

CELLAR: A High Level Cellular Programming Language with Regions

Gianluigi Folino and Giandomenico Spezzano

ISI-CNR
 c/o DEIS, Università della Calabria

87036 Rende (CS), Italy
{folino,spezzano}@si.deis.unical.it

Abstract

This paper describes CELLAR, a language for cellular
programming which extends the cellular automata model
through the concept of regions. Regions are spatio-
temporal objects that define zones of the automaton (set of
cells), containing interesting and meaningful data patterns
or trends that can be defined as events. Each cell of the
automaton can monitor regions for a given period and
observe their evolution by global functions (max, min, sum
etc.). Furthermore, each cell can have an associated
attribute called its perception rating, that indicates how
far that cell can ‘see’. On the basis of this value and the
cell’s position in the cellular space, we can define the
regions that are visible to the cell. Using these constructs,
a cell can define significant events to extract data of
interest in one or more regions and perform actions when
an event is detected. In the paper, we show that regions
simplify programming and allow the building of more
complex models. After describing the main constructs of
CELLAR, the paper illustrates the region-based
programming model by describing the design of a parallel
model of animal migration. Performance results of the
model implemented on a Meiko CS-2 are also given.

1. Introduction

Cellular computing [1] is an emergent parallel
programming paradigm based on the computational model
cellular automata (CA) that is effective both for scientific
and engineering computations and as a framework to
enable fine-grained parallel computations.

A CA is composed of an array of interacting cells,
either one-dimensional or multidimensional. Each cell can
have a finite number of states. The states of all the cells
are updated synchronously according to a local rule, called

a transition function, according to which, the state of a
cell at a given time depends only on its own state at the
previous time step and the states of its “nearby” neighbors
(however defined) at that previous step. Thus, the state of
the entire automaton advances in discrete time steps. The
global behavior of the system is determined by the
evolution of the states of all the cells as a result of
multiple interactions.

CA model has been applied to a wide range of practical
applications such as freeway traffic flow, landslides, lava
flow, particle dynamics, forest fire, and soil
bioremediation. However, to support a larger number of
real applications several extensions and modifications to
the basic model have been proposed. A detailed
description of these extensions is presented in [2]. The
main changes concern: the possibility to have a more
complex representation of the state of a cell instead of a
few bits, temporal and spatial inhomogeneity both in the
transition function and in the neighborhood, asynchrony
so that each cell can in each step non-deterministically
choose between changing its state according to the
transition function or keeping its current state, complex
time-dependent neighborhood (i.e. block rule),
probabilistic and hierarchical transition functions.
Moreover, many phenomena, especially those studied in
biology, ecology and sociology, require information from
other cells which do not belong to the cell’s
neighborhood.

Research activities on implementation of cellular
automata models was mainly focused on algorithms and
applications. For many years, the programming issues
were not considered one of the major issues to be faced
and solved. However, in recent years a number of cellular
programming language such as CELLANG [3], CDL[4],
CARP [5], and CEPROL [6] have been defined.

In our previous works [7,8,9] we defined and
implemented a parallel cellular programming environment

and a special language, named CARPET, to support both
practical development of computational science
applications and parallel algorithms in artificial
intelligence. CARPET is a high-level language based on C
with additional constructs to describe the rule of the state
transition function of a single cell of a cellular automaton.
The main features of CARPET are: the possibility to
describe the state of a cell as a record of typed substates,
the simple definition of complex neighborhoods (e.g.,
hexagonal, Margolus) that can be also time dependent and
the specification of non-deterministic, time-dependent and
non-uniform transition functions. In CARPET, the
approach used in order to have a longer range of
interaction among the cells consists in considering the
cell’s neighborhood within a larger radius. This method is
very expensive because it significantly increases the
overhead due to the communications.

This paper describes a new region-based approach for
extending the interactions among the cells. Regions are
spatio-temporal objects that define zones of the automaton
(set of cells) containing interesting and meaningful data
patterns or trends that can be defined as events. Each cell
can monitor regions for a given period and observe their
evolution by global functions (max, min, sum etc.).
Moreover, each cell can define significant events that
involve one or more regions and take actions when an
event is detected. Occurrences of these events are
automatically detected by runtime support system.

