
Process Mining

Part II – Workflow discovery algorithms

Induction of Control-Flow Graphs
α-algorithm
Heuristic Miner
Fuzzy Miner

Outline

Part I – Introduction to Process Mining
Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Induction of basic Control Flow graphs
Other approaches (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond control-flow mining
Organizational mining
Social net mining
Extension algorithms

Part IV – Evaluation and validation of discovered models
Conformance Check
Log-based property verification

Part V – Clustering-based Process Mining
Discovery of hierarchical workflow models
Discovery of process taxonomies
Outlier detection

Start

Register order

Prepare
shipment

Ship goods

(Re)send bill

Receive paymentContact
customer

Archive order

End

ProcessProcess ModelModel

OrganizationalOrganizational ModelModel

SocialSocial NetworkNetwork

ControlControl--flow discoveryflow discovery

Workflow (control flow) discovery
Input: execution data of a process P (possibly unknown)

log: a list of traces
In the simplest case each trace just registers the sequence of tasks performed
during one execution of P

Output: a schema for process P
captures the P’s behavior, by representing all the ways its tasks are executed

Usefulness of mined models
Help better comprehend process behavior
Support process (re)-design (What is the process?)
Delta analysis (Are we doing what was specified?)
Process Design is often a complex and time consuming task
Sometimes, a fully-specified model is not available for the process

log
recording

WorkflowWorkflow
DiscoveryDiscovery

log datalog data WorkflowWorkflow Schema Schema
((ProcessProcess Model) Model) forfor PP

abcdfgabcdfg
abcfdabcfd

abcdfeabcdfe
……..

process process
enactmentsenactments

?
process Pprocess P process process

enactmentsenactments

?
process Pprocess P

?
process Pprocess P

Representation of mined models

A plethora of meta-models for representing workflow models
Block-structured languages, Petri Nets, Logics, Process Algebra,…
Graph-based languages are a reasonable choice w.r.t. expressiveness,
complexity and comprehensibility

Most approaches derive some kind of graph over the tasks
Few exceptions use alternative techniques (e.g., grammar induction,
term rewriting)

A simple formalism: Control Flow Graph
Intuitively specifies which execution flows are allowed across the tasks

A labeled, directed graph
Each node corresponds to a task (and vice-versa)
Each arc represents a (temporal) precedence between two tasks

Cardinality constraints further (locally) restricts the possible execution
flows

Control Flow Graph (CFG) models
A CFG schema W for P is a tuple <A, E, a0, AF, Fork, Join> where:

Α is a finite set of activities (also nodes or tasks);
E⊆(Α−ΑF)x(Α−{a0}) is an acyclic relation of precedence among
activities;
a0∈ Α is the starting activity, AF ⊆ Α is the set of final activities;

Local constraints are expressed through the functions
Fork:(Α−ΑF)α{AND, OR, XOR} and
Join: (Α−{a0})α{AND, OR}

Example: a CFG for the toy process Order Management

authenticate
client

check
stock

ask
suppliers

validate
order plan

dec line
order

accept
order

fidelity
discount

fast
dispatch

prepare
bill

a

b

c

f

i

d

g

h

l

m

o

n

client
reliability

receive
order AND

XOR

XOR

XOR

XOR

AND

OROR

OR

register
client

XOR
OR

OR

XOR

abficgln,

acbidpegln
abficdgh

CFG models: executions

Instance of W :
Connected sub-graph of S’s CFG, containing at least the starting activity and one
final activity, compliant with the constraints

Trace of the process P:
A sequence of P’s tasks

A trace s is compliant with the schema W if there is at least an instance Iw
of W such that s is a topological order of Iw

Es: the trace abfcgh is compliant with the instance, while the traces afbcgh and
afblm are not

schema W

Conformance of a CFG schema w.r.t. a log

Two criteria to compare a (mined) model W with a given log L:
Completeness:

the percentage of traces in the log that are compliant with W– the larger
the more complete

Soundness:
the percentage of traces that can be generated from W that actually
occur in the log – the larger the sounder.

