Process Mining

Part 11 — Worktlow discovery algorithms

Induction of Control-Flow Graphs
o-algorithm

Heuristic Miner

Fuzzy Miner

Outline

Part | — Introduction to Process Mining

o Context, motivation and goal
o General characteristics of the analyzed processes and logs
o Classification of Process Mining approaches

Part Il — Workflow discovery
o Induction of basic Control Flow graphs
o Other approaches (a-algorithm, Heuristic Miner, Fuzzy mining)

Part Il — Beyond control-flow mining

o Organizational mining
o Social net mining
o Extension algorithms

Part IV — Evaluation and validation of discovered models

o Conformance Check
o Log-based property verification

Part V — Clustering-based Process Mining
o Discovery of hierarchical workflow models
o Discovery of process taxonomies
o Oultlier detection

Control-flow discovery

g ” supports/ |
world controls inf :
business processes Information
People achines <\I:,|> system
components ~N
organizations
records
events,e.g.,
specifies messages,
models | . configures analyzes transactions,
analyzes implements etc.

\
- Organizational Model Q
event
logs @ @

Social Network

(process)
model

extension
I

A

Worktlow (control flow) discovery

= Input: execution data of a process P (possibly unknown)
o log: alist of traces
o In the simplest case each trace just registers the sequence of tasks performed
during one execution of P
= Qutput: a schema for process P
o captures the P’s behavior, by representing all the ways its tasks are executed

““““““““““““““““““““““

g T
i N
A . log abedig Workflow
! | recording d9sid Discovery
, i § z1cclfy
| process P process .
] enactments ~—
log data Workflow Schema

(Process Model) for P
s Usefulness of mined models
Help better comprehend process behavior
Support process (re)-design (What is the process?)
Delta analysis (Are we doing what was specified?)
Process Design is often a complex and time consuming task
Sometimes, a fully-specified model is not available for the process

o U 0 0 O

Representation of mined models

= A plethora of meta-models for representing workflow models
o Block-structured languages, Petri Nets, Logics, Process Algebra,...

o Graph-based languages are a reasonable choice w.r.t. expressiveness,
complexity and comprehensibility
= Most approaches derive some kind of graph over the tasks

m Few exceptions use alternative techniques (e.g., grammar induction,
term rewriting)

= A simple formalism: Control Flow Graph

o Intuitively specifies which execution flows are allowed across the tasks
= A labeled, directed graph
= Each node corresponds to a task (and vice-versa)
m Each arc represents a (temporal) precedence between two tasks

o Cardinality constraints further (locally) restricts the possible execution
flows

b

authenticate

client

ND

accept

order

o

Control Flow Graph (CFG) models

A CFG schema W for P is a tuple <A E, a,, A, Fork, Join> where:
o Ais afinite set of activities (also nodes or tasks);

o E(A-ALX(A-{a,})is an acyclic relation of precedence among
activities;
a,e A is the starting activity, A c A is the set of final activities;
o Local constraints are expressed through the functions
m Fork:(A-Ag){AND, OR, XOR} and
= Join: (A-{a,})e{AND, OR}

Example: a CFG for the toy process Order Management

m

fidelity

check

stock

R\ orderplan

j validate

<:

fast
dispatch

discount
07*
XOR

4

abficgln,
acbidpegln
abficdgh

CFG models: executions

(=]
héﬂﬁﬂﬂ}:fxm;imnl XOR

AND
schema W Ma é‘-‘* n 4

OR,

Cﬁmcﬂ'g xor | h 4
d

m Instance of W :

o Connected sub-graph of S’s CFG, containing at least the starting activity and one
final activity, compliant with the constraints

m Trace of the process P:
o A sequence of P’s tasks

s Atrace s is compliant with the schema W if there is at least an instance Iw
of W such that s is a topological order of Iw

o Es: the trace abfcgh is compliant with the instance, while the traces afbcgh and
afblm are not

Conformance of a CFG schema w.r.t. a log

Two criteria to compare a (mined) model W with a given log L.:

s Completeness:
o the percentage of traces in the log that are compliant with W- the larger
the more complete
= Soundness:

o the percentage of traces that can be generated from W that actually
occur in the log — the larger the sounder.

