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Abstract

Process mining techniques have been receiving great attention in the literature for
their ability to automatically support process (re)design. Typically, these techniques
discover a concrete workflow schema modelling all possible execution patterns regis-
tered in a given log, which can be exploited subsequently to support further-coming
enactments. In this paper, an approach to process mining is introduced that extends
classical discovery mechanisms by means of an abstraction method aimed at produc-
ing a taxonomy of workflow models. The taxonomy is built to capture the process
behavior at different levels of detail. Indeed, the most-detailed mined models, i.e.,
the leafs of the taxonomy, are meant to support the design of concrete workflows, as
it happens with existing techniques in the literature. The other models, i.e., non-leaf
nodes of the taxonomy, represent instead abstract views over the process behavior
that can be used to support advanced monitoring and analysis tasks.

All the techniques discussed in the paper have been implemented, tested, and
made available as a plugin for a popular process mining framework (ProM ). A se-
ries of tests, performed on different synthesized and real datasets, evidenced the
capability of the approach to characterize the behavior encoded in input logs in a
precise and complete way, achieving compelling conformance results even in pres-
ence of complex behavior and noisy data. Moreover, encouraging results have been
obtained in a real-life application scenario, where it is shown how the taxonomical
view of the process can effectively support an explorative ex-post analysis, hinged
on the different kinds of process execution discovered from the logs.
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Management
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1 Introduction

Designing and comprehending business processes are often difficult and time-
consuming tasks, which typically require the intervention of a business con-
sultant armed with an appropriate level of experience and knowledge on the
process itself. In this context, process mining techniques have been getting
increasing attention in recent years, for their ability to automatically extract
useful knowledge about the actual behavior of a process, which can be a valid
support to both analysis and design tasks. Indeed, these techniques are con-
ceived to (automatically) discover a workflow-based model for a process, given
some information about past executions, as for it is encoded in audit trails of
workflow management systems as well as in transaction logs of various infras-
tructures for managing business processes (e.g., Enterprise Resource Planning,
and Supply Chain Management systems).

Different approaches to process mining [2,9,19,20,32,43,46] have been proposed
in the literature, which mainly differ in the language used for representing pro-
cess models, and in the specific algorithm employed for their discovery (see [44]
for a survey on this topic). In fact, the aim shared by the different proposals is
to mine a model that can serve the purpose of automatically supporting fur-
ther enactments of the process. Therefore, algorithms are commonly designed
to maximize the accuracy of the mined model, i.e., they equip the model with
as many details as they are required to explain the events registered in the
logs. Consequently, when a large number of activities and complex behavioral
patterns are involved in the analysis, traditional process mining techniques
risk failing in representing the process in a clear and concise manner, and the
resulting schema, while being well-suited for supporting the enactment, might
be less useful for a business user who wants to monitor and analyze business
operations at some lower level of detail.

In these scenarios, it is indeed desirable to deal with abstraction mecha-
nisms offering the capability of discovering modular, yet expressive, descrip-
tions for processes. In fact, the need and the usefulness of process hierar-
chies/taxonomies has already emerged in several applicative contexts, and
process abstraction is currently supported in some advanced platforms for
business management (e.g, iBOM [7], ARIS [25]). Actually, these tools allow
users to define the relationships among the real process and the abstract views
in a manual way only. Hence, providing the user with some kinds of automatic
tool capable of building a description of the process at different abstraction
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levels might represent an important capability for such platforms, in order to
effectively reuse, customize, and semantically consolidate process knowledge.

A first step towards achieving a satisfactory trade-off between the accuracy
and the comprehensibility of mined process models has recently been proposed
in [19]. The idea is to recognize different “variants” (i.e., different usage sce-
narios) of the process by means of a structural clustering algorithm, and then
equip each of these variants with a specific workflow schema. As a result, in-
stead of a single, possibly intricate and complex workflow model for the whole
process, a collection of more compact and easier to understand workflows can
be discovered. Yet, the approach does not offer any support for restructuring
the knowledge encoded in the various usage scenarios into in a taxonomy of
process models that capture the behavior of the process at hand, by providing
different views at different levels of details.

1.1 Overview of the Approach and Contribution

By continuing along the line of research paved in [19], the main aim of the
paper is to combine the core idea of clustering process executions with ad-hoc
abstraction techniques that produce a compact and handy representation for
each high-level schema, by emphasizing the most relevant behavioral features
while abstracting from specific details. The result is a novel process mining
approach capable of building a taxonomy of process models. In a nutshell, the
taxonomy is modelled as a tree of workflow schemas, where the root encodes
the most abstract view, which has no pretension of being an executable work-
flow, whereas any level of internal nodes encodes a refinement of this abstract
model, in which some specific details are introduced. In other words, leaf nodes
stand for concrete usage scenarios (computed through the clustering), whereas
each non-leaf node (computed through abstraction mechanisms) is meant to
provide a unified representation for all the process models associated with
its children. Technically, the combination of process mining and abstraction
methods, which is the main distinguishing feature of our approach, is carried
out in two phases:

• In the first phase, we use a generalization of the top-down clustering algo-
rithm presented in [19] to hierarchically decompose the process model into
a number of sub-processes. Since, at each step, the algorithm splits a clus-
ter whose associated schema is expected to mix different usage scenarios,
those clusters over which no further splitting is applied effectively model
different concrete variants for the process and can support further-coming
enactments. Note that, because of the application of a hierarchical cluster-
ing, the result of the algorithm is a tree-like schema whose nodes correspond
to set of executions and where, for each node, its children correspond to the
splits originated by that executions. In fact, while the algorithm in [19] ex-
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ploits a peculiar approach to equip each leaf with a workflow schema, the
generalization discussed in this paper accommodates the use of any arbi-
trary process mining technique.

• In the second phase, we navigate bottom-up the tree, i.e., from the leaves
to the root, in order to build a taxonomy. In particular, we equip each
non-leaf node with an abstract schema that generalizes all the schemas
associated with its children. To this aim, an abstraction method is defined
which supports the generalization by properly replacing groups of “specific”
activities with higher-level ones.

Both above phases have been implemented in a prototype system. Even though
the resulting tool could be a valuable add-on for any advanced process manage-
ment platform, we decided to implement it as a plugin for the process mining
framework ProM [47], which is a well-established platform for developing and
testing novel process mining algorithms. The system (in the respect of both
above phases) has thoroughly been tested on syntectic and real datasets. In
particular:

• As for the first phase, an experimental analysis has been conducted to com-
pare the quality of the schemas induced by the clusters with those that
can be obtained with other process mining techniques without clustering
the process executions. In these experiments, differently from [19], several
process mining algorithms have also been used to equip with a model the
various clusters.

• As for the second phase, a case study has been discussed where the salient
features of the abstraction mechanisms have been stressed. In this respect,
it is worthwhile noticing that the availability of some background knowledge
about a given domain might be quite useful to improve the quality of the
mined taxonomy, especially in order to find the appropriate level of details.
Actually, in this case study, we have been experiencing that, even in ab-
sence of context-dependent background knowledge, the taxonomical repre-
sentation of the process model effectively enables for an explorative analysis
where users may navigate within the tree-like structure, focusing on those
concrete execution scenarios that most attract their attention. Hence, inde-
pendently of what the right level of abstraction is (which is indeed a difficult
and application-depended issue), a major advantage of having higher-level
abstract schemas is to facilitate such an interactive analysis of process exe-
cutions. Investigating on how to incorporate context-dependent information
within the algorithm for inducing process taxonomies is outside the scope
of this paper, but yet constitutes an interesting avenue of further research.
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1.2 Plan of the Paper

The rest of the paper is organized as follows. In Section 2, a few prelimi-
naries on process models are discussed. The top-down clustering algorithm is
illustrated in Section 3, while the abstraction techniques aimed at building
the schema taxonomy are presented in Section 4. Section 5 then provides an
overview of the system that was integrated in the ProM framework. The prac-
tical application of the approach to different log data is discussed in Section 6,
where several experimental results are reported to assess the effectiveness of
both the hierarchical clustering and the abstraction mechanisms. In Section 7
we briefly survey some works recently appeared in the literature which are
connected with our research, yet catching the opportunity to emphasize the
main distinguishing points in our approach. A few concluding remarks are
drawn in Section 8, which also depicts some directions of future work.

2 Process Models and Process Logs

A significant amount of research has been done in the context of specification
mechanisms for process modelling (see, e.g., [48,42,41,15,36,45]). Process mod-
els are aimed at representing all possible execution flows along the activities of
a given process, by means of a set of constraints defining “legal” execution in
terms of simple relationships of precedence and/or more elaborate constructs
such as loops, parallelism, synchronization and choice (just to cite a few).

The whole methodology discussed in this paper is completely orthogonal to
the specific model adopted to represent processes (in fact, experiments will
be discussed showing applications on a few relevant process models). Thus,
to our aims, it suffices to assume that a set of activity identifiers, say A, is
given and that a modelling language, say M, (e.g., Heuristics Nets [48], event
driven process chains [42], WF-nets [41], or others) is adopted. Then, we shall
denote by M(A) the set of workflow schemas that can be built by using the
constructs in M over the activities in A.

Example 1 Figure 1 shows a possible workflow schema for the OrderMan-
agement process of handling customers’ orders in a business company, which
refers to a simple and intuitive modelling language where precedence relation-
ships are depicted as arrows between nodes in a control flow graph, and where
some constructs drawn by means of labels beside the tasks (cf. and, or, xor)
are used to state more elaborate constraints of execution.

Roughly speaking, a node whose input is an “and” acts as synchronizer (i.e., it
can be executed only after all its predecessors have been completed), whereas a
node whose input is an “or” can start as soon as at least one of its predecessors
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Fig. 1. Workflow schema for the sample OrderManagement process.

has been completed. Furthermore, once finished, a node whose output is an
“and” (resp., “or”, “xor”) activates all (resp., some of, exactly one of) its
outgoing activities. /

Each time a workflow schema W ∈ M(A) is enacted in a workflow manage-
ment system, the activities in A are executed according to the constraints of
W , till some final configuration is reached for which there is no constraint in
W forcing the execution of some further activity. As an example, we can refer
again to the schema of Figure 1, and notice that the sequence acbgih might
be the result of an enactment. In fact, the sequencing of the events related to
these various executions is stored by the system over each enactment, and will
constitute the input for the process mining problem [46,44,43,2,9,32,19].

More formally, given a workflow schema W over a modelling language M and
over the activities in A, we shall denote by L(W ) the set of all the traces that
correspond to the enactments satisfying the various constraints in W . Then,
the input of the process mining problem is a log L ⊆ L(W ), i.e., a bag of
traces that are legal according to the model W . Based on L, the goal is to
discover a workflow schema, say W ′, such that L = L(W ′), i.e., a schema that
is capable of explaining exactly all the episodes in L. The rationale of the
approach is that for a sufficiently large input log L (ideally L = L(W )), the
schema W ′ would behave in practice as W .

Clearly enough, in real applicative scenarios, we have little chance of discov-
ering such an ideal W ′, either because the input log L is not complete, i.e.,
L ⊂ L(W ), or because it is not sound, i.e., L contains some trace that is not
in L(W ) due to noise and/or malfunctioning occurred in some enactments.
Thus, several measures of qualities for the discovered workflow schema W ′

can be used to asses how much W ′ is close to W .