CFG conformance: Example

Log L

completeness({W, L})=16/16
=100%

soundness({W, L})=16/276

=5.797%

Admitted Instances = 20;

Modeled Traces = 276.
Schema W

Example: a way to get higher soundness

Considered trace Log (L)

Modeled Traces = 64 Modeled Traces = ?

s8,…,12 comply with W1 ∪ W2

soundness(W1 ∪ W2 ,L)=11/97=11.34%

completeness (W1 ∪ W2 ,L)= 11/16=68.75%

W1
W2

Modeled Traces = 33

Other representation languages: Petri nets

Sequence
Splits
Joins
Loops
Non-Free Choice
Invisible Tasks
Duplicate Tasks

PayPay
ParkingParking

Get Ready

Travel by CarTravel by Train

Defence Starts

Ask Question

Defence Ends

Go Home

Travel by Train Pay for Parking

Travel by Car

Give a Talk

Have Drinks

GetGet
ReadyReady

Travel Travel byby
TrainTrain

Travel Travel byby
CarCar

DefenseDefense StartsStarts

GiveGive a Talka Talk

AskAsk QuestionQuestion

DefenseDefense EndsEnds

Go HomeGo Home

Travel Travel byby
TrainTrain

Travel Travel byby
CarCar

Have Have DrinksDrinks

Other representation languages: Petri nets

Sequence
Splits
Joins
Loops
Non-Free Choice
Invisible Tasks
Duplicate Tasks

PayPay
ParkingParking

Get Ready

Travel by CarTravel by Train

Defence Starts

Ask Question

Defence Ends

Go Home

Travel by Train Pay for Parking

Travel by Car

Give a Talk

Have Drinks

GetGet
ReadyReady

Travel Travel byby
TrainTrain

Travel Travel byby
CarCar

DefenseDefense StartsStarts

GiveGive a Talka Talk

AskAsk QuestionQuestion

DefenseDefense EndsEnds

Go HomeGo Home

Travel Travel byby
TrainTrain

Travel Travel byby
CarCar

Have Have DrinksDrinks

+ noise in logs!

Toy example:
paper reviewing

Event log:
processes

process instances
events

Per event:
activity name
(event type)
(originator)
(timestamp)
(data)

A discovered Petri net model (α-algorithm)

Other workflow languages: EPCs

EPC= Event Driven Process Chain
An EPC consists of three kinds of elements, which define the flow of a business
process as a chain of events.

Functions: A function corresponds to an activity (task, process step) which needs to
be executed.
Events: Events describe the situation before and/or after a function is executed.
Connectors: There are three types of connectors: ^ (and), X (xor) and V (or).

Functions, events and connectors can be connected with edges in such a way
that the following rules apply:

Events have at most one incoming edge and at most one outgoing edge.
Functions have precisely one incoming edge and precisely one outgoing edge.
Connectors have either one incoming edge and multiple outgoing edges, or multiple
incoming edges and one outgoing edge.
In every path, functions and events alternate.

No two functions are connected and no two events are connected, not even when there
are connectors in between.

EPC model (SAP,ARIS, etc)

EPC model (SAP,ARIS, etc)

Workflow discovery algorithms:
the case of CFG models

Basic induction scheme
1. Mine a Dependency Graph encoding

a minimal set of precedence links
2. Mine a set of cardinality (local)

constraints, based on simple statistics
3. Introduce support thresholds to handle

noisy data

Event LogEvent Log

Mined ModelMined Model

s1: acdbfgih s5: abicglmn s9: abficgln s13: abcidglmn

s2: abficdgh s6: acbiglon s10: acgbfilon s14: acdbiglmn

s3: acgbfih s7: acbgilomn s11: abcfdigln s15: abcdgilmn

s4: abcgiln s8: abcfgilon s12: acdbfigln s16: acbidgln

Dependency graph

Dependency graph for a log L is a graph DL=<A,E> such that
E={ (a, b) | ∃s∈L, i∈{1,..., length(s)-1} s.t. a=s[i] ∧ b=s[i+1]};

Parallel activities
Two activities a and b are parallel in L, if they occur in some cycle of DL

Precedence
The activity a precedes b in L, denoted with a→b, if a and b are not parallel
and there is a path from a to b in DL

Example: Log L={abcde, adbce, ae}

Dependency graph

• a, b and c are parallel activities in L;

• a → b;

• b → e;

Basic Workflow Discovery scheme

Build the
dependency graph

And make it
coincide with the
initial CFG model

Removal of
cycles

Connect the vertices of
the the edge, with
preceding nodes.

Connect the vertices of
the removed edge with
following nodes

Remove, from E,
all edgee between
parallel activities

Identification of the first
node a0 and the set of
final nodes AF.

