
Process Mining

Part IV – Clustering-based Process Mining

Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection

2

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Induction of basic Control Flow graphs
Other techniques (α-algorithm, Heuristic Miner, Fuzzy mining)

Part IV – Beyond control-flow mining
Organizational mining
Social net discovery
Extension algorithms

Part III – Evaluation and validation of discovered models
Conformance Check
Log-based property verification

Part V – Clustering-based Process Mining
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection

3

Limitations of classical wf-discovery approaches

Model expressiveness is limited, as only local relationships are
considered between tasks

real-life processes may follow complex behavioral rules, which
cannot easily expressed through precedences and local
constraints
e.g., there is no actual execution containing both fidelity discount
and register new client, even if Order Management schema
admits them

The discovery of variants of a given process is not addressed

In both cases, the resulting process model can be too loose:
several modeled executions will never occur in any actual
enactment

4

Process Mining Framework

Quality of a mined schema

The quality of a schema W can be measured w.r.t. the log L
it was extracted from

Soundness: % of traces of W that occur in L
Completeness: % of traces in L that comply with W

5

How to mine accurate models?

Use more expressive languages / meta-models
e.g., control flow graphs could be enriched with additional
“global” constraints, relating nodes that are not adjacent to
each other
but, explicitly handling such constraints may lead to knotty
models and makes harder the process mining task

Mine different schemas (usage scenarios)
Complex behavioral rules can be caught indirectly, by recognizing

different unexpected and frequent behavioral patterns
unexpected w.r.t. a given control flow graph, but frequent in the

log
such patterns evidence the existence of constraints (or usage

patterns) that are not properly modeled by the graph
Use a set of workflow schemas

more expressive, and accurate, than a single schema
but still intuitive and easy to mine

6

The proposed approach

Mine a basic schema S0 modeling all the log traces and put it in WU

Iteratively refine a schema SK (e.g., the least sound) in WU:
cluster its associated traces according to their mutual similarity w.r.t.
“unexpected” behavioral patterns (see later) discovered in the log
produce a new schema for each cluster of traces

… till the soundness of WU is not satisfactory and its size is less than M

log log
tracestraces

basic WF Schemabasic WF Schema

PartitioningPartitioning
& &

RefinementRefinement

DisjunctiveDisjunctive WorkflowWorkflow SchemaSchema

CF CF GraphGraph
inductioninduction

……

7

The Process Mining Algorithm in detail
INPUT: log L, two natural numbers M and k, a soundness threshold γ

OUTPUT: a hierarchy H of workflow schemas

1. W0=mineWFschema(L) // a preliminary schema is built for L, essentially
// modeling precedences and local constraints

2. set W0 as the root of H and assign all the traces in L to it

3. WHILE soundness(H,L)< γ AND H contains less than M nodes AND
there are leaf schemas that have not been examined yet

i. Let W*W* be the least sound leaf schema not considered yet
ii. Partition the traces associated with W* into at most k clusters
iii. For each cluster obtained, mine a workflow schema (using again

method mineWFschema) and add it to H as a child of W*
4. END WHILE

5. RETURN H • The algorithm converges in at most M steps
• After each step the soundness of H increases

8

Top-down node refinement

Given a node N, with schema S and trace set T
A set of nodes is obtained which corresponds to a partition of T
and to a set of schemata more specific than { S }

Clustering (partitioning) of T
1. Find a set of features which capture different patterns of

behavior exhibited by traces in T
unexpected w.r.t the schema S

2. Select an optimal subset of features (greedily)

3. Project the traces in T in the feature space

4. Apply a distance-based clustering algorithm (e.g., k-means) to
the traces of T

5. Mine a refined schema for each cluster

9

Properties of the algorithm and issues

Properties of the algorithm:
The algorithm converges in almost M steps of the main loop
After each step (refine the selected schema) the soundness of
the disjunctive schema W* cannot decrease (and usually gets
higher)

Issues related to the features:
What a kind of features?
How to select them?