Again, we note that adopting some specific measure is an orthogonal issue
w.r.t. our approach (and, in fact, different measures have experimentally been
tested). For the sake of exposition, we hence shall assume the availability
of a template function conformance that on input W ′ and L reports a real
number in [0..1] estimating how much W ′ is good to model the logs in L (the
higher is the score, the better is the model). Then, process mining algorithms
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are naturally aimed at deriving a schema W ′ such that conformance(W ′,L)
is maximized for some conformance function and on any input log L. In the
following section, we shall discuss how this problem can be generalized to cope
with taxonomies of process models.

3 Hierarchically Mining Workflow Schemas

As outlined in the Introduction, our method for discovering expressive process
models at different levels of detail is articulated in two phases. First, we exploit
a hierarchical top-down clustering algorithm, called HierarchyDiscovery.
Then, we visit the mined model in a bottom-up way, and we restructure it at
several levels of abstraction, by means of the algorithm BuildTaxonomy.

In this section, we provide details on the former phase. More precisely, after
formally defining the notion of schema decomposition, we describe the algo-
rithm HierarchyDiscovery and present an application example.

3.1 Algorithm HierarchyDiscovery

A process mining technique that is specifically tailored for complex processes,
involving lots of activities and exhibiting different variants was presented
in [19], which relies on the idea of explicitly representing all the possible us-
age scenarios by means of a collection of different, specific, workflow schemas.
Here, we propose a new algorithm that extends the one presented in [19], and
where the mined model is meant to represent the process at different levels of
granularity. Indeed, the algorithm will compute a tree-like decomposition of
the process where each node corresponds to a schema, and where the set of
schemas associated with the children of a node v models the behavior encoded
in the same set of executions supported by v, but in a more detailed way, as
different subclasses of executions are described separately. To this aim, it is
convenient to introduce the following notion of schema decomposition.

Definition 2 (Schema Decomposition) Let A be a set of activities, and
let M be a modelling language. Then, a schema decomposition (over M and
A) is a tuple H = 〈WS, T, λ〉, such that:

• WS ⊆M(A) is a set of workflow schemas;
• T = 〈V,E, v0〉 is a tree, where V (resp. E) denotes the set of vertices (resp.

edges), and v0 ∈ V is the root;
• λ : V 7→ WS is a bijective function associating each vertex v ∈ V with a

workflow schema λ(v) in WS. ut
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Input: A modelling language M, a set of log traces L over activities in A, two natural numbers maxSize
and k, a threshold γ.

Output: A schema decomposition 〈WS, T, λ〉 over M and A.
Method: Perform the following steps:

1 W0 :=mineWFschema(L);

2 WS := {W0};
3 Traces[W0] := L; // Traces[Wi] refers to the log traces modelled by Wi, ∀Wi ∈ WS
4 V := {v0}; E := ∅; T := 〈V, E, v0〉;
5 λ(v0) := W0;

6 while |WS| ≤ maxSize and conformance(〈WS, T, λ〉,L) < γ do

7 let Wq be the least conforming “leaf” schema a and vq=λ−1(Wq) be its associated node in T ;

8 let n=|WS| be the number of schemas currently stored in WS;

9 〈Ln+1, ..., Ln+k〉 := partition-FB(Traces[Wq ]);

10 if k > 1 then

11 for h = 1..k do

12 Wn+h := mineWFschema(Ln+h);

13 WS := WS ∪ {Wn+h};
14 Traces[Wn+h] := Ln+h;

15 V := V ∪ {vn+h}; E := E ∪ {(vq , vn+h)};
16 λ(vn+h) := Wn+h;

17 end for

18 end if

19 end while

20 return 〈WS, T, λ〉;
a i.e., Wq = argminW∈WS{conformance(W, traces(W )) | λ−1(W ) is a leaf of T}

Fig. 2. Algorithm HierarchyDiscovery

The input for the process mining problem is, as usual, a log L. Based on L, our
aim is to build a schema decomposition, where for each vertex v in V , the set
Sv of the schemas associated with the children of v, i.e., Sv = {λ(vc

i ) | (v, vc
i ) ∈

E}, is essentially meant to model the same set of instances modelled by λ(v),
but in a more specific way. This is carried out by recursively partitioning the
traces in L into clusters, according to the different behavioral patterns they
exhibit, and by building a schema for each of these clusters.

An algorithm, named HierarchyDiscovery, implementing this approach is re-
ported in Figure 2, where the function mineWFschema is exploited for associat-
ing a single workflow schema in W(A) with each cluster of the hierarchy—one
may use any standard process mining algorithm here. The algorithm starts by
building a workflow schema W0 (Line 1) that is the first attempt to represent
the behavior captured in the log traces, and that will be the only component of
WS (Line 2). The schema W0 is associated with the whole log via the auxiliary
structure Traces (Line 3), which enables for recording the set of traces each
discovered schema was derived from. Moreover, the tree T is initialized with a
single node (its root) v0, which is associated with W0 by properly setting the
function λ (Lines 4-5).
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In order to get a more accurate model, the refinement is carried out with
the aim of reducing as much as possible the number of spurious executions
supported by the model that do not correspond to any of the instances regis-
tered in the input log L. Indeed, algorithm HierarchyDiscovery is designed
to greedily select to refine the “least conforming” schema Wq in WS (i.e.,
the one that gets the lowest score by the chosen conformance function) and
to derive a set of more refined schemas (Lines 7-18) as children of the node
corresponding to Wq. Therefore, the set of traces modelled by the selected
schema Wq is partitioned through the procedure partition-FB (Line 9) into
a set of k clusters which, in a sense, are more homogeneous from a behavioral
viewpoint.

Note that, different clustering algorithms could be used to partition the traces
associated with the selected schema Wq. In particular, like in [3,4,21], we can
exploit the discovery of frequent patterns (see, e.g., [28,31,33]), in order to
map the traces into a feature space, where classical clustering methods can be
eventually applied. From this exposition, we omit details on the specific way
partition-FB is implemented, and we address the reader to, e.g.,[19], where
a special kind of sequences of frequent activities is used to define the feature
space, which are capable of capturing behaviors that are unexpected w.r.t. the
current workflow schema (i.e., Wq, in Figure 2), and which can efficiently be
discovered via a level-wise search strategy.

Once that traces associated with Wq have been partitioned, for each of the
new clusters so found, say Ln+h, a specific workflow schema Wn+h is discovered
(again with function mineWFschema), and added to WS (Lines 10-11). The
algorithm keeps trace of the connection between the schema Wn+h and the
trace cluster, Ln+h, it has been discovered from (Line 14). Moreover, Wn+h is
associated with a new node vn+h, which is added to the tree T as a child of the
node vq that corresponds to the schema Wq being just refined (Lines 15-16).

The whole process of refining a schema can then be iterated in a recursive way,
by selecting again the least conforming leaf schema in the current hierarchy.
The operations are in fact repeated until the number of schemas stored in
WS is greater than the input parameter maxSize or the global conformance,
denoted by conformance(〈WS, T, λ〉,L) and measured as the minimum con-
formance value over the schemas associated with the leaves of T that have
some corresponding trace in L, exceeds a threshold γ.

We conclude this section by noticing that, by a direct application of computa-
tional results in [19], the HierarchyDiscovery algorithm can be implemented
to perform O(maxSize× k× p) scans of the input log, where p is the number
of scans of L required by each call to function partition-FB in algorithm
HierarchyDiscovery. For instance, in [19], partition-FB requires a number
of scans which is bounded by the length of the task sequences used as features.
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Fig. 3. Process taxonomy for the OrderManagement process.

3.2 An Example Scenario

In this section we illustrate the application of the mining algorithm to a simple
scenario, which refers to the workflow schema shown in Figure 1. Based on this
schema, we randomly generated 100, 000 traces compliant with it by using the
generator described in [17]—notice that more traces actually encode the same
task sequence. In this generation, we also required that task m could not occur
in any execution containing f , and that task o could not appear in any trace
containing d and p, thereby modelling the restriction that a fidelity discount
is never applied to a new customer, and that a fast dispatching procedure
cannot be performed whenever some external supplies were asked for. These
additional constraints allow us to simulate the presence of different usage
scenarios that cannot be captured by a simple workflow schema.

The output of HierarchyDiscovery, for maxSize = 5 and γ = 0.85, is the
schema decomposition reported in Figure 3. More specifically, Figure 3.(a)
sketches the tree-like structure of the decomposition, where each node logically
corresponds to both a cluster of traces and a workflow schema induced from
that cluster, by means of traditional algorithms for process mining.

The workflow schemas eventually extracted for the leaves of this tree are shown
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in the Figures 3.(b), 3.(c), and 3.(d) 2 . In particular, node v0 corresponds to
the whole set of traces and to an associated (mined) workflow. Actually, the
algorithm HierarchyDiscovery finds that the schema of v0 is not as “good”
as required by the user, and therefore partitions the traces by means of a
clustering algorithm (k-means in our implementation).

In the example, we fix k = 2 and the algorithm generates two children v1 and
v2; then, v2 is not further refined (due to its high conformance), while traces
associated with v1 are split again into v3 and v4. At the end, the schemas
associated with the leaves of the tree are those shown in the figure. As a
matter of facts, schemas W0 and W1 (associated with v0 and v1, respectively)
are only preliminary attempts to model executions that are, indeed, modelled
in a better way by the leaf schemas. Nevertheless, the whole decomposition is
an important result as well, for it structures the discovered execution classes
and for it forms the basis for deriving a schema taxonomy representing the
process at different abstraction levels (cf. definition of W 0 and W 1).

4 Building Schema Taxonomies

The second phase of our approach is devoted to exploit the schema decom-
position produced by HierarchyDiscovery in order to derive a taxonomy of
workflow schemas that collectively represent the process at hand at several ab-
straction levels. In this section, after formally defining the concept of schema
taxonomy, we overview the main algorithm, called BuildTaxonomy, that re-
structures each non-leaf schema in the input hierarchy by making it a gener-
alization over all its children. The general idea of the algorithm is discussed in
Section 4.1, while some important details will be illustrated in Section 4.2 and
Section 4.3. An exemplification on our OrderManagement process will finally
be discussed in Section 4.4.

4.1 Algorithm BuildTaxonomy

Based on a schema decomposition, we next consider the problem of consoli-
dating the knowledge about a process behavior into different levels of detail.
To this purpose, we first introduce some basic abstraction relationships over
activities, by assuming they are gathered in a suitable repository, called ab-
straction dictionary, which is defined as follows.

Definition 3 (Abstraction Dictionary) An abstraction dictionary is a tu-

2 Please ignore, for now, the label x1 and the associated highlighted box (in the
Figures 3.(b) and 3.(d)), which will be discussed in the following.
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ple D = 〈A, Isa,PartOf 〉, where A is a set activities. Isa ⊆ A × A,
PartOf ⊆ A×A and, for each a ∈ A, (a, a) 6∈ PartOf and (a, a) 6∈ Isa. ut
Intuitively, for activities a and b, (b, a) ∈ Isa indicates that b is a refinement
of a; conversely, (b, a) ∈ PartOf indicates that b is a component of a. Based
on the content of the abstraction dictionary, we can define some more gen-
eral relationships that are meant to capture scenarios where an activity is an
abstract version of another one.

Definition 4 (Implied Activities) Given an abstraction dictionary D =
〈A, Isa,PartOf 〉, and two activities a and a′, we say that a implies a′ w.r.t.
D, denoted by a −→D a′, if a, a′ ∈ A and either

• (a′, a) ∈ Isa or (a′, a) ∈ PartOf , or
• there exists an activity x ∈ A such that a −→D x and x −→D a′.