‘ CFG conformance: Example

Schema W
oo >
b P*® RS f e i
AND
M a [Hano
OR
c J\I‘DR CII‘}; g XOR #* h _4
d
LogL
51 . acbgth 55 . abefcgin
5z . abfcgh 51p - acgbefiln
53 » acgbfh 511 . abcedfgin
54 : abcgfin 512 : acdbefgin
%5 : abfcgimn 5,3 : abcfdgimn
S acbfgiln 534 : acdbigimn
%7 : acbgfilmn 55 : abcdgfimn
Sy : abcegfiln %34 : acbfdgin

XOR

~

Admitted Instances = 20;
Modeled Traces = 276.

soundness({W, L})=16/276
=5.797%

completeness({W, L})=16/16
=100%

‘ Example: a way to get higher soundness

Modeled Traces = 64

Considered trace Log (L)

soundness(w, uw, ,L)=11/97=11.34%

§1 + acbgfh sg . abefcgin

sz . abfcgh Sin - acgbefiln
Sz + acgbfh Sy) : abcedfgin
54 . abcgfin 51z : acdbefgin
%5 : abfcgimn 533 : abcfdgimn
g - acbhfgiln 534 : acdbfgimn
s : acbgfilmn 55 : abecdgfimn
%y : abcegfiln |55 ¢ acbfdgin

completeness (w, uw,,L)=11/16=68.75%

Defense Starts

Invisible Tasks ®
Have Drinks
[
() Go Home L
.
Travellby , : Pay
Train Parking

Travel by

® Car

Other representation languages: Petri nets

Get >

e

Ready
)

s Sequence

m Splits

= Joins

s Loops

= Non-Free Choice
= |nvisible Tasks
s Duplicate Tasks

+ noise in logs!

Travel by Travel by
Trai Car
> Starts
Ask Que
DG eeeeeeeeeee
H
oooooo O
Pay
Parking
Travel by
Car

Toy example:
paper reviewing

Event log:

m processes

o process instances
= events

Per event:
m activity name
= (eventtype)
(originator)
m (timestamp)
(data)

_ 1Ol x|

N v I D:'ﬁpplicaﬁon_data'-ProM'-.cpn_examples'u’eviewing'-J'eviewsl;l 4[| IC—:-:-;E ks

,f‘ D:\application_data\ProM\cpn_examples\reviewing\reviewslog_with_fewer_e

Ty
LIUitv-::-eren *b@") B~ | 7 EBladwijzers~ F292Rank - 3> () Instelingen~

Goc.rgle|Gv
88' -| Eviss ZDD?Pr...l €S DELP: David ... | & Di\applic... X | | 5 - B - o= - |-.FPage - {Cf Tools -

o dk
<Timestamp=2007-03-25T00:00:00.000+01:00</Timestamp= =]
<Originator=Mike </Originator=
</ AuditTrallEntry =
- <AuditTrailEntry =
<WorkflowModelElementz=reject</WorkflowModelElementz
<EventType=complete </EventType=
=Timestamp>=2007-03-30T00:00:00.000+01:00 </Timestamp =
<Originator=Mike </Originator=
=/ AuditTrailEntry =
=/Processlnstance>
- <ProcessInstance id="52" description=
- <AuditTrailEntry =
=WorkflowModelElement=invite reviewers =/ WorkflowModelElement=
<EventType=start</EventType:=
<Timestamp>=2006-08-31T00:00:00.000+01:00</Timestamp =
<Originator=Anne</Originator:=
</ AuditTrailEntry =
- <AuditTralEntry =
<WorkflowModelElement=invite reviewers </ \WorkflowModelElement=
ZEventType=complete </EventType:=
<Timestamp>=2006-09-01T00:00:00.000+01:00</Timestamp>
<Originator=Anne</0Originator=
=/ AuditTrailEntry =
- <AuditTrailEntry = =l
- <Datax=
<Attribute name="result"=reject</Attribute =
</Dataz=
<WorkflowModelElement=get review 2 </ WorkflowModelElement=
<EventType=complete </EventType=
=Timestamp>=2006-09-01T00:00:00.000+01:00 </Timestamp >
<Originator=Pete</0Originator=
=/ AuditTrailEntry =
- <AuditTrailEntry =
- <Data>
<Attribute name="result"=reject</Attribute =
=/Data=
<WorkflowModelElement=get review 1</ WorkflowModelElement:=
<EventType=complete </EventType=
<Timestamp>=2006-09-05T00:00:00.000+01:00 </Timestamp =
<Originator=Pam-</0riginator=
</ AuditTrailEntry =
- <AuditTrailEntry =
oWorkflowModelElement=time-out 3 </ WorkflowModelElement:=
<EventTypexcomplete </EventType =
<Timestamp>=2006-09-10T00:00:00.000+01:00</Timestamp =
<Originator /=
</ AuditTrailEntry =
- <AuditTralEntry =
<WorkflowModelElementz>collect reviews </ \WorkflowModelElement =