To exploit the concept of regions we defined and
implemented an extension of the CARPET language,
called CELLAR, with new constructs to handle region-
based programming. The ZPL language also uses the
concept of regions for expressing array computation [10].

The paper is organized as follows. Section 2 introduces
the cellular programming model and presents the
extension of the model with regions. Section 3 presents an
overview of the CARPET language whereas section 4
illustrates the CELLAR language constructs for
programming cellular algorithms using the concept of
regions. Section 5 describes the programming
environment and the parallel run-time system of
CELLAR. Finally, section 6 illustrates the region-based
programming model by describing the design of a parallel
model of animal migration, and presents performance
results.

2. Cellular programming model with regions

Cellular algorithms are performed by concurrent

programs composed of numerous, fine-grained, iterative
processes locally interacting according to usually simple
rules (transition function). Local interaction between
processes results in complex patterns of evolution of the

state of the entire system. Termination of a cellular
algorithm may be triggered by reaching a maximum
number of generations or by finding an acceptable
solution.

A problem can be described by a cellular algorithm
defining the local transition function and the initial
configuration of the state of each cell. Moreover, the
global characteristics of the model, such as the border
conditions or the size of the cellular array, must be
defined. If the CA is homogeneous, the cellular algorithm
is constituted by a collection of identical transition
functions applied to all the cells of the automaton;
otherwise, different transition functions must be defined
for the non-uniform cells.

In traditional CA a cell can interact only with the cells
defined within its neighborhood. CELLAR extends the
range of interaction among the cells introducing the
concept of region. Regions are spatio-temporal objects,
statically defined, which allow a cell to know, by global
functions (max, min, sum, avg, and, or, etc.), the behavior
of a set of cells put within a defined area. At each iteration
cells can update their own state not only with the state of
the neighbor cells but also considering the global values
obtained by global functions defined on substates of the
cells of a region. A cell can also define events which
involve variables, defined as substates of the cells of a
region, and take actions when an event is detected. An
event expression is composed of logical connectives (and,
or, not) that combine the global functions applied to the
event variables, where for each function it is checked if it
is less-than, greater-than or equal to a constant value.

Each cell can have an associated attribute called
perception rating, that indicates how far that cell can
‘see’. On the basis of this value and the cell’s position in
the cellular space, we can define the regions that are
visible to the cell. Figure 1 shows the region-based
programming model used in CELLAR.

Figure 1. The CELLAR programming model with
regions.

Regions

Neighborhood

cell

global
functions distance

3. Overview of CARPET

The CARPET language allows to define the transition
function of a cell of the automaton. It handles three kinds
of objects: state, neighborhood and parameters that are
defined inside the cadef declaration section.

State objects are passive entities composed of a set of
typed substates. They are structured as a record in which
the C basic types: char, shorts, integers, floats, doubles
and mono-dimensional arrays of these types can be used
to store the physical quantities of a model or the data
structures of a parallel algorithm. The predefined variable
cell refers to the current cell in the n-dimensional space
under consideration. A substate can be referred appending
to the reserved word cell the substate’s name by the
underscore symbol ‘_’ (i.e, cell_substate). Cell substates
are updated at each iteration only by the update function,
in order to guarantee the semantics of cell updating in
cellular automata. After an update statement, the value of
the substate, in the current iteration, is unchanged. The
new value takes effect at the beginning of the next
iteration. The neighborhood of a cell is defined as the
maximum number of cells that a cell can access in
reading. For example, in a 2-dimensional automaton
defining the radius equal to 1 the number of the neighbors
can be up to 8. To define transition functions or
neighborhood time dependent, the predefined variable step
is used. Step is automatically updated by the system.
Initially the value of step is 0 and it is incremented by 1 at
each iteration. To allow a user to define spatially
inhomogeneous CA, CARPET defines the GetX, GetY
and GetZ operations that return the value of X,Y and Z
coordinates of a cell in the automaton.