An activity a is said to be complex if there exists at least one activity x
such that a −→D x; otherwise, a is a basic activity. Finally, the set of all
basic activities implied by a w.r.t. D is denoted by implD(a), i.e., implD(a) =
{a′ | a −→D a′ and ¬∃a′′ s.t. a′ −→D a′′}. ut
Notice that complex activities represent high-level concepts defined by ag-
gregating or generalizing basics activities actually occurring in real process
executions. This notion is the basic block for building taxonomies that can
significantly reduce the efforts for comprehending and reusing process models,
for they structuring process knowledge into different abstraction levels. Before
providing a formal definition of taxonomical process models, we next illustrate
the simple underlying notion of generalization between workflow schemas.

Definition 5 (Schema Generalization) Let W1 and W2 be two workflow
schemas over the sets of activities A1 and A2, respectively. Then, we say that
W2 specializes W1 (W1 generalizes W2) w.r.t. a given abstraction dictionary
D, denoted by W2 ¹D W1, if for each activity a2 in A2 (i) either a2 ∈ A1 or
there exists at least one activity a1 in A1 such that a1 −→D a2, and (ii) there
is no activity b1 in A1 such that a2 −→D b1. ut
Example 6 Consider the workflow schema W4 in Figure 3.(d), and the
schema W 1 in Figure 3.(e). Assume that the pairs (d, x1) and (p, x1) already
belong to the PartOf relationship of a given abstraction dictionary—the con-
tainment of d and p in x1 is emphasized in a graphical way in both those
figures. Then, W 1 generalizes W4. Also, it trivially holds that W 1 generalizes
the schema W3 depicted in Figure 3.(c). /

We are now in position to formalize the concept of schema taxonomy, which
is the output of the second phase of our approach.

Definition 7 (Schema Taxonomy) LetD be an abstraction dictionary and
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Input: A schema decomposition H = 〈WS, T, λ〉 over a set of activities A;
Output: A schema taxonomy G, an abstraction dictionary D;
Method: Perform the following steps:

1 let T = 〈V, E, v0〉, and let D := 〈A, ∅, ∅〉;
2 Done := { v ∈ V |6 ∃v′ ∈ V s.t. (v, v′) ∈ E }; // Done initially contains the leaves of T ;

3 while ∃v ∈ V such that v 6∈ Done, and {c | (c, v) ∈ E} ⊆ Done do

4 let ChildSchemas = { λ(c) | v ∈ V and (v, c) ∈ E }, i.e., the schemas of all v’s children;

5 λ′(v) := generalizeSchemas(ChildSchemas,D);

6 Done := Done ∪ {v};
7 end while

8 G := 〈WS, T, λ′〉;
9 normalizeDictionary(G,D);

10 return (G,D);

Procedure generalizeSchemas( WS = {W1, ..., Wk}: set of workflow schemas,
var D: abstraction dictionary): workflow schema;

g1 let Ah be the activities occurring in the schema Wh;

g2 let W be a schema over A =
⋃k

h=1
Ah admitting all traces in Wh, 1 ≤ h ≤ k;

g3 for each h = 1..k do

g4 abstractActivities(Ah, W , D);

g5 abstractActivities(A, W , D);

g6 return W ;

Fig. 4. Algorithm BuildTaxonomy

let H = 〈WS, T = (V, E), λ〉 be a schema decomposition. Then, G is a schema
taxonomy w.r.t. D if for any pair of nodes v and vc in V such that (v, vc) ∈ E
(i.e., vc is a child of v), it holds: λ(v) ¹D λ(vc). ut
Note that schema taxonomies found on a notion of generalization that refers
to basic abstraction relationships between activities and disregards the order-
ing of activities and other routing constraints they are involved in. Indeed,
these taxonomies are primarily devoted to provide a multi-layered descrip-
tion of the process, where only the leaf schemas are meant as precise models
for distinct classes of execution. By contrast, any high-level (i.e., non-leaf)
schema essentially offers a compact and possibly approximated description
over heterogenous behavioral classes, which can eventually support high-level
explorative analysis of the process. We can hence admit a loss in precision in
the representation of these latter schemas. Therefore, our perspective is com-
pletely orthogonal w.r.t. other proposals where inheritance notions are defined
to take into account behavioral features (see, e.g., the notion of Most Specific
Generalization introduced in [6], for the case of Petri nets).

Armed with these notions, we can now discuss the BuildTaxonomy algorithm,
which is reported in Figure 4. The algorithm takes in input a schema decom-
position H (computed by HierarchyDiscovery) and produces a taxonomy G
and an abstraction dictionary D, which G has been built according to.
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The basic task in the generalization consists of replacing groups of “specific”
activities appearing in the schemas to be generalized, with new “virtual” (i.e.,
complex) activities representing them at a higher level of abstraction. By this
way, a more compact description of the process is obtained, yet providing that
the abstraction dictionary D is updated to maintain the relationships between
the activities that were abstracted and the new higher-level concepts replacing
them. This dictionary is simply initialized in a way that it just contains all the
(basic) activities appearing in any schema of H, while both relations Isa and
PartOf are empty (Line 1). In general, however, one could think of exploiting
abstraction relationships that are already available (as a form of background
knowledge), by suitably encoding them into it.

The algorithm works in a bottom-up fashion (Lines 2-7): starting from the
leaves of the input decomposition, it produces, for each non-leaf node v, a
novel workflow schema that generalizes all the schemas associated with the
children of v. Notably, this schema is meant to accurately represents only
the features that are shared by all the subsets of executions corresponding to
the children of v, while abstracting from specific activities, which are actually
merged into new high-level (i.e., complex ) activities. This generalization is
carried out by providing the procedure generalizeSchemas with the schemas
associated with the children of v, along with the abstraction dictionary D
(Line 5). As a result, a new generalized schema is computed and assigned
to v through the function λ′; moreover, D is updated to suitably relate the
activities that were abstracted with the complex ones replacing them in the
generalized schema.

As a final step, after the schema taxonomy G has been computed, the algo-
rithm also restructures the abstraction dictionary D by using the procedure
normalizeDictionary (Line 9), which actually removes all “superfluous” ac-
tivities that were created during the generalization. In particular, this step
will eliminate any complex activity a not appearing in any schema of G, which
can be abstracted into another, higher-level, complex activity b, provided that
this latter can suitably abstract all the activities implied by a. Note that this
normalization step is just a heuristic post-processing, which is not crucial for
ensuring the correctness of the approach.

Clearly enough, the effectiveness of the technique depends on the way the gen-
eralization of the activities and the updating of the dictionary are carried out.
Procedure generalizeSchemas (reported in Figure 4 as well) first merges all
the input workflow schemas into a preliminary workflow schema W (Line g2),
which represents all the possible flow links in the input workflows—basically,
this procedures can be seen as performing the union of the control flow graphs
corresponding to each Wh. Subsequently, activities are abstracted by applying
the procedure abstractActivities, which transforms W by merging activ-
ities in the reference set it receives as the first parameter, and by updating
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the associated constraints and the abstraction dictionary D. In particular,
abstractActivities is first applied for merging only those activities that
are derived from the same input schema—at step h, the activities coming
from the h-th schema can only be merged (Line g4). A further application
is then performed to abstract non-shared activities in the current schema,
independently of their origin (line g5).

Details on this procedure are reported in the following. Here, we just note
that abstractActivities will be such that for every activity a occurring in
some schema of WS, either (i) a is kept in W , or (ii) a is abstracted into
some chain of high-level activities, the last of which appears in W . Therefore,
we will immediately be guaranteed that the output returned by algorithm
BuildTaxonomy complies with Definition 5.

4.2 Matching Activities for Abstraction Purposes

In order to discuss the implementation of abstractActivities, we first intro-
duce some similarity functions that we exploit for singling out those activities
that can safely be abstracted into higher-level ones. In particular, we consider
two kinds of function, one devoted to capture semantical affinities between ac-
tivities, on the basis of a given abstraction dictionary D, and another devoted
to compare activities from a topological viewpoint. To introduce similarity
functions of the former kind, we preliminary need some further concepts re-
lated to abstraction dictionaries.

Given two activities a and a′, we say that a generalizes a′ w.r.t. a given
abstraction dictionary D = 〈A, Isa,PartOf 〉, denoted by a ↑D a′, if there
is a sequence of activities a0, a1, .., an from A such that a0=a′, an=a and
(ai, ai−1) ∈ Isa for each i = 1..n; we call this sequence a genpath from a′ to a
with length n. Moreover, the generalization distance between a and a′ w.r.t.
D, denoted by distDG, is the minimal length of the genpaths connecting a′ to
a. As a special case, we let distDG(a, a) = 0, for any activity a.

The notions of genpath and distDG introduced above are exploited in the fol-
lowing in order to define the most specific generalization of a pair of activities,
which roughly represents the common ancestor in the hierarchies induced by
Isa links that is maximally close to both of them.

Definition 8 (Most Specific Generalization) Let x and y be two activi-
ties, and ancestorsDG(x, y) be the set of all the activities that generalize both x
and y, i.e., ancestorsDG(x, y) = {z ∈ A | z ↑D x and z ↑D y}. The most specific
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generalization of w.r.t. D, denoted by msgD(x, y), is defined as follows:

msgD(x, y) =





ε, if ancestorsDG(x, y) = ∅

an activity z ∈ ancestorsDG(x, y) s.t. ∀z′ ∈ ancestorsDG(x, y)

distDG(x, z′) + distDG(y, z′) ≥ distDG(x, z) + distDG(y, z), otherwise

ut
In words, the most specific generalization of x and y is an activity, if there
exists one, that generalizes both x and y, and is maximally close to both of
them them according to the function distDG. Since this definition may allow
for multiple candidates, in this case we hereinafter assume that the function
msgD(x, y) just returns one of them, chosen at random.

We can now define some dictionary-based similarities.

Definition 9 (Dictionary-based similarities) Let x and y be two activ-
ities, and D = 〈A, Isa,PartOf 〉 be an abstraction dictionary. Then the
implication-oriented similarity between x and y, denoted by simD(x, y), is:

simD(x, y) = β(implD(x) ∪ {x}, implD(y) ∪ {y})

while the generalization-oriented similarity between x and y, denoted by
simD

G(x, y), is:

simD
G(x, y) =





0, if msgD(x, y) = ε

1 –
distDG(x,msgD(x,y))+distDG(y,msgD(x,y))

|A| , otherwise

where, for any two sets B and C, β(B,C) = |B∩C|
|B∪C| . ut

Intuitively, for any two activities a and b, simD(a, b) evaluates how many sub-
activities a and b actually share, by comparing their implied activities (see
Definition 4), extended with a and b, respectively. Conversely, function simD

G

takes into account the generalization relationships that derive from D, and
evaluates the semantical similarity of two activities, by measuring their dis-
tance to their most specific generalization (i.e., their closest common ancestor
in the hierarchy induced by Isa links, see Definition 8). Hence, the closer is
the most specific generalization of x and y to both of them, the more similar
to each other the two activities are deemed by function simD

G.

