of the 
CELLAR language to extend the cellular programming 
with the concept of regions and demonstrated how this 
concept simplifies programming and allows the building 
of more complex models. The CELLAR programming 
environment offers to a user an interface that abstracts 
from underlying hardware and ensures portability and 
intellectual abstraction. The region-based programming 
model of CELLAR is used in the COLOMBO project 
within the ESPRIT framework. The main objective of this 
project is the application of parallel computing to the 
simulation of the bioremediation of contaminated soils 
using CA models. 
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