Complex Data Mining & Workflow Mining

An Introduction to
Multi-Relational Data Mining
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Introduzione e concetti di base
— Motivazioni, applicazioni
— Concetti di base nell’analisi dei dati complessi
Web/Text Mining
— Concetti di base sul Text Mining
— Tecniche di data mining su dati testuali
Graph Mining
— Introduzione alla graph theory
—  Principali tecniche e applicazioni
Multi-Relational data mining
— Motivazioni: da singole tabelle a strutture complesse
— Alcune delle tecniche principali

Workflow Mining

— | workflow: grafi con vincoli
—  Frequent pattern discovery su workflow: motivazioni, metodi, applicazioni




Traditional Data Mining

 Works on single “flat” relations
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— Single table assumption: Each row represents an object and
columns represent properties of objects

e Drawbacks:
— Lose information of linkages and relationships
— Cannot utilize information of database structures or schemas




Multi-Relational Data Mining (MRDM)

(Multi-)Relational data mining algorithms can analyze data
distributed in multiple relations, as they are available in
relational database systems.

— These algorithms come from the field of inductive logic programming (ILP)
— ILP has been concerned with finding patterns expressed as logic programs

Motivations
— Most structured data are stored in relational databases
— MRDM can utilize linkage and structural information

Knowledge discovery in multi-relational environments

— Multi-re
— Multi-re
— Multi-re
— Multi-re

ationa
ationa
ationa
ationa

rules

clustering
classification
linkage analysis




Why MRDM?

 An example: accidents

Accident
Date

Lighting
Maximum speed
Fatal?

Iz involved in

1:1

Im

Object
Type
Licence plate

1:1

Dirives

0:1

Driver
Ape
MNationality
Seat belt?
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Which accidents are likely to be fatal?

e How can we find a subgroup like:

— If an accident takes place in a road with maximum speed of
100km/h, and involves a car whose driver is not wearing a seat-

belt, then the accident is likely to be fatal
— The description uses information for all three tables

Accident _ _ Object
Date Is mnvolved in . :
ate Type
Lighting . ln enoe .
Maximum speed bl Licence plate
Fatal
1:1
Dirives
0:1
Driver
Ape
Nationality
Seat belt?
Alcohol?




Example 2: customers

ID Name First Street City Sex | Social Income | Age | Resp
Name Status onse
3478 | Smith John 38 Lake St | Seattle | M single 160k 32 Y
3479 Doe Jane 45 Sea St | Venice F married 180k 45 N




Example 2: Standard DM

 Inthe customer table we can add as many attributes about our customers
as we like.
— A person’s number of children
 For other kinds of information the single-table assumption turns out to be a
significant limitation
— Add information about orders placed by a customer, in particular

* Delivery and payment modes
e With which kind of store the order was placed (size, ownership, location)

— For simplicity, no information on the goods ordered

ID Name First Respo | Delivery Payment | Store Store Locati
Name nse mode mode size type on
3478 | Smith John Y regular cash small | franchis city
3479 Doe Jane N express credit large indep rural
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Example 2: Standard DM (lI)

This solution works fine for once-only customers

What if our business has repeat customers?
Under the single-table assumption we can make one entry for

each order in our customer table

ID Name First Respo | Delivery Payment | Store Store Locati
Name nse mode mode size type on
3478 | Smith John Y regular cash small | franchis city
3478 | Smith John Y express check small | franchis city
e We have usual problems of non-normalized tables

Redundancy, anomalies, ...




Example 2: Standard DM (lIl)

one line per order = analysis results will really be about
orders, not customers, which is not what we might want!

Aggregate order data into a single tuple per customer.

ID Name First Response | No. of orders | No. of stores
Name
3478 Smith John 3 2
3479 Doe Jane 2 2

No redundancy. Standard DM methods work fine, but

There is a lot less information in the new table
e What if the payment mode and the store type are important?

W iy




Example 2: Relational Data

e A database designer would represent the information in our
problem as a set of tables (or relations)

ID Name First Street City Sex Social Income Age | Respo
Name Status nse

478 Smith John 38 Lake St Seattle M single 160k 32 Y

479 Doe Jane 45 Sea St Venice F married 180k 45 N
Cust Order Suére Delivery Payment stre | size Type location

ID ID ID mode mode D
3478 213444 12 regular cash 12 small franchis city
3478 | 372347 19 regular cash 19 large indep cural
3478 | 334555 12 express check
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Example 2: Relational patterns

e Relational patterns involve multiple relations from a relational DB

e They are typically stated in a more expressive language than
patterns defined on a single data table.
— Relational classification rules
— Relational regression trees
— Relational association rules

IF Customer(C1,N1,FN1,Str1,City1,Zip1,Sex1,S0St1, In1,Agel,Resp1l)
AND order(C1,01,51,Deliv1, Pay1)
AND Payl = credit_card
AND In1 > 108000

THEN Respl =Yes




Relational patterns

IF Customer(C1,N1,FN1,Str1,City1,Zip1,Sex1,S0St1, In1,Agel,Respl)
AND order(C1,01,S1,Delivl, Pay1)
AND Pay1 = credit_card
AND In1 > 108000

THEN Respl = Yes

good_customer(C1) <«
customer(C1, N1,FN1,Str1,City1,Zip1,Sex1,S0St1, In1,Agel,Respl) A
order(C1,01,5S1,Delivl, credit_card) A
In1 > 108000

This relational pattern is expressed in a subset of first-order logic!