10

Features: discriminating rules
A discriminating rule discriminating rule is an expression φ : [a1 …ah] → a, s. t.:

[a1 …ah] and [aha] are both “highly” frequent in L
but [a1 …ah a] is “lowly” frequent in L

… according to some given frequency thresholds
evidence for hidden constraints or unexpected patterns of behavior

Example:

In the log of OrderManagement both sequences fil and lm are frequent,
but their combination film never occurs in the log

due to the global constraint disallowing m whenever f is executed

f i l → m

11

Mining Discriminant Rules

Generate all possible σ-frequent
sequences whose length is len,
based on σ-frequent sequences
with length len−1, and store
them in Candlen

Scan the log to spot the
sequences in Candlen that
are σ-frequent and γ-
frequent in ΛP
Identify the features
consisting of len nodes

Insert the discovered
minimal features into Φ

Initialization: L2
σ contains all the

σ-frequent sequences of length
2.

Select the maxFeatures most
frequent in Φ, in order to reduce
the dimensionality of feature
space: the features with the
lowest values of γ are chosen.

12

Selecting a good set of features

Minimal discriminating rule
Introduced to prune redundant rules, e.g.: abfil → m

we defined a level-wise method for singling out all of them

Most discriminating features

An optimality criterion for select a subset of features, which
allow to split the traces “at best” (significant clusters)
We defined a greedy heuristics for finding an approximate solution

13

The approach in action: mined clusters

s1: acdbfgih s5: abicglmn s9: abficgln s13: abcidglmn

s2: abficdgh s6: acbiglon s10: acgbfilon s14: acdbiglmn

s3: acgbfih s7: acbgilomn s11: abcfdigln s15: abcdgilmn

s4: abcgiln s8: abcfgilon s12: acdbfigln s16: acbidgln

Log traces:

Clusters of traces in the
feature space:

CC

AA
DD

BB

φ1 : [f i l] → m
Fidelity discounts are
never applied on new
(just registered) clients

φ2: [d g l] → o
If external supplies
have been checked,
no fast dispatch occurs

Discovered Features:

Basic (first-level) schema induced:

14

The approach in action:

The first schema induced

Preliminary schema induced: W0

In order to get higher soundness, W0 we search for clusters of traces
that correspond to different usage scenarios
To this aim a set of discriminating features is extracted:

φ1 : [f i l] → m
Fidelity discounts are never applied on new (just registered) clients

φ2: [d g l] → o
If external supplies have been checked, no fast dispatch occurs

W0 coincides with
the original schema

• it does not model
the additional
constraints

W0 hence admits
“extraneous” traces

• e.g., acgbfilmn

15

The approach in action:

The discovered hierarchy of schemas

the leaf schemas (the only ones shown here) constitute, as a whole, a
maximally sound and complete disjunctive scheme

vv00

vv11 vv22

vv33
vv44

Workflow schema W3 for node v3

allall tracestraces in in
the log are the log are
assignedassigned toto

vv0 0 ((rootroot))

Workflow schema W4 for node v4

Workflow schema W2 for node v2
it is not refined because its soundness is 1

Workflow schema W0 for node v0
W0 must be refined because its soundness is not high enough
Workflow schema W0 for node v0
W0 must be refined because its soundness is not high enough

16

Example 2
process ReviewPaper:

(rs) receiving the submission
(sri) (1 ≤ i ≤ 5) sending the paper to the reviewers,
(rd) receiving the revisions and take a decision,
(d) discussing on the paper in the case revisions are not uniform,
(a) accepting the paper, and
(r) rejecting the paper.

Constraints:
if the paper is authored by a program committee member, it has to be
reviewed by 5 reviewers and it is immediately rejected in the case some
reviewer does not want it to be accepted for publication.
Otherwise, only 3 reviewers are assigned to the paper.