=

<EventType=start</EventType:= -
4| B ' T T = 4|

|Done I_ l_ l_ I_ I_ l_l d My Computer

#,100% ~ ¢

‘ A discovered Petri net model (a-algorithm)

& proM [4.0]

File Mining Analysis Conversion Exports Window Help

el

X

get review 2

: complete

: o P

5 : o (—‘c B !
: , time-outX e \Ey

: time-out 2 complete =i

g@ complete

invite additional reviewer

: complets

: time-out 1]
ii complete gt review X

: O invite reviewers collect reviews O decide complete

§§ complete complete complete

: get review 1

; complete

: accept

: complete

fime-out 3

: complete

: reject

; complete

get review 3

: complete N
q i [v |

Other workflow languages: EPCs

EPC= Event Driven Process Chain

An EPC consists of three kinds of elements, which define the flow of a business
process as a chain of events.

o Functions: A function corresponds to an activity (task, process step) which needs to
be executed.

o Events: Events describe the situation before and/or after a function is executed.
o Connectors: There are three types of connectors: » (and), X (xor) and V (or).

Functions, events and connectors can be connected with edges in such a way
that the following rules apply:

o Events have at most one incoming edge and at most one outgoing edge.
o Functions have precisely one incoming edge and precisely one outgoing edge.

o Connectors have either one incoming edge and multiple outgoing edges, or multiple
incoming edges and one outgoing edge.
o In every path, functions and events alternate.

= No two functions are connected and no two events are connected, not even when there
are connectors in between.

=18l x|

® proM [4.0]
File Mining Analysis Comversion Exports Window Help

Conversion - Labeled WF net to EPC
complafe ;
invite reviewers <J_I'>“?'_:‘>
complete s —‘a}_.h,—-—
Bl PN = .
et
e B S e

get review 2 tirne-out 1 time-out 3 get review 3 time-out 2 get review 1
complete complete complete complete complete complete
W
invite additional reviews Status change i collect el
complete eomplens
L
collect reviews
complete

== @ 3= EPC model (SAP,ARIS, etc
7 o
= | 1

=18l x|

® proM [4.0]
File Mining Analysis Comversion Exports Window Help

Conversion - Labeled WF net to EPC
complafe ;
invite reviewers <J_I'>“?'_:‘>
complete s —‘a}_.h,—-—
Bl PN = .
et
e B S e

get review 2 tirne-out 1 time-out 3 get review 3 time-out 2 get review 1
complete complete complete complete complete complete
W
invite additional reviews Status change i collect el
complete eomplens
L
collect reviews
complete

== @ 3= EPC model (SAP,ARIS, etc
7 o
= | 1

Worktlow discovery algorithms:
the case of CFG models

s, acdbfgih s abicglmn s abficgln s - abcidglmn

S, abficdgh S, acbiglon S, acgbfilon S, acdoiglmn Basic induction scheme

S, acgbfih S.: acbgilomn S, abcfdigln S, abcdgi Imn 1. Mine a Dependency Graph encoding
s, abcgiln s abcfgilon s - acdbfigln s @ acbidgln a minimal set of precedence links