We now turn to describe a function aimed at comparing activities from a
topological viewpoint. In the following, let E be a directed binary relation
encoding the set of precedence constraints in some given workflow schema W
(elements in E can roughly be seen as edges in the control flow graph). The
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basic idea is to consider similar two given activities, if they can be “merged”
by limiting the creation of spurious control flow paths among the remaining
activities in the workflow schema. In this respect, we focus on two cases that
can lead to a meaningful merging without upsetting the topology of the control
flow graph, as formalized in the following definition.

Definition 10 (Merge-Safety) Given a binary relation E, we say that a
(unordered) pair of activities (x, y) is merge-safe if either

(a) {(x, y), (y, x)} ∩ E 6= ∅ and {(x, y), (y, x)} ∩ (E − {(x, y), (y, x)})∗ = ∅—
intuitively, x and y are directly linked by some edges in E and after removing
these edges no other path exists connecting x and y; or,

(b) {(x, y), (y, x)} ∩E∗ = ∅—intuitively, there is no path connecting x and y,

where, for any set F ⊆ E, F ∗ denotes the transitive closure of F . ut
Notably, only in the case (b) of Definition 10 the merging of x and y may lead
to spurious dependencies among other activities in the schema. Indeed, this
happens when there are two other activities z and w such that (z, w) 6∈ E∗,
and either {(z, x), (y, w)} ⊆ E or {(z, y), (x,w)} ⊆ E. A straightforward way
to prevent this problem consists in requiring that at least one of the following
conditions holds:

• PE
x = PE

y ,

• SE
x = SE

y ,

• PE
x ⊆ PE

y and SE
x ⊆ SE

y ,

• PE
y ⊆ PE

x and SE
y ⊆ SE

x .

where PE
a (resp. SE

a ) denotes the set of predecessors (resp. successors) of ac-
tivity a, according to the arcs in E.

The function simE(x, y), reported below, incorporates these measure in a
smoothed way, with the aim of evaluating the similarity of a pair of activ-
ities according to the number of spurious flows that would be generated when
merging them (the more spurious flows are introduced, the lower is the score):

Definition 11 (Topological similarity) Let x and y be two activities, and
E be a set of activity pairs, encoding control flow (precedence) relationships.

simE(x, y) =





0, if (x, y) is not a merge-safe pair of activities
α(PE

x ,PE
y )·α(SE

x ,SE
y )+β(PE

x ,PE
y )·β(SE

x ,SE
y )

2 , otherwise

where, for any two sets B and C, α(B,C) = |B∩C|
min(|B|,|C|) and β(B, C) = |B∩C|

|B∪C| .
ut
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Notice that simE produces a maximal value whenever one of the “strong”
conditions discussed before holds, and, in general, tends to assign high values
to activities matching over many of their predecessors (successors).

4.3 Procedure abstractActivities

We can now discuss the abstractActivities procedure in Figure 5. The
procedure takes as input a workflow schema W , a set of activities S that are
involved in W , and an abstraction dictionary D. As a result, it transforms W
by replacing the abstracted activities with the associated complex ones, and
modifies D in order to record the performed abstraction transformations.

The procedure works in a pairwise fashion by repeatedly abstracting two activ-
ities m1 and m2, both taken from S, by means of a complex activity p. These
activities are identified by the function getBestAbstraction that returns a
tuple indicating, besides p, m1 and m2, the kind of abstraction relationship
to be used, i.e., PartOf or Isa. Since either m1 or m2 might coincide with
p, the set ActuallyAbstracted is used to keep trace of which activities must
actually be abstracted, in that they are really distinct from p (Line 4). Any-
way, the dictionary is correctly updated to include the activity p (Line 5). The
algorithm then calls the procedure deriveConstraints (see Line 10), which
is responsible of deriving some local constraints on the basis of those activi-
ties m1 and m2 that are being merged into it. Note that when carrying out
procedure deriveConstraints, problems may occur when two constraints are
discovered over m1 and m2 that are conflicting, i.e., when they can not both
hold at the same time. In our implementation, we decided to tolerate loss of
accuracy in representing the actual behavior of the process when merging ac-
tivities; thus, in presence of conflicts the most stringent constraint is removed.
As an example, when join and or constraints are in conflict, their merging
causes the removal of the join one. Finally, m1 and m2 are removed from both
A and the reference set S (Lines 11-12), and a novel activity pair is searched
for, in order to reiterate the whole abstraction procedure.

A crucial aspect in this approach pertains the way activities to be abstracted
are identified. To this end, procedure getBestAbstraction takes as input a set
S of activities and an associated set E, along with an abstraction dictionary D
and exploits the similarity measures introduced in Section 4.2, which evaluate
how much two activities are suitable to be merged into a single higher-level
activity. We briefly recall here that, given two any activities a and b, the topo-
logical similarity simE(a, b) (see Definition 11) compares them from a topo-
logical viewpoint according to a given set E, whereas the two other functions
(see Definition 9), measure semantical affinities between a and b according to
an abstraction dictionary D. More precisely, the implication-oriented similar-
ity simD(a, b) takes into account all the activities implied by a and b, while
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Procedure abstractActivities(S: set of activities; var W : a workflow schema;
var D = 〈A, Isa,PartOf 〉: abstraction dictionary)

1 let E′ = {(x, y) ∈ E s.t. x ∈ S and y ∈ S};
2 〈m1, m2, p, mode〉 :=getBestAbstraction(S, E′,D);

3 while p 6= ε do

4 let ActuallyAbstracted = {m1, m2} − {p};
5 A := A ∪ p;

6 if mode = ISA then

7 Isa := Isa ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
8 else

9 PartOf := PartOf ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
10 end if

11 deriveConstraints(W̄ , p, m1, m2);

11 A := A−ActuallyAbstracted ∪ {p};
12 S := S −ActuallyAbstracted ∪ {p};
13 〈m1, m2, mode, p〉 :=getBestAbstraction(S, E′,D);

14 end while

Procedure getBestAbstraction(S: set of activities; E: set of activity pairs; D: abstraction dictionary):
a tuple in 〈ε, ε, ε, ε〉 ∪ S × S × {Isa,PartOf } × U ; a

b1 let score(x, y) = max{simE(x, y), simD(x, y), simD
G(x, y)}, for any activities x and y

b2 if |S| < 2 then

b3 return 〈ε, ε, ε, ε〉;
b4 else

b5 let a and b be two activities such that score(a, b) = max{score(x, y) | x, y ∈ S};
b6 if score(a, b) < ρ then return 〈ε, ε, ε, ε〉;
b7 else if simD

G(a, b) ≥ ρs and msgD(a, b) 6= ε then return 〈a, b, Isa, msgD(a, b)〉;
b8 else if ∃p ∈ D.A s.t. {(a, p), (b, p)} ⊆ D.PartOf then return 〈a, b,PartOf , p〉;
b9 else if implD(b) ⊆ implD(a) then return 〈a, b,PartOf , a〉;

b10 else if implD(a) ⊆ implD(b) then return 〈a, b,PartOf , b〉;
b11 else if simD

P (a, b) ≥ ρs and {(a, x), (b, x)} ∪ Isa = ∅ then return 〈a, b, Isa, a new activity〉;
b12 else return 〈a, b,PartOf , a new activity〉;
b13 end if

b14 end if

a In any tuple 〈m1, m2, M, p〉 the procedure returns, m1 and m2 are the abstracted activity, p is the
abstracting one, and M indicates the abstraction mode – U denotes the universe of all activities.

Fig. 5. Procedure abstractActivities

the generalization-oriented similarity simD
G(a, b) evaluates how much close to

both activities is their common ancestor in the Isa-based hierarchy, if there
is any. Based on all of these functions a single overall score can be assigned to
each pair of activities, actually via the function score (Line b1). If no activ-
ity pair gets a sufficient matching score, w.r.t. a given threshold ρ (Line b3),
getBestAbstraction returns the tuple 〈ε, ε, ε, ε〉 (Lines b3 and b6), simply
meaning that no abstraction can be performed over the activities in S.

In the other case, the procedure computes a tuple whose elements, respectively,
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specify the two activities to be abstracted, the kind of abstraction relationship
to be used (i.e., PartOf or Isa), and the complex activity which will abstract
both of them. The choice of both the abstracting activity and the abstraction
mode are essentially based on the similarity values computed via simD and
simD

G. In principle, if either of these measures is above the threshold ρS, the
two activities are deemed similar enough to be looked at as two variants of
some activity that generalizes them both. In fact, we heuristically prefer to
abstract two given activities by means the of ISA relation, whenever their
mutual similarity is quite enough to consider them as different specializations
of the same abstract activity.

Before considering the creation of a new activity for generalizing m1 and m2

(Lines b11-b12), it is first checked whether there is some existing activity that
can abstract them both. More specifically, if there exists an activity o that al-
ready contains m1 and m2 the procedure simply indicates to (re)aggregate
them into p via a PartOf link (Line b8); actually, this will not produce
any real modification in the abstraction dictionary, in the calling procedure
AbstractActivities. Otherwise, i.e., in the case one of the activities is im-
plied by other, the former is abstracted into the latter by way of an aggregation
relationship (Lines b9-b10); notice, in fact, that it can be excluded that the
implied activity is a specialization of the other, since this condition was tested
previously (Line b7). Eventually, if a new activity has instead to be created,
we try to abstract m1 and m2 by using either an Isa relationship (Line b11)
or a PartOf relationship (Lines b12).

4.4 An example Scenario (contd.)

Consider again the schema decomposition shown in Figure 3. Then, algorithm
BuildTaxonomy starts generalizing from the leafs, thus first processing the
schemas W3, shown in Figure 3.(c), and W4, shown in Figure 3.(d), associated
with v3 and v4, respectively.

The result of this generalization is the schema W 1 shown in Figure 3.(e),
which is obtained by first merging all the activities and flow links contained
in either W3 or W4, and by then performing a series of abstractions steps over
all non-shared activities, namely o, d and p. The basic idea of the abstraction
process is to iteratively aggregate pairs of activities into complex activities,
yet trying to minimize the number of spurious flow links that their merging
introduces between the remaining activities, and yet considering their mutual
similarity w.r.t. the content of the abstraction dictionary.

In particular, when deriving the schema W 1, only the activities d and p are
aggregated again into the complex activity x1, created previously, as it actually
contains both of them; consequently, d and p are replaced with x1 in the
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schema. The schema W 1 is then merged with the schema W2 associated with
v2, and a new generalized schema, shown in Figure 3.(f), is derived for the
root v0. In fact, when abstracting activities coming from W2, d and p are
aggregated together, again into the complex activity x1. Furthermore, the
activities e and f are aggregated into the complex activity x2, while m and o
are aggregated into x3. As a consequence, the pairs (e, x2), (f, x2), (m,x3) and
(o, x3) are inserted in the PartOf relation.

5 A System for Discovering Expressive Process Models

The whole approach discussed in the paper has been implemented in Java and
integrated as a mining plugin in the process mining framework ProM [47].
This framework is quite popular in the Process Mining research community,
and provides a platform for effectively developing algorithms for mining and
analyzing process log data. In this section, we first discuss the conceptual ar-
chitecture of our plugin and its implementation in ProM, and then we illustrate
its application on our running example.

5.1 System Architecture and Integration in ProM

The ProM framework has been developed as a completely plug-able environ-
ment. An important feature of ProM is that it provides various components
for implementing several basic functionalities (e.g., loading log files, setting
mining parameters, visualizing mining results), as well as data structures for
representing workflow schemas and intermediate results. The framework can
be extended by adding five different kinds of plugins:

◦ Import plugin, for implementing “open” functions for external data, e.g.,
loading instance-EPCs from ARIS PPM;

◦ Export plugin, for developing “save as” functions for some objects, e.g.,
saving a workflow model as an EPC, or Petri net, or AND/OR graph, etc.;

◦ Mining plugin, for implementing mining algorithms;
◦ Analysis plugin, for implementing analysis functions on either log data or

mining results;
◦ Conversion plugin, for enabling conversions between different data formats,

e.g., from EPCs to Petri nets.