A relation in a relational database corresponds to a predicate in predicate
logic (see deductive databases)




Why is MRDM of interest?

 Graph databases

— Two relations: node edge
oy P 10| tabel [N src | st | weight
o, 7 P a Pl P2y
‘ y X P2 b pl p3 Yy
b y d p3 b p2 p5 y
P3 Py P4 C p2 p3 X

p5 d p3 p4

<

e Workflows
— Can extend with further information
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MRDM tasks

e Multi-relational Classification

— Classify objects based on properties spread through
multiple tables

e Multi-relational Clustering Analysis
— Clustering objects with multi-relational information

* Probabilistic Relational Models
— Model cross-relational probabilistic distributions




Inductive Logic Programming (ILP):

general framework

* Find a hypothesis that is consistent with background

knowledge (training data)

— FOIL, Golem, Progol, TILDE, ...

 Background knowledge

— Relations (predicates), Tuples (ground facts)

Training examples

Background knowledge

Daughter(mary, ann)

Parent(ann, mary)

Daughter(eve, tom)

Parent(ann, tom)

Female(ann)

Daughter(tom, ann)

Parent(tom, eve)

Female(mary)

Daughter(eve, ann)

Parent(tom, ian)

Female(eve)

e Hypothesis

— The hypothesis is usually a set of rules, which can predict
certain attributes in certain relations

— Daughter(X,Y) €& female(X), parent(Y,X)




ILP setting: an example
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e How do we distinguish eastbound from westbound trains?
— A train is eastbound if it contains a short closed car




Trains: the data model (I1)

Train

11 1
» Car | @ Load




Trains: FO representation

O O Oog -

e Example:
eastbound(tl).

 Background theory:

car(l,cl). car(tl,c2). car(l,cl). car(tl, c4).

rectangle(cl). rectangle(c2). rectangle(c3). redcangle(c4).
short(cl). long (c2) . short(c3). long(c4).

none(cl). none (c2). peaked(c3). none(c4).

two wheels(cl). tlree wheels(c2). two wheels(c3). two wheels(c4).
load(c1,11). load(c2,12). bad(c3,13). load(c4,14).

circle(11). hexagon(2). tangle (13). rectangle(14).

one load(ll). me load(2). e load(3). tlree loads(4).




ILP Approaches

 Top-down Approaches (e.g. FOIL)

while(enough examples left)

generate a rule
remove examples satisfying this rule

e Bottom-up Approaches (e.g. Golem)

Use each example as a rule
Generalize rules by merging rules

* Decision Tree Approaches (e.g. TILDE)




TILDE: Relational decision trees

Instance

worn
Class mm
#1 Fix Gear
#2 Sendback 41 Chain
#3 Sendback 42 | Engine
#4 Ol #2 Chain
#3 wheel

replaceable

true Component Replaceable
Gear Yes
replaceable(Y,no)
Chain Yes
true false Engine No
Wheel no

Sendback




Multi-relational Clustering

e RDBC

— Distance-based agglomerative clustering

* First-order K-Means clustering

— Distance-based K-Means clustering

e Relational distance measure

— Measure distance between two objects by their
attributes and their neighbor objects in
relational databases
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Relational Distance Measure

e RIBL (Relational Instance-Based Learning)

— To measure distance between objects O, and O,, neighbor objects of O,

and O, are also considered.

Relational data
member(personl ; 45 ; male; 20 ; gold)
member(person?2 ; 30 ; female; 10 ; platinum)
car(personl ; wagon; 200 ; volkswagen)
car(personl ; sedan; 220 ; mercedesbenz )
car(person2 ; roadster; 240 ; audi)
car(person2 ; coupe; 260 ; bmw)
house(personl ; murgle; 1987 ; 560 )
house(personl ; montecarlo; 1990 ; 210 )
house(person2 ; murgle; 1999 ; 430)
district(montecarlo; famous; large; monaco)
district(murgle; famous; small ; slovenia)

Neighbor data of level 2

member(personi, 45, male, 20, gold)

L car(personl , wagon, 200, volkswagen)

o car(personl, sedan, 220, mercedesbenz)

H house(personl, murgle, 1987, 560)

district (rmurgle, famous, small, slovenia)

house(person !, montecarlo, 1990, 210)

+ district(montecarlo, farnous, large, monaco)
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Relational Distance Measure (cont.)