A single workflow
model for the process:

Clustering

17

…refined workflow schemas

This schema is a
1-sound model for
handling the revision
of all the other papers

This schema is a 1-sound
model for the handling the revision

of a paper written by a program
committee member

18

Plugin DWS

19

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Induction of basic Control Flow graphs
Other techniques (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond control-flow mining
Organizational mining
Social net discovery
Extension of workflow models

Part IV – Evaluation and validation of discovered workflow models
Conformance Check
Log-based property verification

Part V – Clustering-based Process Mining
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection

20

Motivation: mining complex processes
Problem: real processes may involve lots of activities, and complex
behavioral rules for combining them

the discovered model may fail in representing the process with
enough accuracy
… and may be too complex for business users who want to monitor
and analyze process executions at an appropriate abstraction level

Execution ClassificationExecution Classification
This allows to gain in accuracy,modularity,
and understandability, w.r.t. a single
workflow schema mixing all executions

AbstractionAbstraction
BPA platforms (e.g, iBOM by HP) allow to
manually define abstract views over a workflow,
by mainly aggregating groups of activities

21

Concrete Workflow Schemas

Taxonomical process models
An expressive and easy to understand process model, consisting of a
taxonomy of workflow schemas

A two-phase discovery approach:
First, mine a tree of workflow schemas, by using a hierarchical,
top-down, clustering algorithm
Then, restructure the mined model at several levels of
abstraction, in a bottom-up way (i.e., from the leaves to the root)

The tree describes the process behavior at
different level of details

At the highest level of detail (leaves of the tree),
the schemas could be used to support the design
of concrete workflow models

At lower levels, the schemas are abstract views
over heterogeneous behaviors, which could
support analysis and monitoring tasks

22

Framework for abstracting activities and workflows:

Generalization of workflow schemas

Given two workflow schemas W and W’ (with activity set A and A’,
resp.), it is said that W generalizes W’, denoted by W’ ≺ W, if :

1. for any activity x in A either A’ contains x or there exists at least one
activity y in A’ such that x “abstracts” y, and

2. there is no activity in A’ that “abstracts” x

Schema taxonomies are defined according to this notion

A schema hierarchy H for P is a schema taxonomy if Schema(v) ≺
Schema(v’) for any v, v’ such that v’ is a child of v

23

Framework for abstracting activities and workflows:

Abstraction relationships among activities

Basic relationships: abstraction dictionary D=<Isa,PartOf>
(b, a) in Isa means that b is a refinement of a
(b, a) in PartOf means that b is a component of a

Derived relationships
a implies a’ w.r.t. D, denoted by a →D a’, if

(a’, a) in D.Isa, or
(a’, a) in D.PartOf, or
(recursively) there exists an activity x such that a →D x and x →D a

The set of activities implied by a w.r.t. D is referred to as implD(a)

Complex activities
An activity a is complex if implD(a) is not empty
It is a higher level concept defined over the (basic) activities that
actually occur in the executions

24

Example: The mined schema hierarchy
The hierarchy of workflow schemas extracted so before

… can be transformed into a taxonomy, by restructuring the schemas
of all non-leaf nodes, v1 and v0, in a bottom-up fashion

Workflow schema W2 for node v2

vv00

vv11 vv22

vv33
vv44

Workflow schema W3 for node v3
Workflow schema W4 for node v4

25

Restructuring a schema hierarchy
Every non-leaf schema in the hierarchy is replaced with an abstract
schema that generalizes those of its children

The process is applied in a bottom-up way, i.e., form the leaves to
the root of the hierarchy

vv22

vv33
vv44

gg11 vv22

vv33
vv44

gg11 isis computedcomputed thatthat abstractsabstracts vv33 and vand v44
gg00 isis computedcomputed thatthat abstractsabstracts vv22 and gand g11

gg00

gg11 vv22

vv33
vv44

Phase 1PhasePhase 11

26

How two schemas are generalized?
Computation of the generalized schema for a non-leaf node

1. For each child schema abstract “specific” activities (activities that do not
occurring in all children)

2. Merge all the children schemas into a single one
compute the union of the graphs, and adjust all constraints

3. Abstract “specific” activities appearing in the merged schema

vv00

vv11 vv22

vv33 vv44

Schema of v3 Schema of v4

Only activities appearing in all children are surely kept in the
generalized schema, while remaining ones, are abstracted

A group of “specific” activities is replaced with a complex activity that
implies them all via IS-A or PART-OF relationships

We need a strategy to recognize groups of “specific” activities
that can be abstracted by the same higher-level activity ….