2. Mine a set of cardinality (local)
constraints, based on simple statistics

Event Log

3. Introduce support thresholds to handle
noisy data

v
=
b I
auiEntoals 1S A0k Sl
ol e ikl
T TR
ks

EAl =T El A

@Eq b @ﬁjﬁﬂﬁ"
Mined Model @ | el

Dependency graph

= Dependency graph for a log L is a graph D, =<A,E> such that
E={ (a, b) | 3seL, ie{]l,..., length(s)-1} s.t. a=s[i] A b=s[i+1]};
m Parallel activities
Two activities a and b are parallel in L, if they occur in some cycle of D,

m Precedence

The activity a precedes b in L, denoted with a—b, if a and b are not parallel
and there is a path from atobin D,

Example: Log L={abcde, adbce, ae}

 a, b and c are parallel activities in L;

H/Wh?’\ L s
J\h-\j(//' b e

' (a) Dependency graph

‘ Basic Workflow Discovery scheme

Build the
Input: A log Lp. dependency | of
Output: A workflow schema WS = (A, E,ag, Ap, Join, Fork). And ma | oval o
Method: Perform the following steps: s Itth¥|%|eS

1 {A.E}::Dﬁp; niodes and edges are initially those of the dependency graph

2 for each (a,b) € F s.t. a and b are parallel in Lp do //remove cycles

3 E:=FE —{(a.b)};

4 for each s € Lp s.t. {a.b} C tasks(s) do //update edges

5 pre := s[i], where s[i] — a A s[i] — b and not exists s[k] with k > i s.t. s[k] — a A s[k] — b;
6 E:=FEuU{(pre.a)} U{(pre.b)};

7 post := s[j], where a — s[j] A b — s[j] and not exists s[h] with h < j s.t. a — s[h] A b — s[h];
B E = EU{(a,post)} U {(b.post)}:

9 end for

10 end for

11 ap := s[1], no matter of which trace s € Lp is selected; Ap:={ac A| Abe Ast. a— b}; I
12 for each a € A do //construction of local constraints

13 if Vs € Lp s.t. a € tasks(s), it holds that Ve s.t. (a,c) € E, ¢ € tasks(s) then Fork(a) = AND;
14 else if Vs € Lp s.t. a € tasks(s), |[{c| (a.c) € E A c € tasks(s)}| = 1 then Fork(a) = XOR;

15 else Fork(a) = OR;

16 if Vs € Lp s.t. a € tasks(s), (c,a) € E = ¢ € tasks(s) then Join(a) = AND;

17 else Join(a) = OR;

18 end for

19 return (A, E, ag, Ap, Join, Fork);

FG model
Remove, from E,

all edgee between
parallel activities

Connect the vertices of
the the edge, with
preceding nodes.

Connect the vertices of
the removed edge with
following nodes

Identification of the first
node a, and the set of
final nodes Ag.

‘ Basic Workflow Discovery Scheme

Input: A log Lp.
Output: A workflow schema WS = (A, E. ag, Ap, Join, Fork).
Method: Perform the following steps:

1

o 00 =1 Oy O = W kD

e e e e e e e e =
O 0 =1 O = W=D

<‘4'-'E>::D£p; //nodes and edges are initially those of the dependency graph
for each (a,b) € E s.t. a and b are parallel in Lp do //remove cycles
E:=FE —{(a.b)}:
for each s € Lp s.t. {a, b} C tasks(s) do //update edges
pre ;= g[i], where s[i] — a A s[i] — b and not exists s[k] with & > i s.t. s[k] — a A s[k] — b;
E:=FEU{(pre,a)} U{(pre.b)}:
post := g[j], where a — s[j] A b — s[j] and not exists s[h] with h < j s.t. @ — s[h] A b — s[h];
E = EU{(a.post)} U{(b. post)};

end for

Derive local
constraints

end for

ap = s[1], no matter of which trace s € Lp is selected; Ap:={acA| Abe As.t. a — b};