All the algorithms presented in Section 3 and Section 4 have been embedded in
the AWS (Abstraction Workflow Schema) plugin, which is loaded dynamically
at the start up of the framework. Figure 6 shows the conceptual architecture
of the implementation, where colored modules are components made available
by ProM. For instance, the plugin exploits the Log filter component of ProM,
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Fig. 6. Conceptual architecture of the AWS plugin.

which allows to load an MXML file (i.e., a process log in an XML-based
format) in the framework and to make it available for data processing.

For the sake of clarity and conciseness, the major functional elements in AWS
are labelled with the names of the algorithms and procedures previously pre-
sented in the paper. Notably, different repositories are exploited to specifically
manage the main kinds of information involved in the process mining task:
log data, schema taxonomies, and abstraction relationships. By the way, one
further, “internal”, repository is used to maintain and share data on the trace
clusters produced by the clustering algorithm and the schemas generated dur-
ing both the mining phase and the restructuring one.

By reflecting the nature of our approach, the plugin works in two phases: first,
a schema decomposition is computed by means of the HierarchyDiscovery

module implementing the hierarchical clustering algorithm. Then, in the sec-
ond phase, the mined model is visited in a bottom-up way, and it is restruc-
tured at several levels of abstraction, by means of the BuildTaxonomy module.
The results are made accessible to other plugins through the standard Result
Frame component, while they are presented to the user by exploiting the Vi-
sualization Engine component of ProM.

Note that the submodule Partition-FB has been realized by exploiting some
of the components in the “DWS analysis” plugin available in ProM, which
allows to cluster a given set of traces, based on a special kind of sequential
patterns (used as features for the clustering)—in accordance with the approach
proposed in [19]. In fact, besides the desired number of clusters, this plugin
must receive two parameters, named σDWS and γDWS, which both range in
the real interval [0, 1]. Roughly speaking, σDWS is a lower threshold for the
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Fig. 7. Input panel of AWS plugin.

frequency of the patterns, while γDWS is an upper threshold for their degree
“expectedness” w.r.t. the current workflow model (the lower is γDWS the more
unexpected must be the pattern). In the current implementation of AWS both
these thresholds are chosen in an automated way, so freeing the user of such an
uneasy task. In more detail, while always fixing σDWS = 0.05, AWS first tries
to make DWS use highly unexpected patterns for the clustering, by setting
γDWS = 0.01; if no patterns are found, DWS is launched with γDWS = 0.8. In
any case, arbitrary values can be set by interleaving DWS and AWS.

Finally, we note that within the architecture of ProM different process mining
algorithms could be exploited to implement the submodule MineWFSchema.
By default, we use the ProM HeuristicMiner plugin for this purpose, which is
basically an implementation of the approach discussed in [48,13].

5.2 The system in action

We next illustrate the application of the AWS plugin on a sample log gen-
erated for the process Order Management depicted in Figure 1, which we
have been using as running example throughout the paper. As shown in
Figure 7, three groups of parameters have to be specified in the input
panel of the plugin, which conceptually correspond to the functional mod-
ules HierarchyDiscovery, BuildTaxonomy, and MineWFSchema.
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Fig. 8. Browsing the hierarchy: details on the non-leaf schema w.1.

In the upper part of the input panel, the user can set the parameters needed by
the BuildTaxonomy module: the Similar activities threshold (corresponding to
parameter ρ in the getBestAbstraction procedure of Figure 5), expressing
the minimal score necessary for merging together a pair of activities, and the
Score threshold (corresponding to parameter ρS in Figure 5), which influences
the kind of abstraction relationship used to abstract activities. Moreover, the
Tree/Single view options allow the user to choose whether either the whole
hierarchy of schemas or simply its root shall be shown. The second set of
parameters (in the middle part of the input panel) are those required by the
HierarchyDiscovery module, i.e.: the lower threshold γ and the two upper
bounds maxSize and k. Finally, the last section of the panel concerns the
parameters required by the algorithm used for mining each single workflow
schema in the hierarchy (i.e., the functional module MineWFSchema). In fact,
in the bottom of the input panel we can see the parameters of the Heuristic
Miner algorithm.

In Figure 8, we report the results obtained by applying AWS plugin when Simi-
lar activities threshold=0.3, Score threshold=0.5, Tree View button is checked,
One dictionary for each abstract schema button is checked. As we expected,
the algorithm generates a schema taxonomy where the non-leaf schemas w.0
and w.1 are abstract schemas. Notice that when selecting any node in the
hierarchy (shown in the right corner of the panel), the associated schema is
visualized in the central part of the panel (in the figure, this is the case of
node w.1). Finally, we note that in the bottom of the panel, the Abstraction
Dictionary is made available to the user.
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6 Experimental results

This section is meant to illustrate a thorough experimentation work we have
conducted over different process logs to assess the effectiveness of our approach
with regard to both the clustering scheme and the abstraction mechanisms. In
particular, we shall describe: (i) the application of the approach to a simple
benchmark log, in order to provide some further intuition on the whole ab-
straction mechanism; (ii) the result of tests aimed at assessing the quality of
the clustering scheme; and, (iii) a concrete case study concerning a maritime
freight harbor, providing some hints of the benefits that the combined usage
of hierarchical clustering and abstraction mechanisms could yield in real-life
application contexts.

6.1 Qualitative analysis on a benchmark log

In order to give some further intuition on the behavior of our approach,
we considered one of the example log files (namely, ExamplesOntologies-
SAMXML.mxml) that accompany the current version (4.2) of the ProM frame-
work. This log consists of 500 traces and regards a process for the repairing
of phone devices, which appears as a running example in a tutorial of ProM
(available at is.tm.tue.nl/~cgunther/dev/prom/PromTutorial.pdf), and
which is referred to as PhoneRepair hereinafter. In short, the process starts
by registering a phone device (activity Register), which was sent by some
customer. As soon as it is identified which sort of defect affects the phone
(through the activity Analyze Defect), a letter is sent to the customer (task
Inform User), while the device is sent to the Repair department. Actually, two
kinds of repair activities can be performed based on the severity of the defect
that has to be fixed, which are indeed named Repair (Simple) and Repair

(Complex). Every time a repair employee finishes working on a phone, this
latter is sent to the QA department, in order to check whether the defect has
really been fixed (activity Test Repair). If the phone is now working well, the
case is archived and the phone is returned to the customer (activity Archive

Repair); otherwise, the phone is sent again to the Repair department (activity
Restart Repair).

Figure 9 reports the workflow schemas that were mined out of these log traces
when using two classical process mining techniques, which are available as
mining plugins in the ProM framework: HeuristicMiner, which essentially im-
plements the approach introduced in [48,13], and α++, which implements the
approach in [49].

We then launched the AWS plugin described in Section 5, which implements
our approach by using the HeuristicMiner for mining the workflow schema of
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Fig. 9. Workflow schemas discovered for process PhoneRepair with the algorithms
HeuristicMiner (left) and α++ (right).

each single cluster. As for the parameters of AWS, we required a single split
of the log into at most 3 clusters, and set both abstraction thresholds (i.e., ρ
and ρs) to their default value.

Figure 10 shows a screenshot of AWS, where the whole clustering hierarchy is
sketched in the leftmost panel. The workflow schemas discovered for the leaves
of the hierarchy, reported in Figure 11, evidence three main usage scenarios
for the process, which are featured by the traces in the input log: in 125 cases,
the defect was fixed by just one simple repair (schema T.0); in 232 cases, the
defect was fixed by just one complex repair (schema T.1); and, in 143 cases,
after trying to perform a simple repair, some further repairs (either complex
or simple) were necessary to fix the problem.

In addition to offering a way to classify the executions registered in the log un-
der analysis, the three schemas described above collectively provide a sounder
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Fig. 10. Results obtained with the AWS plugin on the PhoneRepair process.

representation than the flat (single schema) models discovered with the algo-
rithms HeuristicMiner and α++. Indeed, it can be verified—e.g., with the help
of the LTL Checker analysis plugin available in ProM—that the task Repair

(Simple) does not occur in any of the traces where Repair (Complex) ap-
pears as the first repair action, despite this behavior is well allowed by the
workflow schemas in Figure 9. Actually, this interesting result comes at the
cost of some marginal decrease in the completeness of the discovered process
model. In fact, the schemas of Figure 11 fail to model 22 log traces where,
indeed, multiple repair actions occur with a complex one as the first of them.

(a)

(b)

(c)

Fig. 11. Workflow schemas discovered by AWS for the leaf nodes T.0 (a), T.1 (b)
and T.2 (c) of Figure 10.
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In any case, if completeness is a major issue, then we could perform some
finer clustering of the log, or mine each cluster schema with an algorithm dif-
ferent than HeuristicMiner, or simply use some different parameters setting
for this latter—further analysis in such a direction is omitted for the sake of
presentation.

The workflow schema that is derived by abstracting T.0, T.1 and T.2 is
again shown in Figure 10. Notably, the activities Repair (Complex), Repair
(Simple) and Restart Repair, which do not appear in all of the leaf schemas,
have been replaced with a new activity, named ABS0, abstracting them all. In
fact, the abstraction dictionary computed by the AWS plugin contains an IS-
A link between each of these three activities and ABS0, as it is shown at the
bottom of the screenshot in Figure 10.

6.2 Conformance analysis on different benchmark logs

We next discuss some experiments we carried out to evaluate the effectiveness
of our clustering-based process mining approach (sketched in Figure 2). Exper-
iments have been performed on 10 log files, provided as benchmark datasets in
the ProM framework and which have actually been used in the literature for
the evaluation of other process mining approaches. These logs were generated
synthetically, by considering different kinds of behavior, ranging from basic
routing constructs, such as sequence, choice, parallel execution, and loop, to
more complex ones, such as non-free-choice and invisible tasks.

In order to compare our approach with a few well-known process mining tech-
niques, we took advantage of the following ProM plugins:

• HeuristicMiner, substantially implementing the technique described in [48],
• α++, which implements the technique in [49], and
• GeneticMiner, implementing the approach in [14].

The two former techniques have also been used within our hierarchical cluster-
ing scheme as two different implementations for the procedure MineWorkflow,
devoted to build a workflow for each discovered cluster. As a matter of fact,
due to the expensive computation performed by the GeneticMiner, we did not
explore the integration of this latter algorithm within our iterative clustering
scheme, as this solution risks being inefficient in many real-world applications.
Hence, two different configurations for our approach will be considered in the
remainder of this subsection:

• AWS-HN, where MineWorkflow is implemented with HeuristicMiner, and
• AWS-α++, where MineWorkflow is instantiated with α++.