Parameter objects describe some global features of the
system. CARPET allows to define global parameters and
to initialize them to specific values. The value of a global
parameter is the same in each cell of the automaton.
Parameters can be modified by user interface (UI),
described in section 4, during the automaton execution.

cadef
{

dimension 2; /* bidimensional lattice */
radius 1;
state (short value);
neighbor cross[4]([0,-1]North,[-1,0]West,
 [0,1]South,[1,0]East);

}
 int i; short N = 0;
{

for (i=0; i<4; i++)
 N = cross_value[i] + N;
if (N % 2 == 1)
 update(cell_value, 0);

}

Figure 2. The parity rule game.

The example in figure 2 shows how the CARPET
constructs can be used to implement the parity rule
program. In this example the cells can have ‘0’ or ‘1’
values only. Let us call N the number of ‘1’ cells among
the four nearest neighbors of a given cell. The transition
rule is the following: given a cell, if N is odd, the new
value of the cell will be 0; if N is even the cell’s value
does not change.

4. The CELLAR language

CELLAR is an extension of the CARPET language. It

inherits all the CARPET constructs and extends the
cellular programming introducing new constructs to
handle the region-based model of programming.

In CELLAR, region objects are statically defined,
inside the cadef section, by the region declaration and
identified by the name of a vector with dimension equal to
the number of regions defined in the automaton. Inside a
region declaration, the areas of interest are enclosed in
round brackets and separated by commas.

A d-dimensional region is defined by a sequence of
indices which represent the geometric coordinates, the
time period (starting time and ending time) in which the
region is defined, and the interval of monitoring.

The following example defines three separated regions:

region zone[3] (area1(10,20,10,30, 0,0,10,300,5),

 area2(50,60,10,20,0,0,10,300,5),
 area3(10,20,40,50,1,1,10,300,5))

The region area1 is a rectangular area defined by the

x-y-z coordinates, and it is defined only during the time
period from 10 to 300 with a monitoring interval equal to
5. The global behavior of the substates of the cells of a
region can be observed by global functions that return a
numerical value. CELLAR implements the functions
MaxRegion, MinRegion, SumRegion, AndRegion,
OrRegion, AvgRegion, which respectively allow to
calculate the maximum, the minimum, the sum, the logical
and, the logical or, and the average value of substates of
the cells belonging to a region. Other functions can be
added in the future. In the following example, the
MaxRegion function is applied to the temperature substate

max = MaxRegion (area1_temperature, &success)

In the example given above the function MaxRegion

assigns to max the maximum of the values that cells,
belonging to the area1 region, take for the temperature
substate. The success variable takes a true value only if
the function is performed during the time period specified.
In the previous example, if the current iteration is 320, the

value returned by the success variable is false and max
equals to 0.

To know if a cell belongs to a spatial region we have
defined the InRegion function. For example, the function:

val = InRegion(area1)

returns a true value if the cell belongs to the area1

region; otherwise a false value is returned.
To check if a certain region can be monitored in the

current iteration we have defined the InTempRegion
function. In the following example

InTemp = InTempRegion(area1)

the InTemp variable is true if the current iteration is
within the temporal window and the monitoring step is
that defined for the area1 region.

Regions that are visible to a cell are calculated by the
Distance function. The Distance function returns the
distance between the cell and the region considered. The
Distance function is calculated by taking the integer part
of the Euclidean distance between the coordinates of the
cell and the coordinates of the cell that represents the
center of a region. The center of a region is calculated by
taking the average value of the three spatial coordinates.
Distance function returns zero if the cell is within the
region; otherwise it returns the distance value. The
following example:

if (Distance(area1) < 20)

allows to check if the area1 region is visible for the

current cell. For example, the cell can define if the value
returned from the Distance function is lower than 20 then
the area1 region is visible where 20 represents its
perception rating.

