Complex Data Mining & Workflow Mining

An Introduction to Multi-Relational Data Mining

Outline

- Introduzione e concetti di base
 - Motivazioni, applicazioni
 - Concetti di base nell'analisi dei dati complessi
- Web/Text Mining
 - Concetti di base sul Text Mining
 - Tecniche di data mining su dati testuali
- Graph Mining
 - Introduzione alla graph theory
 - Principali tecniche e applicazioni
- Multi-Relational data mining
 - Motivazioni: da singole tabelle a strutture complesse
 - Alcune delle tecniche principali
- Workflow Mining
 - I workflow: grafi con vincoli
 - Frequent pattern discovery su workflow: motivazioni, metodi, applicazioni

Traditional Data Mining

Works on single "flat" relations

- Single table assumption: Each row represents an object and columns represent properties of objects
- Drawbacks:
 - Lose information of linkages and relationships
 - Cannot utilize information of database structures or schemas

Multi-Relational Data Mining (MRDM)

- (Multi-)Relational data mining algorithms can analyze data distributed in multiple relations, as they are available in relational database systems.
 - These algorithms come from the field of inductive logic programming (ILP)
 - ILP has been concerned with finding patterns expressed as logic programs
- Motivations
 - Most structured data are stored in relational databases
 - MRDM can utilize linkage and structural information
- Knowledge discovery in multi-relational environments
 - Multi-relational rules
 - Multi-relational clustering
 - Multi-relational classification
 - Multi-relational linkage analysis

Why MRDM?

An example: accidents

Which accidents are likely to be fatal?

- How can we find a subgroup like:
 - If an accident takes place in a road with maximum speed of 100km/h, and involves a car whose driver is not wearing a seatbelt, then the accident is likely to be fatal
 - The description uses information for all three tables

Example 2: customers

ID	Name	First Name	Street	City	Sex	Social Status	Income	Age	Resp onse
3478	Smith	John	38 Lake St	Seattle	М	single	160k	32	Υ
3479	Doe	Jane	45 Sea St	Venice	F	married	180k	45	N
			•••		•••		•••	•••	

Example 2: Standard DM

- In the customer table we can add as many attributes about our customers as we like.
 - A person's number of children
- For other kinds of information the single-table assumption turns out to be a significant limitation
 - Add information about orders placed by a customer, in particular
 - Delivery and payment modes
 - With which kind of store the order was placed (size, ownership, location)
 - For simplicity, no information on the goods ordered

ID	Name	First Name	•••	Respo nse	Delivery mode	Payment mode	Store size	Store type	Locati on
3478	Smith	John	•••	Υ	regular	cash	small	franchis	city
3479	Doe	Jane	•••	N	express	credit	large	indep	rural
•••	•••	•••		•••	•••	•••	•••	•••	

Example 2: Standard DM (II)

- This solution works fine for once-only customers
- What if our business has repeat customers?
- Under the single-table assumption we can make one entry for each order in our customer table

ID	Name	First Name	•••	Respo nse	Delivery mode	Payment mode	Store size	Store type	Locati on
3478	Smith	John	•••	Υ	regular	cash	small	franchis	city
3478	Smith	John	•••	Υ	express	check	small	franchis	city
•••	•••	•••		•••	•••	•••	•••	•••	•••

- We have usual problems of non-normalized tables
 - Redundancy, anomalies, ...

Example 2: Standard DM (III)

- Aggregate order data into a single tuple per customer.

ID	Name	First		Response	No. of orders	No. of stores
		Name				
3478	Smith	John	•••	Υ	3	2
3479	Doe	Jane	•••	N	2	2
•••	•••	•••	•••	•••	•••	•••

- No redundancy. Standard DM methods work fine, but
- There is a lot less information in the new table
 - What if the payment mode and the store type are important?

Example 2: Relational Data

 A database designer would represent the information in our problem as a set of tables (or relations)

	ID	Name	First	Street	City	Sex	Social	Income	Age	Respo
L			Name				Status			nse
	<mark>3</mark> 478	Smith	John	38 Lake St	Seattle	М	single	160k	32	Υ
	3479	Doe	Jane	45 Sea St	Venice	F	married	180k	45	N
		•••	•••	•••	•••	•••	•••	•••	•••	•••

Cust ID	Order ID	Store ID	Delivery mode	Payment mode
3478	213444	12	regular	cash
3478	372347	19	regular	cash
3478	334555	12	express	check
	•••	•••	•••	•••

Store ID	e size	Туре	Location
12	small	franchis	city
19	large	indep	rural
			•••

Example 2: Relational patterns

- Relational patterns involve multiple relations from a relational DB
- They are typically stated in a more expressive language than patterns defined on a single data table.
 - Relational classification rules
 - Relational regression trees
 - Relational association rules

```
IF Customer(C1,N1,FN1,Str1,City1,Zip1,Sex1,SoSt1, In1,Age1,Resp1)
    AND order(C1,O1,S1,Deliv1, Pay1)
    AND Pay1 = credit_card
    AND In1 ≥ 108000
THEN Resp1 = Yes
```