Basic Workflow Discovery Scheme

Derive local
constraints

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Precedences:

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

Parallel activities:
• b, c, d

Edges to remove:
• (b, c),
• (b, d),
• (c, d).

b c

d

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).x
log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

pre

∪ {(a,c)};

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

post

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

pre

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

post

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

Edges to remove: (b, c), (d, b), (c, d).

• a0:= a;
• AF:= {e}

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

∪ {(a,c)} ∪ {(b,e)}

Example: Algorithm simulation

Dependency graph

a

b c

d

e

• a0:= a;
• AF:= {e}

log L = {abcde, adbce, ae},

E:= {(a, b), (a, d), (a, e),
(b, c), (c, d), (c, e),
(d, b), (d, e)}

∪ {(a,c)} ∪ {(b,e)}

A = {a, b, c, d, e},
OR

ANDAND

AND

AND

AND

AND
OR

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Basic CFG induction algorithm
Other algorithms (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond the control-flow mining perspective
Organizational mining
Social net mining
Extension algorithms

Part IV – Evaluation and validation of discovered models
Conformance Check
Log-based property verification

Part V – Clustering-based Process Mining
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection

Workflow discovery algorithms

Multi-phase PM
α-algorithm
Heuristics Miner
Genetic PM
Fuzzy Miner

1

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Basic CFG induction algorithm
Other algorithms (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond the control-flow perspective
Organizational mining
Social net mining
Extension techniques

Part IV – Evaluation and validation of discovered models
Conformance Check
Log-based property verification

Part V – Advanced Process Mining approaches
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection in a process mining setting

Multi-phase mining

Main steps
Convert each log trace into an execution graph, where each node
corresponds to the execution of a task

a task label can appear multiple times!
Convert each instance graph into an instance graph

each node is associated with a single task
both nodes and edges are labelled with occurrence counters
a fictive start node and a fictive final node are introduced

Merge the instance graphs into an aggregated graph model
The model is simply the union of all the instance graphs
Arc/node counters are summed up

Convert the CFG model into an EPC

Multi-phase mining: Example
Execution graphs (acyclic):

Instance graphs (some cycles can be created)

Labels tell in how many log
traces an arc (or a node)
occurs

Multi-phase mining: Example (2)
Instance graphs:

Aggregated graph model:

Multi-phase mining: deriving an EPC

ts

tf

Multi-phase mining: Example (3)

Aggregated graph model

EPC model

Workflow discovery algorithms

Multi-phase PM
α-algorithm
Heuristics Miner
Genetic PM
Fuzzy Miner

1

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Basic CFG induction algorithm
Other algorithms (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond the control-flow perspective
Organizational mining
Social net mining
Extension techniques

Part IV – Evaluation and validation of discovered models
Conformance Check
Log-based property verification

Part V – Advanced Process Mining approaches
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection in a process mining setting

α-algorithm

Output: a Petri net

Method:
• Read the input log
• Get the set of tasks
• Infer a set of ordering relations
• Build the net based on inferred relations
• Return the net

Direct succession:
x>y iff for some case x is directly followed by y

Causality:
x→y iff x>y and not y>x

Parallel:
x||y iff x>y and y>x

Unrelated:
x#y iff not x>y and not y>x

α-algorithm - Ordering Relations >,→,||,#

From the ordering relations to the Petri
net

x y

x→y

x→y, x→z, and y||z

x

z

y

x→y, x→z, and y#z

x

z

y

x→z, y→z, and x||y

x

y

z

x→z, y→z, and x#y

x

y

z

Let W be a workflow log over T. α(W) is defined as follows.
1. TW = { t ∈ T | ∃σ ∈ W t ∈ σ},
2. TI = { t ∈ T | ∃σ ∈ W t = first(σ) },
3. TO = { t ∈ T | ∃σ ∈ W t = last(σ) },
4. XW = { (A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a ∈ A∀b ∈ B a →W b ∧ ∀a1,a2 ∈ A

a1#W a2 ∧ ∀b1,b2 ∈ B b1#W b2 },
5. YW = { (A,B) ∈ X | ∀(A′,B′) ∈ XA ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) },
6. PW = { p(A,B) | (A,B) ∈ YW } ∪{iW,oW},
7. FW = { (a,p(A,B)) | (A,B) ∈ YW ∧ a ∈ A } ∪ { (p(A,B),b) | (A,B) ∈ YW ∧ b

∈ B } ∪{ (iW,t) | t ∈ TI} ∪{ (t,oW) | t ∈ TO}, and
8. α(W) = (PW,TW,FW).

α-algorithm - Formalization