Significant events can be defined on one or more
regions by defining expressions that contain the above
defined functions. The basic event-action control
structure of CELLAR is

if <event-expr> then < action>

An event-expr is an expression that combines the global

functions defined on a region by basic numerical
expressions as well as relational and logical operators.
Actions consist of changing the value of some substates of
the current cell or event definitions.

The example in figure 3 describes a simple simulation
of the propagation of a forest fire and shows how the main
constructs of the CELLAR language can be used. In this
example each cell represents a portion of the land. Cells in

the lattice can have values included between '0' and '2'.
The ground is represented by '0' value, the tree is
represented by '1' value and the fire is represented by '2'
value. Fire spreads from a cell which is on fire to a von
Neumann neighbour that has trees, but not on fire. The
area1 region represents the zone that must be controlled.
A user-defined trigger on the area1 region allows a user
to monitor the presence of fire in the zone. The region is
isolated when the fire is present. The fire is detected
calculating the maximum of the area1 region for the land
substate because the fire is represented by '2' value. If the
event is verified, then all the cells located at a distance
from 30 to 20 from the region with the fire, change their
value to ground in order to prevent the propagation of the
fire. The max and min parameters can be changed to
simulate different areas that isolate the region on fire.

#define ground 0
#define tree 1
#define fire 2
cadef
{
 dimension 2;
 radius 1;
 state (short land);
 neighbor cross[4]([0,-1]North,[-1,0]West,
 [0,1]South,[1,0]East);
 parameter (min 20.0, max 30.0);
 region (area1(40,60,30,40,1,1,1,200,1));
}
int succ, dist;
{
 dist = Distance(area1);
 if((MaxRegion(area1_land,&succ)==fire) &&
 dist < max)&&(dist > min))
 update(cell_land, ground);
 else
 if((cell_land==tree)&&(North_land==fire) ||
 (East_land == fire) ||(West_land == fire)
 || (South_land == fire))

 update(cell_land, fire);
 else
 if (cell_land== fire)
 update(cell_land, ground);
}

Figure 3. The forest fire simulation.

5. The parallel environment

The interactive parallel environment that allows the
development and running of CELLAR programs on
parallel architectures is called CARAVEL. The main goal
of CARAVEL is to integrate computation, visualization
and control into one environment to allow interactive
steering of scientific applications [11]. CARAVEL
consists of

• a graphical user interface (GUI) for editing,

compiling, configuring, executing and steering the
computation;

• a run-time support for the parallel execution of
CELLAR programs;

• a load balancing strategy to evenly distribute the
computation among processors of the parallel
machine.

CARAVEL's GUI provides a development window for
editing, compiling and configuring a cellular program and
a simulation window for the running and the exploratory
steering of the simulation.

To configure an application we use he configure menu
of the development window defines the dimensions of the
CA engine, the number of processes in which the CA is
divided, the number of processors on which to allocate the
processes and the numbers of folds which define the
regions for the load balancing strategy described in the
section 5.1.

When the simulation window is started the user can
execute the simulation for a number of steps defined (by
clicking the go button) or for an infinite number of steps
(by clicking the loop button). During the execution of the
simulation the results are visualised on multiple displays
and the user can steer the computation stopping the
execution of the application (by clicking the pause
button), change parameters and/or the value of some
substates and restart the execution. Figure 4 shows how
the interface is used to change the value of a parameter.
After entering the new parameter values, the user clicks
on the ok button to send the steering command to the
application which uses the parameter value for
computations in the next time step.

Figure 4. Simulation window of CARAVEL's GUI.

Moreover, the current version of CARAVEL allows

• to choose the colours that can be assigned to the
cell substates to support the graphical
visualization of their values;

• to change the visualization step to reduce the
visualization time;

• to save at regular time the state of the CA in a file.

5.1. The parallel runtime system

The CELLAR run-time system maps CA programs on

a parallel computer hiding the architecture issues to a user.