Relational patterns

```
IF Customer(C1,N1,FN1,Str1,City1,Zip1,Sex1,SoSt1, In1,Age1,Resp1)  \begin{array}{l} \text{AND order}(\text{C1},\text{O1},\text{S1},\text{Deliv1},\text{Pay1}) \\ \text{AND Pay1} = \text{credit\_card} \\ \text{AND In1} \geq 108000 \\ \text{THEN Resp1} = \text{Yes} \\ \text{good\_customer}(\text{C1}) \leftarrow \\ \text{customer}(\text{C1},\text{N1},\text{FN1},\text{Str1},\text{City1},\text{Zip1},\text{Sex1},\text{SoSt1},\text{In1},\text{Age1},\text{Resp1}) \land \\ \text{order}(\text{C1},\text{O1},\text{S1},\text{Deliv1},\text{credit\_card}) \land \\ \text{In1} \geq 108000 \\ \end{array}
```

This relational pattern is expressed in a subset of first-order logic!

A relation in a relational database corresponds to a predicate in predicate logic (see *deductive databases*)

Why is MRDM of interest?

- Graph databases
 - Two relations:

node

edge

ID	Label
p 1	a
p ₂	b
p 3	b
p 4	С
p 5	d

Src	Dst	weight
p1	p2	У
p1	р3	У
p2	р5	У
p2	р3	X
р3	p4	У

- Workflows
 - Can extend with further information

MRDM tasks

- Multi-relational Classification
 - Classify objects based on properties spread through multiple tables
- Multi-relational Clustering Analysis
 - Clustering objects with multi-relational information
- Probabilistic Relational Models
 - Model cross-relational probabilistic distributions

Inductive Logic Programming (ILP): general framework

- Find a hypothesis that is consistent with background knowledge (training data)
 - FOIL, Golem, Progol, TILDE, ...
- Background knowledge
 - Relations (predicates), Tuples (ground facts)

Training examples

Daughter(mary, ann)	+
Daughter(eve, tom)	+
Daughter(tom, ann)	1
Daughter(eve, ann)	ı

Background knowledge

Parent(ann, mary)
Parent(ann, tom)
Parent(tom, eve)
Parent(tom, ian)

Female(ann)
Female(mary)
Female(eve)

- Hypothesis
 - The hypothesis is usually a set of rules, which can predict certain attributes in certain relations
 - Daughter(X,Y) ← female(X), parent(Y,X)

ILP setting: an example

- How do we distinguish eastbound from westbound trains?
 - A train is eastbound if it contains a short closed car

Trains: the data model (II)

Trains: FO representation

• Example:

eastbound(t1).

Background theory:

```
car(t1,c1). car(t1,c2). car(t1,c3). car(t1,c4).
rectangle(c1). rectangle(c2). rectangle(c3). rectangle(c4).
short(c1). long(c2). short(c3). long(c4).
none(c1). none(c2). peaked(c3). none(c4).
two_wheels(c1). three_wheels(c2). two_wheels(c3). two_wheels(c4).
load(c1,l1). load(c2,l2). bad(c3,l3). load(c4,l4).
circle(l1). hexagon(l2). triangle(l3). rectangle(l4).
one_load(l1). one_load(l2). one_load(l3). three_loads(l4).
```


ILP Approaches

Top-down Approaches (e.g. FOIL)

```
while(enough examples left)
  generate a rule
  remove examples satisfying this rule
```

Bottom-up Approaches (e.g. Golem)

```
Use each example as a rule
Generalize rules by merging rules
```

Decision Tree Approaches (e.g. TILDE)

TILDE: Relational decision trees

worn

ID	Worn
#1	Gear
#1	Chain
#2	Engine
#2	Chain
#3	wheel

replaceable

Component	Replaceable
Gear	Yes
Chain	Yes
Engine	No
Wheel	no

Multi-relational Clustering

- RDBC
 - Distance-based agglomerative clustering
- First-order K-Means clustering
 - Distance-based K-Means clustering
- Relational distance measure
 - Measure distance between two objects by their attributes and their neighbor objects in relational databases

Relational Distance Measure

- RIBL (Relational Instance-Based Learning)
 - To measure distance between objects O_1 and O_2 , neighbor objects of O_1 and O_2 are also considered.

Relational data

member(person1; 45; male; 20; gold)
member(person2; 30; female; 10; platinum)
 car(person1; wagon; 200; volkswagen)
 car(person1; sedan; 220; mercedesbenz)
 car(person2; roadster; 240; audi)
 car(person2; coupe; 260; bmw)
 house(person1; murgle; 1987; 560)
 house(person1; montecarlo; 1990; 210)
 house(person2; murgle; 1999; 430)
 district(montecarlo; famous; large; monaco)
 district(murgle; famous; small; slovenia)

Neighbor data of level 2

Relational Distance Measure (cont.)