* Distance between two objects O, and O, is
defined by

— Attributes of O, and O,:

e Discrete attribute: distance = 1 if equal; 0 otherwise.
 Numerical attribute: distance = diff / range

— Neighbor objects of O, and O,:
e Defined recursively
e Comments

— Advantage: considering related objects in distance
measure

— Disadvantage: very expensive to compute, because of
the huge number of related objects




ing

Relational Distance-Based Cluster

RDBC

Use distance measure of RIBL

Agglomerative clustering approach

— Every object is used as a cluster at beginning

— Keep merging clusters that are most similar

5
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First-order K-Means Clustering

e K-Means algorithm
1. Select k initial objects as cluster centers
2. Assign objects to nearest clusters
3. Repeat step 2 until stable

e K-Means is very expensive
— Computing distance between an object and a cluster
IS very expensive
e K-Means can be replaced by K-Medoids

— For each cluster, use an object that is nearest to all
objects in this cluster as the center




Multi-relational Clustering: Summary

 Extend clustering algorithms to multi-
relational environments

e Use distance measures that consider related
objects

e Very expensive because the numbers of
related objects are usually very large

Brratitln Niioreetl ol Fleree
&

Sttt & Coliollo © Mot oo Afte Prostosiont



Multi-relational association rule

has prefers
OBJECT likes
Joni ice-cream Joni ice-cream pudding
Joni  dolphin Joni ice-cream | | j5ni  pudding  raisins
Elliot  piglet Joni piglet Joni  giraffe gnu
Elliot  gnu Elliot ice-cream | | gjjot lion  ice-cream
Elliot lion Elliot  piglet dolphin

likes(KID, piglet), likes(KID, ice-cream)
— likes (KID, dolphin) (9%, 85%)

likes(KID, A), has(KID, B) — prefers (KID, A, B) (70%, 98%)




Mining relational associations

Problem statement

Given:
 a deductive relational database D
e a couple of thresholds, minsup and minconf

Find
all association rules that have support and confidence
greater than minsup and minconf respectively.




Mining relational associations (lI)

Problem decomposition
* Find large (or frequent) atomsets
 Generate highly-confident association rules

Representation issues

A deductive relational database is a relational database which
may be represented in first-order logic as follows:

e Relation < Set of ground facts (EDB)
 View <> Set of rules (IDB)




Finding frequent atomsets (I)

likes(joni, ice-cream) atom

has prefers
OBJECT fikes
Joni 1ce-cream loni ice-cream pudding
Joni  dolphin loni ice-cream | | joni  pudding  raisins
Elliot  piglet loni  piglet Joni  giraffe gnu
Elliot  gnu Elliot ice-cream | ' )t lion  ice-cream
Elliot lion Elliot piglet dolphin

likes(KID, piglet), likes(KID, ice-cream) atomset
— likes (KID, dolphin) (9%, 85%)

likes(KID, A), has(KID, B) — prefers (KID, A, B) (70%, 98%)




Finding frequent atomsets (Il)

Pattern Space
false
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A Intersects(X, R) - Ql
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o
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Finding frequent atomsets (ll1)

The WARMR algorithm

Compute large 1-atomsets
Cycle on the size (k>1) of the atomsets

— WARMR-gen Generate candidate k-atomsets from large
(k-1)-atomsets

— Generate large k-atomsets from candidate k-atomsets
(cycle on the observations loaded from D)

until no more large atomsets are found.




Finding frequent atomsets (V)

WARMR

Breadth-first search on the
atomset lattice

Loading of an observation o
from D (query result)

Largeness of candidate
atomsets computed by a
coverage test

APRIORI

Breadth-first search on the
itemset lattice

Loading of a transaction t from

D (tuple)

Largeness of candidate itemsets
computed by a subset check




Mining relational association rules:

Example (1)

Candidate generation

IS_a(X, large_town), intersects(X,R), is_a(R, road) b

Operator under
0-subsumption

¢

IS_a(X,large_town), intersects(X,R), is_a(R,road), adjacent_to(X,W), is_a(W, water)

Does it 6-subsume
Infrequent patterns?

Pruning step

Refinement step




Mining relational association rules:
Example (Il)

Candidate evaluation

IS_a(X, large_town), intersects(X,R), iIs_a(R, road), adjacent_to(X,W), is_a(W, water)

— ?-1s_a(X, large_town),
_J intersects(X,R), is_a(R, road), ﬁ
adjacent_to(X,W), is_a(W, water) D

<X=barletta,R=al14,W=adriatico> '
<X=bari,R=ss16bis,W=adriatico>




Mining relational association rules:
Example (IlI)

IS_a(X, large_town), intersects(X,R), is_a(R, road), adjacent_to(X,W), is_a(W, water)

!

Rule generation

IS_a(X, large_town), intersects(X,R), is_a(R, road), is_a(W, water)
— adjacent_to(X,W) (62%, 86%)