As discussed in Section 2, in order to evaluate the effectiveness of any process
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mining technique, some quality measure is needed to express the capability
of the discovered model to accurately capture the behavior recorded in the
log, yet avoiding to introduce an excessive number of features and execution
paths. In actual fact, different validation approaches have been proposed in the
literature for this purpose, although none of them is a standard. Interestingly,
the ProM plugin ConformanceChecker provides a shared basis to evaluate the
conformance of a process model w.r.t. the log it was discovered from, on the
condition that the model is represented as a Petri net 3 . In particular, we
considered three conformance measures (ranging, as usual, in [0..1]) available
with the ConformanceChecker plugin:

• Fitness, a sort of completeness measure defined in [34], which evaluates
the compliance of the log traces with respect to a given process model.
Roughly speaking, this measure considers the number of mismatches that
occur when performing a non-blocking replay of all the log traces through
the model (i.e., the tokens that must be created artificially, as well as those
left unconsumed): the more the mismatches the lower the measure. In a
sense, it quantifies the ability of the model to parse all the traces in the log.

• Simple behavioral appropriateness (shortly denoted by SB-Precision here-
inafter), a precision measure defined in [34], which aims at estimating the
amount of the “extra behavior” allowed by the model, with respect to that
actually registered in the log: the more extra behavior, the lower the preci-
sion of the model. To this purpose, the possible behavior admitted by the
model is quantified according to the average number of transitions that are
enabled during a replay of the log—indeed, an increase in this number hints
some higher degree of choice and parallelism.

• Advanced Behavioral Appropriateness (shortly referred to as AB-Precision
henceforth), which is still a precision measure defined in [34] to express the
amount of model flexibility (i.e., alternative or parallel behavior) that was
not exploited to produce the real executions registered in the log. Notably,
this measure is normalized by the so-called degree of model flexibility—which
is 0 when just one particular sequence of the activities is admitted, and 1
when every possible sequencing of them is allowed—, estimated via a state
space analysis of the model.

The above measures, being defined for a single workflow schema, cannot be di-
rectly applied over the tree-schemas mined with our approach. In this regard,
we first remark that any conformance analysis has to be restricted to the leaf
schemas only, since any other schema just offers some compact and approxi-
mated view over heterogeneous process instances. Moreover, in order to easy
the comparison with classical process mining techniques, for each conformance

3 A practical way to extend such a conformance test to other kinds of models (such
as, e.g., the Heuristics nets returned by HeuristicMiner) is to exploit the conversion
plugin available in ProM to translate such models into Petri nets.
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measure, we report a single overall score for an entire schema decomposition,
by averaging the values computed for all the leaf schemas. In more detail, the
conformance values of these latter schemas are added up in a weighted way,
where the weight of each schema is the fraction of original log traces that
constitutes the cluster it was mined from.

Fig. 12. Results on benchmark logs: behavioral appropriateness.

Figure 12 illustrates the precision of the models discovered with the tech-
niques mentioned above, for each benchmark log. Note that, our clustering-
based approach achieves outstanding results w.r.t. both precision metrics, al-
most independently of which basic technique is used to mine the workflow
schema of each cluster. A finer grain analysis of the SB-precision measure,
indicates that, as already noticed in the literature, both GeneticMiner and
α++ work better than HeuristicMiner over logs following non-local (non-free
choice) constraints, such as a6nfc, Drivers licence, herbstFig6p36. Moreover,
our methods outperform classical ones and, in particular, the best results are
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Fig. 13. Results on benchmark logs: fitness.

achieved when our clustering scheme is combined with HeuristicMiner (i.e.,
when the AWS-HN method is used). As for the AB-precision metric instead,
it is worth noticing the impressive performance of the α++ algorithm, which
actually reaches a maximal score (i.e., 1) against all the logs. By contrast,
the other classical techniques seem to go worse with a number of logs. In-
terestingly enough, our approach succeeds in ensuring excellent results not
only when it encompasses the α++ algorithm—in this case, in fact, it keeps
achieving maximal precision—, but also when the cluster schemas are mined
with HeuristicMiner.

In Figure 13 we reported result for the fitness measure. Note that very good
results are obtained by α++ and by Genetic miner. In fact, this latter method
seems to get nearly optimal results over all the logs but a7, which actually
contains parallel branches. Very good results are obtained as well by both
implementations of our approach, which always outperform their respective
basic versions. In particular, the method AWS-α++ achieve optimal fitness
against all the logs.

As a general remark, we may observe that over each possible conformance
measure, both α++ and HeuristicMiner tend to receive substantial benefits
by their integration within our clustering scheme. This effect is emphasized in
Figure 14, which reports the increase (in percent) in the value of the three con-
formance measures that is achieved when passing from either α++ or Heuris-
ticMiner to the respective clustering-enhanced version (i.e., AWS-HN and
AWS-α++, respectively). It is quite remarkable the behavior of HeuristicMiner,
which suffers considerably when applied to logs involving complex routing
constructs and non-local task dependencies (e.g., the log files a6nfc, herbst-
Fig6p36, DriversLicence). Such deficiency, indeed, seems to be well overcome
when the same algorithm is combined with our approach (i.e., in the case
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(a) Algorithm HeuristicMiner

(b) Algorithm α++

Fig. 14. Improvement of two classical process mining algorithms when integrated in
our clustering scheme.

of method AWS-HN ). This proves that more complete and precise process
models can often be discovered with our approach, where different execution
scenarios are modeled separately, and where some suitable kind of behavioral
patterns, capable of capturing complex task relationships, are exploited to
cluster the log traces. As for α++, an appreciable improvement can still be
observed for the SB-Precision; on the other hand, the other two measures do
not receive any substantial increase, if we exclude the only case of the fitness
value obtained on the log a10Skip. This fact is not so surprising, seeing that
the basic version of algorithm α++ already reached an optimal performance
for both these measures.
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Fig. 15. Results on benchmark logs: sensitivity to noise.

Finally, a further series of tests were carried out to evaluate the impact of noise
on the results obtained by the default instantiation of our approach (namely,
method AWS-HN ). Figure 15 refers to one of these experiments, where the
benchmark log afnc 4 was randomly perturbed by adding different kinds of
noise to a number of traces (i.e., missing head/body/tail, deletion of a task,
swap between two tasks). More precisely, the figure reports the conformance
measures obtained by the method AWS-HN on the original log (0% noise), as
well as on three perturbed versions of it, containing 5% to 15% noisy traces.
The figure allows to appreciate that, even in presence of some notable amount
of noise in the input log, our approach manages to achieve very good results
with all the conformance measures.

6.3 Experiments on real data

In order to assess the validity of the approach in practical application contexts,
we applied it on some real log data coming from an important Italian harbor
(Gioia Tauro) acting as a maritime freight hub.

The application scenario. The operational systems used in the harbor
continually support and register several logistic activities for each container
that passes through the port (about 4 millions of containers per year). Con-
tainers reach and leave the port either by ground or by sea. In our analysis,
we shall deal with the handling of containers which arrive and depart by ship
(“transhipment” flows), and focus on the different kinds of moves they undergo

4 An analogous behavior was experienced with the other benchmark logs, but we
omit further details for simplicity of presentation.
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over the “yard”, i.e., the main area used in the harbor for storage purposes,
which measures about 800, 000 square meters.

The yard is logically partitioned into a finite number of bi-dimensional slots,
which constitute the unitary amounts of yard space that can be used for the
storage of containers. Slots are grouped in a fixed number of blocks, which are,
in their turn, organized in sectors. Conventionally, the name of a sector, say A,
is a prefix of the name of any block contained in it, e.g., A 1, and A 2. Moreover,
inside most yard sectors, multiple containers can be stocked in a single slot, by
piling them up, one on top of another. Therefore, a vertical coordinate, named
layer, is introduced to univocally identify any distinct storage position.

In a sense, containers are the atomic subject of the logistic processes in the hub
system. The container life cycle can be summarized as follows. The container
is initially unloaded from the ship, with the help of a crane, and temporar-
ily stocked within a zone near to the dock. Then, it is carried to some slot
of the yard, which is chosen based on expectation information that concerns
both the ship on which it is going to embark and the boarding time. Dif-
ferent kinds of vehicles can be selected for carrying the container, which are
chosen mainly based on both the sector which must be reached and the dis-
tance to cover. These vehicles include, in particular, different kinds of cranes,
straddle-carriers (a vehicle capable of picking and carrying a container, by
possibly lifting it up), and multi-trailers (a sort of train-like vehicle that can
transport many containers). In particular, a yard crane is involved when the
final destination is too high to be be reached by the vehicle used for carrying
the container. Symmetrically, at boarding time, the container is first placed
in a yard area close to the dock, and then loaded on the cargo by means of
a (dock) crane. This basic life cycle may be extended with a number of ad-
ditional movements—classified as “house-keeping” in the jargon used in the
harbor—which are meant to let the container approach its final embark point,
or to leave room for other containers.

Most of the operations traced in the hub systems correspond to some move
performed on a container by a human operator, with the help of some suitable
harbor vehicle. As far as concern the experimental setting considered here, the
following basic operations can be applied to any container c:

• MOV, when c is moved from a yard position to another by a straddle carrier;
• DRB, when c is moved from a yard position to another by a multi-trailer;
• DRG, when a multi-trailer moves to get c;
• LOAD, when c is charged on a multi-trailer;
• DIS, when c is discharged off a multi-trailer;
• SHF, when c is moved upward or downward, possibly in order to switch its

position with another container;
• OUT, when c is embarked on the ship with a dock crane.
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The mission of the hub is to offer high quality of service to the navigation
lines, while reducing the overall cost of internal logistic processes. Critical
performance measures are the latency time elapsed when serving a ship (where,
typically, a number of containers are both discharged off and charged on),
and the overall costs of moving the containers around the yard. A key factor
impacting on both these measures is the number of “house-keeping” moves
that are applied to the containers. Minimizing these operations is a major goal
of the policies established to decide where to place a batch of containers which
are coming to the harbor, based on different features of the containers, such as
the kind of conveyed goods (possibly needing some refrigerating equipment),
their origin and their next destination. These decisions are eventually taken by
harbor managers with the help of sophisticated planning tools, which mainly
rely on some, necessarily simplified, model of the operational environment
as well as on the knowledge of future events (e.g., which ships are going to
take each container and when this is going to happen). Unfortunately this
information is often unavailable or even incorrect, while diverse types of delays
or malfunctioning are likely to occur.

The conspicuous level of complexity and unpredictability that affects the ap-
plication scenario described above calls for the introduction of techniques for
the ex-post analysis of yard operations, which could give some feedback for the
policies ruling the allocation of the yard space, and which could support both
tactic and strategic decision processes. In particular, the discovery of work-
flow models can be very beneficial in this context, in order to gain a compact
representation of the logistic processes captured in the log, by illustrating the
flows of work that were really carried out.

Application of the approach to the harbor logs. We selected a subset
of the historical data registered in the harbor systems, corresponding to the
logistic operations performed on all the containers that completed their entire
life cycle in the hub along the first two months of year 2006, and that were
exchanged with other ports around the Mediterranean sea—about 50Mb log
data pertaining 5336 containers. In order to apply our analysis approach, we
regarded those data according to a process-oriented perspective, by considering
the transit of any container through the hub as a single enactment case of the
(logistic) process under analysis.

Test (A): Our first experimentation was focused on extracting a model de-
scribing the life cycle of the containers, in terms of the basic logistic yard
operations mentioned above (i.e., MOV, DRB, DRG, LOAD, DIS, SHF, OUT). To this
aim, for each container, we built a distinct log trace recording the sequence of
operations that were applied to that container. In order to guarantee the exis-
tence of well specified start and end activities, we also introduced two dummy
activities to mark the beginning and the end of each log trace, denoted by
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Fig. 16. The schema hierarchy and abstraction relationships for the container life–
cycle: focus on the (abstract) root schema.