- Distance between two objects O₁ and O₂ is defined by
 - Attributes of O_1 and O_2 :
 - Discrete attribute: distance = 1 if equal; 0 otherwise.
 - Numerical attribute: distance = diff / range
 - Neighbor objects of O_1 and O_2 :
 - Defined recursively
- Comments
 - Advantage: considering related objects in distance measure
 - Disadvantage: very expensive to compute, because of the huge number of related objects

RDBC: Relational Distance-Based Clustering

- Use distance measure of RIBL
- Agglomerative clustering approach
 - Every object is used as a cluster at beginning
 - Keep merging clusters that are most similar

First-order K-Means Clustering

- K-Means algorithm
 - 1. Select *k* initial objects as cluster centers
 - 2. Assign objects to nearest clusters
 - 3. Repeat step 2 until stable
- K-Means is very expensive
 - Computing distance between an object and a cluster is very expensive
- K-Means can be replaced by K-Medoids
 - For each cluster, use an object that is nearest to all objects in this cluster as the center

Multi-relational Clustering: Summary

- Extend clustering algorithms to multirelational environments
- Use distance measures that consider related objects
- Very expensive because the numbers of related objects are usually very large

Multi-relational association rule

has	
KID	OBJECT
Joni	ice-cream
Joni	dolphin
Elliot	piglet
Elliot	gnu
Elliot	lion

likes	
KID	OBJECT
Joni	ice-cream
Joni	piglet
Elliot	ice-cream

KID	OBJECT	ТО
Joni	ice-cream	pudding
Joni	pudding	raisins
Joni	giraffe	gnu
Elliot	lion	ice-cream
Elliot	piglet	dolphin

prefers

likes(KID, piglet), likes(KID, ice-cream)

→ likes (KID, dolphin) (9%, 85%)

likes(KID, A), has(KID, B) → prefers (KID, A, B) (70%, 98%)

Mining relational associations

Problem statement

Given:

- a deductive relational database D
- a couple of thresholds, minsup and minconf

Find

all association rules that have support and confidence greater than *minsup* and *minconf* respectively.

Mining relational associations (II)

Problem decomposition

- Find large (or frequent) atomsets
- Generate highly-confident association rules

Representation issues

A deductive relational database is a relational database which may be represented in *first-order logic* as follows:

- Relation ⇔ Set of ground facts (EDB)
- View ⇔ Set of rules (IDB)

Finding frequent atomsets (I)

likes(joni, ice-cream) atom

has	
KID	OBJECT
Joni	ice-cream
Joni	dolphin
Elliot	piglet
Elliot	gnu
Elliot	lion

likes		
KID	OBJECT	
Joni	ice-cream	
Joni	piglet	
Elliot	ice-cream	

ρισισισ		
KID	OBJECT	то
Joni	ice-cream	pudding
Joni	pudding	raisins
Joni	giraffe	gnu
Elliot	lion	ice-cream
Elliot	piglet	dolphin

prefers

likes(KID, piglet), likes(KID, ice-cream) atomset

→ likes (KID, dolphin) (9%, 85%)

likes(KID, A), has(KID, B) \rightarrow prefers (KID, A, B) (70%, 98%)

Finding frequent atomsets (II)

ρ

Pattern Space

false

 \leq_{θ}

 $Q_1 \equiv \exists \text{ is}_a(X, \text{ large_town})$ $\land \text{ intersects}(X, R)$ $\land \text{ is}_a(R, \text{ road})$

 \leq_{θ}

 $Q_2 \equiv \exists \text{ is}_a(X, \text{large_town})$ $\land \text{ intersects}(X,Y)$

 \leq_{θ}

 $Q_3 \equiv \exists \text{ is}_a(X, \text{large_town})$

 \leq_{θ}

true

Finding frequent atomsets (III)

The WARMR algorithm

Compute large 1-atomsets

Cycle on the size (k>1) of the atomsets

- WARMR-gen Generate candidate k-atomsets from large (k-1)-atomsets
- Generate large k-atomsets from candidate k-atomsets (cycle on the observations loaded from D)

until no more large atomsets are found.

Finding frequent atomsets (IV)

WARMR

- Breadth-first search on the atomset lattice
- Loading of an observation o from D (query result)
- Largeness of candidate atomsets computed by a coverage test

APRIORI

- Breadth-first search on the itemset lattice
- Loading of a transaction t from D (tuple)
- Largeness of candidate itemsets computed by a subset check

Mining relational association rules: Example (I)

Candidate generation

Mining relational association rules: Example (II)

Candidate evaluation

Mining relational association rules: Example (III)

is_a(X, large_town), intersects(X,R), is_a(R, road), adjacent_to(X,W), is_a(W, water) Rule generation is_a(X, large_town), intersects(X,R), is_a(R, road), is_a(W, water) \rightarrow adjacent_to(X,W) (62%, 86%) yes no High confidence?