27

Merging activities to be abstracted

Pair-wise approach
A pair of “specific” activities is greedily chosen for being abstracted
together into a single higher-level activity

A notion of safety w.r.t. merge for pairs of activities
for preventing the creation of “spurious” dependencies among not
abstracted activities, in the generalized schema

A series of affinity measures assessing how much two any “specific”
activities are suitable to be merged

A “topological” affinity measureTopological simE(x,y)
how similar the neighborhoods of x and y are w.r.t. the flow graph

Two “semantical” affinity measures, simD
P(x,y) and simD

G(x,y)
how similar x and y are w.r.t. the generalization/aggregation relationships
stored in an abstraction dictionary D

Combined into an overall ranking function:

28

Merge-safe activities

A couple of activities (x, y) is merge-safe w.r.t. a given an edge set E, if
one of the following conditions holds:

x and y are directly linked by some edges in E and after removing these
edges no other path exists between them
there is no path in E connecting x and y

Only in the second case spurious dependencies may be introduced
among other activities, whenever there are two activities z and w such
that:

(z,w) not in E∗, and
{ (z, x), (y,w) } in E

xx

yy

zz

ww

abstractabstract
(x,y)(x,y)

29

The approach in action:

Restructuring a schema hierarchy

This is the only merge-safe pair of activities,
which are abstracted into activity x1, via PART-OF

unionunion

vv00

vv11 vv22

vv33 vv44Schema of v3 Schema of v4

Generalized schema for v1

AbstractionAbstraction
DisctionaryDisctionary

(assumed initially empty)

PART-OF =
{(d,x1), (p,x1) }

ISA = { }

30

schema of node v2generalized schema of node v1

vv00

vv11 vv22

vv33 vv44

The approach in action:

Restructuring a schema hierarchy

generalized schema of root v0

PART-OF =
{ (d,x1), (p,x1),
(f,x3), (e,x3),
(o,x4), (m,x4) }

ISA = { }

PART-OF = {(d,x1), (p,x1)}
ISA = { }

x2 contains the same basic activities as x1 (according to
the dictionary)
therefore it is merged into x1 (no new activity is created)

31

Plugin AWS

Abstraction properties (ISA/PARTOF):
Tell which concrete activities are related with each abstract one

A
bs

tr
ac

tW
or

kf
lo

w Abstract activity

32

Outline
Part I – Introduction to Process Mining

Context, motivation and goal
General characteristics of the analyzed processes and logs
Classification of Process Mining approaches

Part II – Workflow discovery
Induction of basic Control Flow graphs
Other techniques (α-algorithm, Heuristic Miner, Fuzzy mining)

Part III – Beyond control-flow mining
Organizational mining
Social net discovery
Extension of workflow models

Part IV – Evaluation and validation of discovered workflow models
Conformance Check
Log-based property verification

Part V – Clustering-based Process Mining
Discovery of hierarchical process models
Discovery of process taxonomies
Outlier detection

33

Outlier Detection Challanges
in process Mining

The application of traditional sequential outlier techniques may be
misleading

a lot of traces that only differ in the ordering between parallel tasks may be
interpreted as anomalous (false positive)

Considering the compliance with an ideal schema may fails too
some trace might well be supported by a model, yet representing anomalous
behavoiurs (false negative)

m

l

o

d

e

g

f

n

i

h

c

b

a

34

An approach to outlier detection for
process logs

Core IdeaCore Idea
Find out homogenous clusters of traces sharing the same behaviour in
executing tasks
Outliers as those individuals that hardly belong to any of the computed
clusters or that belong to clusters whose size is definitively smaller than
the average cluster size.

TwoTwo phasephase computationcomputation approachapproach
Extraction of structural patterns describing “normal” process behaviour
Co-Clustering of log traces and associated patterns

loglog

SS--patternspatterns

CoCo--ClustersClusters

++
outliersoutliers