START and END, respectively.

Figure 16 is a screenshot of the AWS plugin, showing the schema taxonomy
discovered on these data, and the workflow schema associated with the root
node. This schema provides a high-level view over the logistic process, which
features only three of the original basic operations, namely MOV, SHF, and OUT,
in addition to the two dummy ones (i.e., START and END). In fact, the remain-
ing four operations have been abstracted into two higher-level activities, as it
is shown in the bottom of the figure, where the contents of the abstraction dic-
tionary are pictured. Note that the tool has grouped those operations related
to the movement of a multi-trailer (i.e., DRB and DRG), and those concerning
the action of charging/discharging a multi-trailer (i.e., LOAD and DIS).

The leaves of the taxonomy are illustrated in Figure 17, from which it emerges
the existence of two different behavioral scenarios. Essentially, the workflow
schema of node T.0 (see Figure 17.(a)) only models the cases that did not
involve any of the operations related to multi-trailer vehicles, which conversely
characterize the other leaf schema (see (Figure 17.(b)). Notably, the former
schema represents the most frequent way of handling containers, for it captures
4736 log traces out of the original 5336 ones. This is in line with a prominent
goal of yard allocation policies, which attempt to keep each container as near
as possible to its positions of disembarkation/embark, and to perform just a
few short movements by means of straddle-carriers.

Test (B): A second kind of experiments were conducted to gain some expres-
sive model for the flowing of containers through the yard, which could well
help in analyzing the usage of the different storage areas, as well as to de-
tect and explain overly intricate or long (and hence costly) moving patterns.
Different options exist for such a kind of analysis w.r.t. how to deal with the
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(a) Workflow schema for node T.0

(b) Workflow schema for node T.1

Fig. 17. Detailed workflow schemas discovered for the container life cycle.

granularity of yard positions.

Firstly, we considered the idea of capturing the passage of containers through
the different sectors of the yard. In this case, each log trace encodes the se-
quence of yard sectors occupied by a single container during its stay. Figure 18
shows three of the 5 leaf schemas discovered with the AWS tool from these
data, which describe quite different scenarios for the movement of containers.
In particular, the upmost schema (see Figure 18.(a)) give some insight on the
path followed by a group of containers that incurred into exceptional events,
as it is witnessed by the label PROBL2, actually referring to an area devoted
to special checking activities. Another important usage case is captured by
the schema in Figure 18.(b), evidencing the stationing of containers over two
distinct sectors, namely GWD and A, with a rather high frequency of shifts
within the first of them. Indeed, this evidences a rather ineffective, and yet
not so sporadic, pattern for the handling of containers. Similar considerations
apply to the schema in Figure 18.(c), which models a subset of handling cases,
where the storage of containers substantially hinged on the usage of sectors
A-NWB and A-NEW, which are quite close to each other. In particular, an inter-
esting moving pattern is revealed, indeed, for the containers passed through
sector A-NWB: in most cases a number of house-keeping moves were made in-
side that sector, while a quota of containers were even dispaced to further
sectors (namely, D-NEW, A, B). Further analysis performed on all the 5 clus-
ters, with the help of classical data mining techniques, has allowed to discover
that some of them are correlated with the occurrence of critical environmen-
tal conditions, as well as with differences in the modus operandi of some yard
managers. In this way, in addition to support the analysis and tuning of the
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(a)

(b)

(c)

Fig. 18. Transit of containers through the yard blocks: detailed workflow schemas
for three discovered clusters.

yard allocation policies, the approach contributed to foster the elicitation of
some know-how, which was not yet encoded explicitly in the process models
used at the harbor.

Test (C): In our final experimentation, in order to provide an idea of the
practical advantages that can come from enhancing a process mining approach
with abstraction mechanisms, we looked at the paths of containers over the
yard, but at the level of the (nearly 100) blocks forming the yard space.

By applying the AWS plugin to these data with maxSize = 5, k = 3 and
γ = 0.8, we obtained a taxonomy of workflow schemas consisting of five nodes,
structured into three abstraction levels: the root T , two nodes T.0 and T.1, as
children of T , and two children of T.0, denoted as T.0 0 and T.0 1.

The workflow schemas discovered for the two latter levels are shown in Fig-
ure 19. Note that a neat difference in complexity exists between the schemas
T.0 1 and T.1 (shown in the Figures 19.(b) and 19.(c), respectively) on the
one hand, and the other leaf schema T.0 0 (shown in Figure 19.(a), and about
90 nodes) on the other hand. However, a more succinct representation has
been obtained for the higher level views: the schema of node T.0, shown in
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(a) T.0 0

(b) T.0 1

(c) T.1

(d) T.0

Fig. 19. Transit of containers through the yard blocks: three concrete workflow
schemas (a,b, and c) and an intermediate abstract view (d) over two of them.

Figure 19.(d), which consists of 37 nodes, and the root schema, reported in
Figure 20, where the number of nodes falls down to 32.

It is interesting to observe that the simplification in the description of high-
level schemas is not merely syntactical. Indeed, many of the activities that have
been abstracted together exhibit some sort of affinity, thereby evidencing that
the algorithm went beyond the structural properties. As an evidence for such
an outcome, we next report a few couples of activities (i.e., yard blocks in this
case) that were merged together by means of IS-A or PART-OF relationships:

• (004D,04D)—subsequently reckoned as two different names for the same
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Fig. 20. Transit of containers through the yard blocks: the most abstract schema.

block, due to a mispelling error;
• (REF01,REF5)—two blocks of the same sector, both equipped with refriger-

ating systems;
• (TR5,TRF5), (TR7,TRF7)—codes for multi-trailer vehicles registered as (mo-

bile) positions in the hub system;
• (45D,8D), (012D,12D), (A,A-2)—each of which is a couple of blocks belonging

to the same sector.

We note that, due to the high number of activity labels that come in this case
scenario, whatever flat representation of the container flows, which just con-
sisted of a single workflow schema, would have been rather cumbersome and
unsuitable for analysis purposes. By contrast, the taxonomies of schemas com-
puted with our approach have been proved to effectively enable an explorative
analysis of the available log data, by virtue of both the explicit separation of
distinct classes of behavior and to the compactness of higher-level schemas.

7 Related Work

Several process mining approaches have been proposed in the literature, and
many of them have been already integrated in the process mining framework
ProM [47]. Most of the differences among these proposals resides in the mod-
elling features that can be used to represent a workflow model and in the
specific algorithms used for discovering it. For example, in [2], processes are
intuitively represented through pure directed graphs, which allow to express
precedence relationships only, while disregarding richer control flow constructs,
such as concurrency, synchronization and choice. Many other proposals ex-
ploit, instead, more expressive languages, which sometimes enjoy deep formal
foundation for modelling and analyzing workflow processes, as in the case of
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Petri-nets, used, e.g., in [45,44,46].

In particular, in all these latter works, a special kind of Petri nets, named
Workflow nets (WF-net), is adopted for modelling a process, which, in addi-
tion to the basic routing constructs, can express additional constructs, such as
loops, deterministic choice, etc. The general problem of discovering a WF-net
workflow model is specifically analyzed in [46], where the concept of structured
workflow (SWF) net is introduced to capture a class of WF-nets that a process
mining algorithm should be able to rediscover. Here an algorithm, named α,
is presented which can rediscover an SWS net out of a log, provided that the
log is guaranteed to enjoy some well-specified properties. The α algorithm was
extended in [13] with some preprocessing and postprocessing strategies that
make it capable to discover short loops. Moreover in [49] it is devised an ex-
tension of the algorithm that can explicitly capture non-free-choice constructs,
which are a form of implicit dependencies between the process tasks.

In [48] a heuristic approach is presented that exploits simple metrics con-
cerning task dependency and task frequency, in order to eventually produce
a graph-based process model, called “dependency/frequency graph”. Notably,
the approach is meant to cope with the presence of noise in the logs.

A different approach to mining a process model from event logs is described
in [35], where a mining tool is presented that can discover hierarchically struc-
tured workflow processes. Such a model corresponds to an expression tree,
where the leafs represent tasks (operands) while any other node is associated
with a control flow operator. In this context, the mining algorithm mainly
consists of suitable term rewriting systems.

Yet another approach is adopted in [23,24], where a subset of the ADONIS
definition language [26] is used to represent a block-structured workflow model.
The peculiarity of the approach mainly resides in its capability of recognizing
duplicate tasks in the control flow graph, i.e., many nodes associated with
the same task. The algorithm proposed there, named “InWoLvE”, solves the
process mining problem in two steps: an induction step, where a stochastic
activity graph (SAG) is extracted out of the input log, and a transformation
step, where the SAG is transformed into a block-structured workflow-model.
Recently, some extensions to this approach have been proposed in [20], in
an interactive setting, where the analyst can iteratively refine the process
mining results by evaluating the mined models and varying the parameters
of the mining tool. After discussing a number of issues involved in interactive
process mining, the authors of [20] introduce some techniques supporting such
a setting, which primarily include a validation procedure for checking the
(preliminary) mined model, and a structured layout algorithm that is stable
against small changes of the mined model.

The problem of discovering a process model from execution logs is also con-
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sidered in [8], as a special case of the Maximal Overlap Sets problem in graph
matching. The paradigm of planning and scheduling by resource management
is used there in order to devise an efficient approach tackling the combinatorial
complexity of the problem.

The approach proposed in [14] tries to overcome the difficulty encountered by
previous process mining techniques when dealing with non-trivial routing con-
structs and noisy data, by resorting to the use of genetic algorithms. Indeed,
this kind of algorithm offers a way to discover non-trivial constructs, mainly
due to the global search they perform over candidate process models.

A similar motivation inspired the work in [19], where a process mining algo-
rithm is proposed that can account for the identification of different variants
of the process at hand. The technique mainly founds on clustering log traces
according to structural patterns, and eventually produce a different, specific,
workflow schema for each of the discovered process variants. The technique
proposed in this paper shares with the one presented in [19] the basic idea of
explicitly recognizing different use cases of a process by means of a clustering
process. However, three main points make different our approach from the
one in [19]: (i) the core, clustering-based, mining algorithm is made able to
compute a hierarchy of workflow schemas, rather than just a flat collection of
workflow schemas, (ii) the algorithm is extended to accommodates the use of
any arbitrary process mining technique for equipping each node with a model,
and (iii) the clustering is integrated with an abstraction-based restructuring
method that allows to eventually produce a taxonomy of process models that
represent an articulated view of the process, at different abstraction levels. As
a matter of facts, the latter feature makes our approach neatly different from
any other process mining approach as well.

Taxonomical structures are widely recognized as a valuable tool for eliciting,
consolidating and sharing relevant knowledge in disparate application con-
texts, which can profitably support a variety of tasks (see, e.g., [39,40,1,12,50]
for some works on this topic). However, defining a taxonomy and, more gen-
erally, an ontology is quite a difficult and time-consuming task, especially
when it is intended to capture the structure of a rich and complex application
domain. Therefore, some efforts have been spent to facilitate this task, by de-
veloping automatic techniques supporting the extraction of abstract concepts
(see, e.g., [11] for the case of tendering systems in an e-commmerce scenario).