Parallel computers are the best practical support for the
effective implementation of high-performance CA [12].
The CELLAR run-time support is implemented as a
SPMD (Single Program Multiple Data) program. The
current implementation is based on the C language plus
the standard MPI library and can be executed on different
machines such as the Meiko CS-2, CRAY T3E and
LINUX cluster of workstations. The concurrent program
which implements the architecture of the system is
composed by a set of macrocell processes, a controller
process and a GUI process. Each macrocell process,
which contains a strip of cells of the CA, runs on a single
processing element of the parallel and executes the
updating of the state of cells belonging to its partition. The
synchronization of the automaton and the execution of the
commands, provided by a user through the GUI interface,
are carried out by the controller process. MPI primitives
handle all the communications among the processes using
MPI communicators. CARAVEL uses the capability of
the MPE graphics library of MPI, that allows a set of
processes to share an X display, in order to visualise the
results of a simulation on line.

At each iteration, the region operations are performed
in two steps. In the first step, the operations are performed
on local data. Each processor performs that portion of the
computation applicable to the index values of the data of a
region stored in its memory. In the next step these data are
combined using the MPI AllReduce function that applies
the operations to local data and returns the final result to
all processors. For example, in a SumRegion operation
before the sum of the values stored on each processor is
computed locally. Then these partial sums are combined
and distributed to all processors. In this way, at the
beginning of each iteration, the result is available for each
cell of the automaton.

To improve the performance of applications that have a
diffusive behavior such as CFD, the CELLAR run-time
system implements the same load balancing strategy for
mapping lattice partitions on the processing elements used
in CARPET [13].

This load balancing strategy is a trade-off between the
static and dynamic approach. In fact, the cells partitioning
is static, whereas the amount of cells mapped on each
partition is dynamic. In CARAVEL, the grid of cells is
first divided into n vertical folds; each fold is then
partitioned into N strips, where N is the number of
processors of the multicomputer. The i-th strip of each
fold is assigned to the generic processor Pi. To avoid
useless computation the user may change, at run time, the
set of folds on which the state transition function must be
applied. Each macrocell process will compute only the
strips of the specified folds. The set of active fold will be
augmented or restricted just before some cells become
active or passive. The choice of the active folds can be
automatic including some tests.

6. Example: a parallel model of animal
migration

We illustrate the CELLAR programming model by
describing a parallel model of animal migration. The
example is based on the NOYELP model developed by a
group of modelers and biologists at the University of
Tennessee [14]. NOYELP is a spatially-explicit
individual-based model that simulates the search,
movement and foraging activities of groups of animals
across a landscape. The landscape is composed of a grid
of cells where a cell represents a portion of the landscape.
An initial quantity of available forage is assigned to each
grid cell based on its habitat type and burn status at the
beginning of each simulation. The algorithm used in
NOYELP to simulate forage search and movement of the
animals assumes that if an animal is located on a cell with
available forage then the animal stops and grazes.
Otherwise, the animal will search in concentric squares,
up to a radius equal to the maximum moving distance, for
another cell with available forage. NOYELP model does
not consider some real features of the animals such as the
possibility to use the sense of smell and the sight to
determinate the availability of forage. In our model the
animals can see in all directions up to a value equal to the
perception rating and all the regions included within this
radius can be monitored. We suppose that the forage is
distributed only in some areas of the landscape defined as
rectangular regions.

#define NumRegion 6
#define perception_rate 20
#define NumAnim 50

cadef
{
 dimension 2;
 radius 1;
 state(float forage, short animaldir[NumAnim]);
 neighbor Moore[8]([0,-1]North, [1,-1]NE,
 [1,0]East,[1,1]SE,[0,1]South,
 [-1,1]SW, [-1,0] West, [-1,-1]NW);

 parameter (thres_forage 0.1);

 region sight[6](
 meadow1 (10,20,10,30 ,0,0,1,2000,5),
 meadow2 (10,20,10,30 ,0,0,1,2000,5),
 meadow3 (10,20,10,30 ,0,0,1,2000,5),
 meadow4 (10,20,10,30 ,0,0,1,2000,5),

 meadow5 (10,20,10,30 ,0,0,1,2000,5),
 meadow6 (10,20,10,30 ,0,0,1,2000,5));
}

Figure 5. The CELLAR declarations of animal
migration model.