for each a € A do //eonstruction of local constraints
if Vs € Lp s.t. a € tasks(s), it holds that Ve s.t. (a,c) € E, ¢ € tasks(s) then Fork(a) = AND;
else if Vs € Lp s.t. a € tasks(s), |{c| (a.c) € E N c € tasks(s)}| = 1 then Fork(a) = XOR;
else Fork(a) = OR;
if Vs € Lp s.t. a € tasks(s), (c,a) € E = ¢ € tasks(s) then Join(a) = AND;
else Join(a) = OR;

end for

return (A, E ag, Ap, Join, Fork);

Example: Algorithm simulation

Precedences: Parallel activities:
a—>b (\b—>c cob) dob) * b’ C, d
/j/‘\
a—c (b->d @ c—d d—c
——— Edges to remove:
a—d b—e c—e d—e
* (b, C),
Dependency graph oo o

. (c, d).

‘ Example: Algorithm simulation

Edges to remove: (b, c), , (c, d). asb | boc] eob] dob
asc | bod | cod dosc
log L ?adbce, ae},
) a—d b—e c—e d—e
a—e
pre
v{(a,c)};
2 for each (a,b) € E s.t. a and b are parallel in Lp do //remove cycles
3 E:=E—{(a,b)}
4 for each s € Lp s.t. {a,b} C tasks(s) do //update edges
5 pre := si], where s[i] — a A s[i] — b and not exists s[k] with k > i s.t. s[k] — a A s[k] — b;
6 E:= EU{(pre,a)}U{(pre,b)};
7 post := s[j], where a — s[j] A b — s[j] and not exists s[h] with h < j s.t. a — s[h] A b — s[h];
8 E := FEU{(a,post)} U {(b, post) };
9 end for
10 end for

‘ Example: Algorithm simulation

Edges to remove: (b, c), , (c, d). a-b

log L adbce, ae}, :Z

!
5
G
8
9

b—c c—b d—b

b—d c—d d—c

b—e c—oe d—e
e

bost /

for each s € Lp s.t. {a,b} C tasks(s) do //update edges

pre = s[i], where s[i] — a / s[i] — b and not exists s[k] with & > i s.t. s[k] — ar s[k] — b

E = E U {(pre,a)} U {(pre,b)};

post 1= s[j], where a — s3] n b — s[j] and not exists s[h] with h < j s.t. a — s[h] ~ b — s[h];

E:= FEuU{{a,post)} U{(b post)};

end for

‘ Example: Algorithm simulation

Edges to remove: (b, c), a-b

!
5
G
8
9

log L = {abcﬁ ae}, :Z

for each s € Lp s.t. {a,b} C tasks(s) do //update edges

pre = s[i], where s[i] — a ~ s[i] — b and not exists s[k] with & = i s.t. s[k] —an

E = E U {(pre,a)} U {(pre,b)};

post := s[j], where a — s{j] A b — s[j] and not exists s[h] with h < j s.t. a — s[h] A

E:= FEuU{{a,post)} U{(b post)};

end for

b—c c—b d—b
b—d c—d d—c
b—e c—e d—e
s[k] — b:
b — s[h];

‘ Example: Algorithm simulation

!
5
G
8
9

Edges to remove: (b, c), asb | boc] eob] dob
a—c b—d c—d d—c
log L = {abcde adbce ae},
a—d b—e c—oe d—e
a—e
post
v{(ac)t vilb.e)}
for each s € Lp s.t. {a,b} C tasks(s) do //update edges
pre = s[i], where s[i] — a / s[i] — b and not exists s[k] with & > i s.t. s[k] — ar s[k] — b
E:=EU{(pre,a)} U {(pre,b)};
post 1= s[j], where a — s3] n b — s[j] and not exists s[h] with h < j s.t. a — s[h] ~ b — s[h];