The possibility of defining taxonomies for business processes was first consid-
ered in [30], where a repository of process descriptions is envisaged to support
both design and sharing of process models. Several frameworks for precisely
defining a specialization/generalization of a process model, according to some
suitable behavioral semantics, have been proposed for different modelling for-
malisms, such as, e.g., Object Behavior Diagrams [38], UML diagrams [37],
process-algebra specifications and Petri-nets [6,43], DataFlow diagrams [27].
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On the other side, a large body of work was done with regards the transforma-
tion of various kinds of schemata by means of abstraction techniques, in order
to reduce their complexity. In particular, the definition of aggregated view
over a given workflow schema is examined, e.g., in [7,29]. In particular, in the
latter work a technique for deriving such a view is defined that automatically
aggregates real activities into “virtual” ones, yet guaranteeing that all original
ordering relationships among the activities are preserved.

However, we pinpoint that no substantial human intervention is required by
our technique for generalizing process schemata, differently from [7] and [29],
where the user is in charge of selecting which activities should be abstracted.
In fact, the main distinguishing feature of our approach is the combination of
mining and abstraction methods for automatically produce a hierarchical pro-
cess model, which satisfactorily captures the behavior of the process at hand,
without any pretension of being an executable workflow. Indeed, very few ef-
forts have been paid to support some kinds of abstraction (e.g., techniques
in [10,48,22] are able to produce models that focus on the main behavior as
reported in the log, by properly dealing with noise).

As a final remark, we notice that, in our context, abstraction is exploited to
make more compact the schemata at higher levels of the hierarchy, which are
essentially meant as synthesized views over the whole process, or over some of
its variants. Therefore, we do tolerate the introduction of some approximation
in the control flow relationships, especially as concerns those involving ab-
stracted activities, differently from [29] and other formal methods for dealing
with process specializations [37,38,6,43,27].

8 Conclusions

We have proposed an automatic process mining approach that is meant to
discover a taxonomical model representing the analyzed process through dif-
ferent views, at different abstraction levels. The approach consists of several
mining and abstraction techniques, which are exploited in an integrated way.
In particular, a preliminary schema decomposition, accurately modelling the
process at hand, is first discovered by using a divisive clustering algorithm; the
schema is then restructured into a taxonomy, by equipping each non-leaf node
with an abstract schema that generalizes all the different schemas in the cor-
responding subtree. The approach has been encoded in a series of algorithms,
which have been implemented as a plugin for the ProM framework.

A number of issues are still open and can be subject of future work. First, the
recognition of activities to be abstracted together, which currently relies on
simple matching functions, could benefit from the availability of background
knowledge on the semantics of activities, possibly extracted from a given the-
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saurus or a process ontology. Moreover, we think that the discovered process
taxonomy can profitably be exploited to analyzing relevant measures, such as
usage statistics and performance metrics, along the different usage scenarios
of the process at hand. Specifically, by using a taxonomy as an aggregation
hierarchy for multi-dimensional OLAP analysis, it is possible to enable the
user to interactively evaluate such measures over different groups of process
instances. Analogously, abstract activities and their associated abstraction re-
lationships produced during the abstraction process can be a basis for defining
aggregation hierarchies. Notably, the extension of the proposed approach with
OLAP features can be a valuable tool in an interactive process mining set-
ting, like the one considered in [20], since it can effectively support the user in
evaluating the discovered process models, as well as in tuning the parameters
in subsequent mining sessions. On the other hand, the discovered taxonomies
can be exploited as a basis for further knowledge discovery tasks, such as the
mining of generalized association rules between, e.g., the users or the resources
involved in the workflow process under analysis; in particular, we believe that
the application of techniques allowing for multiple support thresholds (such as,
e.g., [39]) can effectively help recognizing interesting deviations or exceptions
in the enactments of the process.

Finally, we are planning to make the approach parametric w.r.t. the algo-
rithm used for recursively partitioning the input log, in the first phase of
the approach, by possibly reusing the different clustering methods that have
recently been integrated in the ProM framework.
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A Computational Issues on Algorithm BuildTaxonomy

Lemma 12 Let n be the number of (basic) activities, and m be an up-
per bound to the number of activities that must be abstracted by procedure
getBestAbstraction (i.e., the size of the set S it takes in input). Then, ev-
ery computation of procedure getBestAbstraction during the restructuring
of a process hierarchy for P requires O(m2 × n× log(n)) time.

Proof First, we note that for any workflow schema produced in our approach
(in both the mining and the restructuring phases), the number of activities
is always O(n). The same upper bound applies to the size the relation Isa,
since it encodes a number of trees, whose leaves correspond to the (basic)
activities of P , and each of these activities may appear in one tree at most
(i.e., it cannot have more than one parents).

Let us now examine the computation of all the functions defined in Section 4.1
and Section 4.2 that are used in the procedure getBestAbstraction. Notice
that, even though not explicitly specified in Figure 5, we here assume that
function implD is kept materialized and that suitable indexing structures are
employed for directly (i.e., in constant time) retrieving the “children” and
“fathers” of each activity according to either Isa or PartOf , as well as its
(basic) implied activities. As a matter of facts, we can compute the values
of function implD incrementally, by first assigning (at the starting of algo-
rithm BuildTaxonomy) an empty set to each activity in the schema—which
actually contains basic activities only, while the abstraction dictionary is still
empty. Each time two activities m1 and m2 are merged into an activity p
in the procedure AbstractActivities, it is possible to update only the im-
plied activities of p (which might actually coincide with m1 or m2) as follows:
implD(p) := implD(m1) ∪ implD(m1) ∪ {m1} ∪ {m2}. Since each of
these sets can consists of n (basic) activities at most, O(n) time is enough to
perform the above computation, assuming that all of them are kept ordered.
Function msgD can be evaluated in O(n), as it substantially requires a visit
over the tree associated with the Isa relation, whose size is O(n) indeed. A
similar fact holds for the similarity function simD

G, which essentially performs
a bottom-up scan over Isa links. Conversely, the main computational burden
involved in the evaluation of function simD, on two given activities a and b,
arises from computing the intersection (actually involved in coefficient β) be-
tween the sets of activities implied by a and b, respectively. Since both these
sets contain at most n elements, and they are not ensured to be ordered, this
computation can be done in O(n× log(n)). Similar considerations apply to the
case of function simE, which again involves to perform intersection-based pair-
wise comparisons over a (fixed) number of sets (namely, PE

a , PE
b , SE

a , SE
b ).

Since the size of any of these sets is O(n), the computation of simE takes
O(n × log(n)). Finally, by putting all the above results together, we observe
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that the computation of function score (Line b1 in Figure 5) for two activities
can be done in O(n× log(n)).

In order to compute the overall similarity score for all pairs of activities in the
set S (taken as input by getBestAbstraction, and containing m elements at
most), O(m2×n× log(n)) steps are needed. In fact, this is also the complexity
of the whole procedure, since all the remaining operations can be done in
at most O(n × log(n)). Indeed, as discussed above, this time is sufficient to
evaluate all the functions used there (cf. Lines b7-b11, in Figure 5), as well as
to verify whether the activities implied by one activity are a subset of those
implied the other one (cf. Lines b9-b10, in the same figure). 2

Lemma 13 Let n be the number of (basic) activities, and m be an up-
per bound to the number of activities that must be abstracted by procedure
AbstractActivities (i.e., the size of the set S it takes in input). Then,
abstractActivities requires O(m3 × n× log(n)) time.

Proof The initial number of activities to be abstracted is O(m), and progres-
sively decrease at least by 1 at every step of the main loop – indeed, as long as
getBestAbstraction returns a not null pair of activities, the set ActuallyAb-
stracted contains at least one of them (see Figure 5). At each step, the most
expensive computation consists in evaluating function getBestAbstraction,
which takes O(m2 × n × log(n)) (see Lemma 12), since both procedures
deriveConstraints and arrangeEdges only requires O(n) time. As the total
number of steps performed in procedure abstractActivities is O(m), the
total complexity of the procedure is O(m3 × n× log(n)). 2

Theorem 14 Let H be a schema decomposition involving n (basic) activ-
ities. Let w be the number of schemas in H and k be its splitting factor,
i.e., the maximum number of children for each non-leaf schema in H. Fur-
thermore, let m be an upper bound to the number of activities that must be
abstracted in every computation of procedure AbstractActivities. Then, al-
gorithm BuildTaxonomy on H correctly produces a taxonomy in O(w × k ×
(n2 + m3 × log(n)) steps.

Proof The main cost for computing the output taxonomy arises from ap-
plying procedure generalizeSchemas to all non-leaf nodes in the hierar-
chy H, which obviously are O(w). On the other hand, O(k × n2) time is
enough for performing all the operations in generalizeSchemas but the
k + 1 calls to procedure abstractActivities. Therefore, based on the re-
sults of Lemma 13, the total cost of generalizeSchemas is O(k × (n2 +
m3 × log(n))), and hence the overall cost of algorithm BuildTaxonomy is
O(w × k × (n2 + m3 × log(n)). Finally, the correctness of BuildTaxonomy

follows since, by definition of the procedure abstractActivities, each in-
vocation of generalizeSchemas(ChildSchemas,D) (cf. Line 5 in Figure 4)
returns a workflow schema which generalizes each of the workflows stored in
the set ChildSchemas. 2
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Remarks and Extensions. We leave the section by noticing that the run-
ning time of BuildTaxonomy (cf. Theorem 14) depends on parameters ex-
pressing the size of the schema hierarchy being restructured, and, primarily,
on the number of activities that compose the process under analysis. It is
worthwhile noticing that these parameters are (usually exponentially) lower
that the size of the process log taken as input by the mining phase. This is
especially true in the case of complex processes—like the ones our approach
has been devised for—typically exhibiting a number of execution paths that
is combinatorial on the number of activities. As a consequence, the applica-
tion of algorithm BuildTaxonomy is likely not to affect the total computation
time, which is rather mostly devoted for the preliminary mining of the schema
hierarchy.

Incidentally, a major source of inefficiency in algorithm BuildTaxonomy is the
way procedure getBestAbstraction decides the pair of activities to merge
together, as well as the kind of abstraction to apply. In fact, the approach
proposed above simply searches the pair of activities in S that achieves the
highest similarity value of the function score, among all the m2 pairs of such
activities (where m = |S|). Notably, each computation of this score takes
O(n × log(n)) time. For example, one can think of optimizing such a search
by resorting to efficient methods for the evaluation of similarity (self-)join
queries (quite an extensive survey on this topic can be found, e.g., in [51]),
which would enable us to retrieve pairs of similar enough activities in sub-
quadratic time (w.r.t. m). Actually, many of such approaches mainly rely on
the usage of indexing structures, conceived to store and retrieve objects based
on some proper features of them that influence the chosen similarity mea-
sure. It is particularly interesting to this concern the body of research work
done for the case of set-valued attributes (see, e.g., [16,5]), since all of the
similarity measures adopted in our approach can be estimated, in an approxi-
mated way, by computing set-based similarities (i.e., the coefficient β defined
in Section 4.2, a.k.a. Jaccard coefficient in the literature), over a proper set of
features (i.e., predecessors/successors function simE, sub-activities for simD,
and ancestors in the case of simG function 5 ). However, we believe that any
further detail on these issues is somewhat beyond the scope of the paper, since
any possible improvement gained through such a method will not significantly
impact on the performances of the entire approach to the discovery of process
taxonomy, in most practical cases, as discussed above.

5 simG(x, y) can be approximated roughly by comparing the sets {x}∪{q | q ↑D x}
and {y} ∪ {q | q ↑D y} through coefficient β(·, ·)
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