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Workflow (control flow) discovery
Input: execution data of a process P (possibly unknown) 

log: a list of traces
In the simplest case each trace just registers the sequence of tasks performed 
during one execution of P 

Output: a schema for process P
captures the P’s behavior, by representing all the ways its tasks are executed

Usefulness of mined models
Help better comprehend process behavior 
Support process (re)-design (What is the process?)
Delta analysis (Are we doing what was specified?)
Process Design is often a complex and time consuming task
Sometimes, a fully-specified model is not available for the process
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Representation of mined models

A plethora of meta-models for representing workflow models
Block-structured languages, Petri Nets, Logics, Process Algebra,…
Graph-based languages are a reasonable choice w.r.t. expressiveness, 
complexity and comprehensibility

Most approaches derive some kind of graph over the tasks
Few exceptions use alternative techniques (e.g., grammar induction, 
term rewriting)

A simple formalism: Control Flow Graph
Intuitively specifies which execution flows are allowed across the tasks

A labeled, directed graph
Each node corresponds to a task (and vice-versa)
Each arc represents a (temporal) precedence between two tasks 

Cardinality constraints further (locally) restricts the possible execution 
flows



Control Flow Graph (CFG) models
A CFG schema W for P is a tuple <A, E, a0, AF, Fork, Join> where:

Α is a finite set of activities (also nodes or tasks);
E⊆(Α−ΑF)x(Α−{a0}) is an acyclic relation of precedence among 
activities;
a0∈ Α is the starting activity, AF ⊆ Α is the set of final activities;

Local constraints are expressed through the functions 
Fork:(Α−ΑF)α{AND, OR, XOR} and 
Join: (Α−{a0})α{AND, OR}

Example: a CFG for the toy process Order Management
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CFG models: executions

Instance of W : 
Connected sub-graph of S’s CFG, containing at least the starting activity and one 
final activity, compliant with the constraints

Trace of the process P: 
A sequence of P’s tasks

A trace s is compliant with the schema W if there is at least an instance Iw
of W such that s is a topological order of Iw

Es: the trace abfcgh is compliant with the instance, while the traces afbcgh and 
afblm are not

schema W



Conformance of a CFG schema w.r.t. a log

Two criteria to compare a (mined) model W with a given log L:
Completeness: 

the percentage of traces in the log that are compliant with W– the larger 
the more complete

Soundness: 
the percentage of traces that can be generated from W that actually 
occur in the log – the larger the sounder.



CFG conformance: Example

Log L

completeness({W, L})=16/16
=100%

soundness({W, L})=16/276

=5.797%

Admitted Instances = 20;

Modeled Traces = 276.
Schema W



Example: a way to get higher soundness

Considered trace Log (L)

Modeled Traces = 64 Modeled Traces = ?

s8,…,12 comply with W1 ∪ W2

soundness( W1 ∪ W2 ,L)=11/97=11.34%

completeness (W1 ∪ W2 ,L)= 11/16=68.75%

W1
W2

Modeled Traces = 33



Other representation languages: Petri nets
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Other representation languages: Petri nets
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Toy example: 
paper reviewing

Event log:
processes

process instances
events

Per event:
activity name
(event type)
(originator)
(timestamp)
(data)



A discovered Petri net model (α-algorithm)



Other workflow languages: EPCs

EPC= Event Driven Process Chain
An EPC consists of three kinds of elements, which define the flow of a business 
process as a chain of events.

Functions: A function corresponds to an activity (task, process step) which needs to
be executed.
Events: Events describe the situation before and/or after a function is executed. 
Connectors: There are three types of connectors: ^ (and),  X (xor) and V (or).

Functions, events and connectors can be connected with edges in such a way 
that the following rules apply:

Events have at most one incoming edge and at most one outgoing edge.
Functions have precisely one incoming edge and precisely one outgoing edge.
Connectors have either one incoming edge and multiple outgoing edges, or multiple 
incoming edges and one outgoing edge.
In every path, functions and events alternate. 

No two functions are connected and no two events are connected, not even when there
are connectors in between.