E:= FEuU{{a,post)} U{(b post)};

end for

‘ Example: Algorithm simulation

!
5
G
8
9

Edges to remove: (b, c), , (c, d). asb | boc | cob | dob
a—c b—d c—d d—c
log L = {abcde, adbce,
a—d b—e c—e d—e
a—e

for each s € Lp s.t. {a,b} C tasks(s) do //update edges

pre = s[i], where s[i] — a / s[i] — b and not exists s[k] with & > i s.t. s[k] — ar s[k] — b

E = E U {(pre,a)} U {(pre,b)};

post 1= s[j], where a — s3] n b — s[j] and not exists s[h] with h < j s.t. a — s[h] ~ b — s[h];

E:= FEuU{{a,post)} U{(b post)};

end for

‘ Example: Algorithm simulation

Edges to remove: (b, c), , (c, d). asb | boc] eob] dob
a—C b—d c—d d—c
log L = {abcde, adbce, ae}, VI T P
a—e
v{(ac)} vibe)}
2 for each (a,b) € F s.t. a and b are parallel in Lp do //remove cycles
3 E:=FE — {(a,b)}1
4 for each s € Lp s.t. {a,b} C tasks(s) do //update edges
5 pre = s[i|, where s[i] — a A s[i] — b and not exists s[k] with k > ¢ s.t. s[k] — a A s[k] — b;
6 E:=EuU/{(pre,a)}U{(pre,b)};
7 post := s[j], where a — s[j] A b — s[j] and not exists s[h] with h < j s.t. a — s[h] A b — s[h];
8 E := EU{(a,post)} U {(b,post)};
9 end for
10 end for

‘ Example: Algorithm simulation

Edges to remove: (b, c), , (c, d). asb | boc | cob | dob
a—C b—d c—d d—c
log L = {abcde, adbce, ae},
a—d b—e c—e d—e
a—e
viac)y wilbe)
* ay= a; 11 ag := s[1], no matter of which trace s € Lp is selected; Ap:={ac A| Abc Ast. a— b}

Example: Algorithm simulation

log L = {abcde, adbce, ae},
A={a, b,c,d,e}

: ,Ec, d), (c,e), uvfac)} wvilbe)}

« ag= a;
o A= {e}
12 for each a € A do //construction of local constraints
— 13— if ¥s € Lp s.t. a € tasks(s), it holds that Ve s.t. (a,c) € E, ¢ € tasks(s) then Fork(a) = AND;
14 else if Vs € Lp s.t. a € tasks(s), |[{c | (a,c) € E Ac € tasks(s)}| = 1 then Fork(a) = XOR;

—+15—>» else Fork(a) = OR;
— 16— if ¥s € Lp s.t. a € tasks(s), (c,a) € E = ¢ € tasks(s) then Join(a) = AND;
17 else Join(a) = OR;

18 end for

Outline

a
a
a

Part || — Workflow discovery
o Basic CFG induction algorithm
o Other algorithms (a-algorithm, Heuristic Miner, Fuzzy mining)

Part Ill — Beyond the control-flow mining perspective
o Organizational mining

o Social net mining

o Extension algorithms

Part IV — Evaluation and validation of discovered models
o Conformance Check
o Log-based property verification

Part V — Clustering-based Process Mining
o Discovery of hierarchical process models
o Discovery of process taxonomies
o Outlier detection

‘ Worktlow discovery algorithms

‘ Outline

a

= Multi-phase PM ;

. = Part Il - Workflow discovery
u G-algorlth m - o Basic CFG induction algorithm
- HeUI’IStICS M|ner o Other algorithms (a-algorithm, Heuristic Miner, Fu.zzy mining)
= Part lll - Beyond the control-flow perspective
m Genetic PM a grggnization.al. mining
o Social net mining
m Fuzzy M i n er o Extension teChnlqueS

Part IV — Evaluation and validation of discovered models
o Conformance Check
o Log-based property verification

Part V — Advanced Process Mining approaches
o Discovery of hierarchical process models
o Discovery of process taxonomies
o Outlier detection in a process mining setting 1

Multi-phase mining

= Main steps
o Convert each log trace into an execution graph, where each node
corresponds to the execution of a task
= a task label can appear multiple times!