Figure 5 shows the CELLAR declarations for the
model of animal migration. The cell state is composed of
2 substates which describe the quantity of forage and the
moving direction of 50 animals. The cell’s neighborhood

contains 8 cells. Regions are six and represent the zones
where is distributed the forage. They can be monitored
each five iterations.

Figure 6 shows an outline of the transition function of
the model. It is composed of two steps because CELLAR
does not allow to modify the state of the neighbour cells.
In the first step, for each cell where there are animals
(cell_animaldir[k] != 0), we calculate the direction of
movement of the animals. In the second step, the cell
indicated as destination “transports” the animal from the
neighbour site containing the animal toward itself.

If the cell contains animals and the value of the current
iteration is included in the time period from 1 to 2000 and
the monitor step is equals to 5 then the current cell
calculates, by the distance function, its visible regions. For
each visible region, by the SumRegion function, the
available quantity of forage is calculated. If an animal is
within a region and the amount of forage is greater than a
threshold (thres_forage) then it stops and grazes,
otherwise it moves at random within the region. However,
if the quantity of forage available in the region is less than
a threshold then the animal migrates to the nearest region
that has an amount of forage above the threshold. An
animal located outside a region moves in the direction in
which the rate amount of forage/distance is maximized.

7. Performance

In this section we present the performance results of the
CELLAR program that simulates the animal migration
model. The model has been implemented on a Meiko CS-
2 parallel machine. The CS-2 is a distributed memory
MIMD parallel computer. It consists of Sparc based
processing nodes running the Solaris operating system on
each node, so it resembles a cluster of workstations
connected by a fast network. Each node is composed of
one or more Sparc processors, a communication co-
processor, the Elan processor, that connects each node to a
fat tree network built from Meiko 8x8 crosspoint switches.
Our machine is a 12 processors CS-2 based on 200 Mhz
Hypersparc processors with 256 Mbytes of memory on
each processor and running Solaris 2.5.1. The model has
been tested with different grid sizes and with six regions.
Figure 7 shows a snapshot of migration animal model
simulated by the CARAVEL environment. Table 1 shows
the elapsed time of the execution of 100 steps, and the
speedup measures of the parallel model implementation
using different grid sizes on 1, 2, 4 and 8 processors. The
performance showed for the 128x64 grid are better than
the 64x128 grid. In fact, the automaton is subdivided
along the x-axis and this implies that a smaller number of
messages is exchanged between two consecutive
partitions allocate on different nodes.

if (step %2 == 1)
{
 for (k=0; k < NumAnim; k++)
 {
 if (cell_animaldir[k] !=0)
 {
 if((InTempRegion(meadow1)&&(InTempRegion(meadow2)&&
 (InTempRegion(meadow3)&&(InTempRegion(meadow4)&&
 (InTempRegion(meadow5)&& (InTempRegion(meadow6))
 {
 for (i=0; i < NumRegion; i++)
 {
 dist[i]= distance(sight[i]);
 if (dist[i] < perception_rate)
 {
 sum[i] = SumRegion(sight[i]_forage, &suc);
 see[i] = TRUE;
 }
 else
 see[i]=FALSE;

 }
 if ((InRegion(meadow1)|| InRegion(meadow2) ||InRegion(meadow3)||
 InRegion(meadow4) ||InRegion(meadow5)|| InRegion(meadow6))
 {
 if (cell_forage <= tresh_forage)
 dir = random_migration (dist,sum,see);
 else
 {
 grazes(cell_forage);
 dir = motionless;
 }
 }
 else
 dir = choose_direction (dist, sum, see);
 update(cell_animaldir[k], dir);
 }
 }
 }
 else /* movement rule of the animals */
 {
 for(k=0; k <NumAnimal ; k++)
 if (cell_animaldir[k] != motionless)
 {

 animtemp = 0;
 for (i=1; i<= 8; i++)
 if(moore[i]_animaldir[k] == i)
 animtemp=i;
 update(cell_animaldir[k], animtemp);
 }
 }

Figure 6. The CELLAR transition function of animal migration model.