EPC model (SAP,ARIS, etc)



EPC model (SAP,ARIS, etc)



Workflow discovery algorithms: 
the case of CFG models

Basic induction scheme
1. Mine a Dependency Graph encoding 

a minimal set of precedence links 
2. Mine a set of cardinality (local) 

constraints, based on simple statistics
3. Introduce support thresholds to handle 

noisy data

Event LogEvent Log

Mined ModelMined Model

s1: acdbfgih s5: abicglmn s9: abficgln s13: abcidglmn

s2: abficdgh s6: acbiglon s10: acgbfilon s14: acdbiglmn

s3: acgbfih s7: acbgilomn s11: abcfdigln s15: abcdgilmn

s4: abcgiln s8: abcfgilon s12: acdbfigln s16: acbidgln 
 



Dependency graph

Dependency graph for a log L is a graph DL=<A,E> such that
E={ (a, b) | ∃s∈L, i∈{1,..., length(s)-1} s.t. a=s[i] ∧ b=s[i+1]};

Parallel activities 
Two activities a and b are parallel in L, if they occur in some cycle of DL

Precedence
The activity a precedes b in L, denoted with a→b, if a and b are not parallel 
and there is a path from a to b in DL

Example: Log L={abcde, adbce, ae}

Dependency graph

• a, b and c are parallel activities in L;

• a → b;

• b → e;



Basic Workflow Discovery scheme

Build the 
dependency graph

And make it 
coincide with the 
initial CFG model

Removal of 
cycles

Connect the vertices of 
the the edge, with 
preceding nodes.  

Connect the vertices of 
the removed edge with 
following nodes  

Remove, from E, 
all edgee between 
parallel activities

Identification of the first 
node a0 and the set of 
final nodes AF.  



Basic Workflow Discovery Scheme

Derive local 
constraints



Example: Algorithm simulation

Dependency graph

a

b c

d

e

Precedences:

a→e

d→ec→eb→ea→d

d→cc→db→da→c

d→bc→bb→ca→b

Parallel activities:
• b, c, d

Edges to remove:
• (b, c), 
• (b, d),
• (c, d).

b c

d



Example: Algorithm simulation

Dependency graph
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log L = {abcde, adbce, ae},
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pre

∪ {(a,c)};
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Example: Algorithm simulation
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Multi-phase mining

Main steps
Convert each log trace into an execution graph, where each node
corresponds to the execution of a task 

a task label can appear multiple times!
Convert each instance graph into an instance graph

each node is associated with a single task
both nodes and edges are labelled with occurrence counters
a fictive start node and a fictive final node are introduced

Merge the instance graphs into an aggregated graph model
The model is simply the union of all the instance graphs
Arc/node counters are summed up

Convert the CFG model into an EPC



Multi-phase mining: Example
Execution graphs (acyclic):

Instance graphs (some cycles can be created)

Labels tell in how many log 
traces an arc (or a node) 
occurs



Multi-phase mining: Example (2)
Instance graphs:

Aggregated graph model:



Multi-phase mining: deriving an EPC

ts

tf



Multi-phase mining: Example (3)

Aggregated graph model

EPC model
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α-algorithm

Output: a Petri net

Method:
• Read the input log
• Get the set of tasks
• Infer a set of ordering relations
• Build the net based on inferred relations
• Return the net



Direct succession: 
x>y iff for some case x is directly followed by y

Causality: 
x→y iff x>y and not y>x

Parallel: 
x||y iff x>y and y>x

Unrelated: 
x#y iff not x>y and not y>x

α-algorithm - Ordering Relations >,→,||,#



From the ordering relations to the Petri
net
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Let W be a workflow log over T. α(W) is defined as follows. 
1. TW = { t ∈ T | ∃σ ∈ W t ∈ σ}, 
2. TI = { t ∈ T | ∃σ ∈ W t = first(σ) }, 
3. TO = { t ∈ T | ∃σ ∈ W t = last(σ) }, 
4. XW = { (A,B) | A ⊆ TW ∧ B ⊆ TW ∧ ∀a ∈ A∀b ∈ B a →W b ∧ ∀a1,a2 ∈ A

a1#W a2 ∧ ∀b1,b2 ∈ B b1#W b2 }, 
5. YW = { (A,B) ∈ X | ∀(A′,B′) ∈ XA ⊆ A′ ∧B ⊆ B′⇒ (A,B) = (A′,B′) }, 
6. PW = { p(A,B) | (A,B) ∈ YW } ∪{iW,oW}, 
7. FW = { (a,p(A,B)) | (A,B) ∈ YW ∧ a ∈ A } ∪ { (p(A,B),b) | (A,B) ∈ YW ∧ b 

∈ B } ∪{ (iW,t) | t ∈ TI} ∪{ (t,oW) | t ∈ TO}, and 
8. α(W) = (PW,TW,FW). 

α-algorithm - Formalization