o Convert each instance graph into an instance graph
= each node is associated with a single task
= both nodes and edges are labelled with occurrence counters
= a fictive start node and a fictive final node are introduced
o Merge the instance graphs into an aggregated graph model
= The model is simply the union of all the instance graphs
= Arc/node counters are summed up

o Convert the CFG model into an EPC

Multi-phase mining: Example

s Execution graphs (acyclic):

A—> B<:Z> G<:|H> B<:Z>E

(a)
D D
\\‘ \\\
A—» B E A—» B F
(b) o~ (c) c—
—

= |nstance graphs (some cycles can be created)

DE 1 E—+ 1
 —> At E‘-< ! ‘
1 1 2 c e
(H} 1 H1 .4_1// lOde)
3
|, - !
D
, — > A—+> 51 1‘\{\‘- E—> tf1

L D
(b) 131 3 FA1 - B< 01\/:} F,—+» tr1
(c) 1

Multi-phase mining: Example (2)

= [nstance graphs:

D : E— + »
151—1—l-A1—1—-B< 2 E 1 lf1
2
(a) ‘L H *—//
1 |1

-}

,—+*>A—+»B G} E—> &
(b) LA ,,_,B<:: MF_H.I
(c}l
- =

= Aggregated graph model'

t—a—hﬁh—s—hB

Multi-phase mining: deriving an EPC

t1 J X,
tfy

— If X" (i) =y then 1 = XOR,

X1 X” — It \j?:l(-ri) — gy then c1 = AND.
— Else ¢1 = OR.
A —»
y
— If 3" (zi) = y then c2 = XOR.
Z Z — If \?‘";11(2& — 1y then e = AND,
1 " — Else Co = OR.

D 4 = EPC model
t —a> A—s --B< “W 1\\
3 3 4 Cr

Aggregated graph model

‘ Worktlow discovery algorithms

‘ Outline

a

= Multi-phase PM ;

. = Part Il - Workflow discovery
u G-algorlth m - o Basic CFG induction algorithm
- HeUI’IStICS M|ner o Other algorithms (a-algorithm, Heuristic Miner, Fu.zzy mining)
= Part lll - Beyond the control-flow perspective
m Genetic PM a grggnization.al. mining
o Social net mining
m Fuzzy M i n er o Extension teChnlqueS

Part IV — Evaluation and validation of discovered models
o Conformance Check
o Log-based property verification

Part V — Advanced Process Mining approaches
o Discovery of hierarchical process models
o Discovery of process taxonomies
o Outlier detection in a process mining setting 1

a-algorithm

Output: a Petri net

Method:
Read the input log
Get the set of tasks
Infer a set of ordering relations
Build the net based on inferred relations
Return the net

a-algorithm - Ordering Relations >,—,|[,#

Direct succession:

x>y iff for some case x is directly followed by y

Causality:
x—Y iff x>y and not y>x
Parallel:

X||y iff x>y and y>x

Unrelated:

x#y iff not x>y and not y>x

ﬁrom the ordering relations to the Petri
net

O,
=
x X—5Y X/Q*y
y >: O
(=) &
Xx—Z, y—z, and xi#y X—Y, Xx—z, and y||z
y . '<>\ .
= &

x—Y, x—z, and y#z X2, y—2, and x]ly

a-algorithm - Formalization

Let W be a workflow log over T. o (W) is defined as follows.

1.Ty={teT | 3_,_,teoc}

T,={teT | 3, _ t=first(c) },

To={teT | 3__y,t=last(c)},

Xy={(AB)| AcT, ABcT,, A V
Ay 8, A Vi Dy Do

Yw={(AB) e X | Vipnpy . xASA ABcB'= (AB)=(A"B)},

6. Py ={Pnp | (AB) e Yy} Aiyonh

7. Fy={(@apng) | (AB)eYy, raeA} U{(papb) | (AB)eYy Ab

e B} U{(iyt) | teT} Aoy, |te Ty}, and

8. oU(W) = (Pyy, Ty Fuy)-

A~ WD

acaVbeg@2owb A Vymoa

&)