Figure 7. A snapshot of migration animal simulation.

PEs 64x64 64x128 128x64

 Time

(sec.)

Speedup Time

(sec.)

Speedup Time

(sec.)

Speedup

1 220.50 1 438.25 1 439.81 1

2 113.07 1.95 223.60 1.96 222.13 1.98

4 60.41 3.65 117.03 3.74 114.02 3.85

8 36.81 5.99 67.10 6.53 63.11 6.97

Table 1. Elapsed time and speedup for different grid
sizes of the cellular automaton.

8. Conclusions

In this paper we have presented the constructs of the
CELLAR language to extend the cellular programming
with the concept of regions and demonstrated how this
concept simplifies programming and allows the building
of more complex models. The CELLAR programming
environment offers to a user an interface that abstracts
from underlying hardware and ensures portability and
intellectual abstraction. The region-based programming
model of CELLAR is used in the COLOMBO project
within the ESPRIT framework. The main objective of this
project is the application of parallel computing to the
simulation of the bioremediation of contaminated soils
using CA models.

Acknowledgements

This research has been partially funded by the CEC
ESPRIT project n° 24907.

References

[1] M. Sipper, “ The Emergence of Cellular Computing”,
IEEE Computer, vol.32, n. 7, July 1999.

[2] T. Worsch, Programming Environments for Cellular
Automata, Proc. Cellular Automata for Research and
Industry (ACRI 96), Springer-Verlag, London, pp. 3-
12, 1997.

[3] J.D. Eckart, Cellang 2.0:Reference manual. ACM
Sigplan Notices, vol. 27, n. 8, pp.107-112, 1992.

[4] C. Hochberger, R. Hoffmann, CDL – a Language for
Cellular Processing. In Proc. 2nd Intern. Conference
on Massively Parallel Computing Systems, 1996.

[5] G. Junger, Cellular Automaton Tool user manual,
GMD,1994.

[6] F. Seutter, CEPROL – a Cellular Programming
Language, Parallel Computing, vol. 2 , pp.327-333,
1985.

[7] G. Spezzano and D. Talia, A High-Level Cellular
Programming Model for Massively Parallel
Processing, in: Proc. 2nd Int. Workshop on High-Level
Programming Models and Supportive Environments
(HIPS97), IEEE Computer Society, pp. 55-63, 1997.

[8] G. Spezzano, D. Talia and al. A Parallel Cellular Tool
for Interactive Modeling and Simulation, IEEE
Computational Science & Engineering, 3:3, pp. 33-
43, 1996.

[9] Folino G., Pizzuti C., Spezzano G., Combining
Cellular Genetic Algorithms and Local Search for
Solving Satisfiability Problems, Proc. of 10th IEEE
International Conference Tools with Artificial
Intelligence (ICTAI'98), IEEE Computer Society, pp.
192-198 , 1998.

[10] Bradford L. Chamberlain, E Christopher Lewis,
Calvin Lin, and Lawrence Snyder, Regions: An
Abstraction for Expressing Array Computation, UW
CSE Technical Report, UW-CSE-98-10-02, October,
1998.

[11] J.Vetter, K. Schwan, High Performance
Computational Steering of Physical Simulations,
Proc. 11th International Parallel Processing
Conference(IPPS’96), IEEE Computer Society Press,
pp.128-132, 1997.

[12] B.P Hansen, Parallel Cellular Automata: A Model for
Computational Science, Concurrency: Practice and
Experience, 5, pp. 425-448, 1993

[13] M. Cannataro, S. Di Gregorio, R. rongo, W. Spataro,
G. Spezzano, and D. Talia, A Parallel Cellular
Environment on Multicomputers for Computational
Science, Parallel Computing, 21, pp. 803-824, 1995.

[14] E. Uziel and M.W. Berry, Parallel Model of Animal
Migration in Northern Yellowstone Park, Int. J.
Supercomputer Applications and High Performance
Computing, vol. 9, n.4, pp.237-255,1996.

