
Workow Mining:

A Survey of Issues and Approaches

W.M.P. van der Aalst1, B.F. van Dongen1, J. Herbst2, L. Maruster1, G.
Schimm3, and A.J.M.M. Weijters1

1 Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands. w.m.p.v.d.aalst@tm.tue.nl

2 DaimlerChrysler AG, Research & Technology, P.O. Box 2360, D-89013, Ulm,
Germany. joachim.j.herbst@daimlerchrysler.com

3 OFFIS, Escherweg 2, D-26121 Oldenburg, Germany. schimm@offis.de

Abstract. Many of today's information systems are driven by explicit
process models. Workow management systems, but also ERP, CRM,
SCM, and B2B, are con�gured on the basis of a workow model speci-
fying the order in which tasks need to be executed. Creating a workow
design is a complicated time-consuming process and typically there are
discrepancies between the actual workow processes and the processes
as perceived by the management. To support the design of workows, we
propose the use of workow mining. Starting point for workow mining
is a so-called \workow log" containing information about the workow
process as it is actually being executed. In this paper, we introduce the
concept of workow mining and present a common format for workow
logs. Then we discuss the most challenging problems and present some
of the workow mining approaches available today.

Key words: Workow mining, workow management, data mining, Petri nets.

1 Introduction

During the last decade workow management technology [2, 4, 21, 35, 41] has be-
come readily available. Workow management systems such as Sta�ware, IBM
MQSeries, COSA, etc. o�er generic modeling and enactment capabilities for
structured business processes. By making process de�nitions, i.e., models de-
scribing the life-cycle of a typical case (workow instance) in isolation, one can
con�gure these systems to support business processes. These process de�nitions
need to be executable and are typically graphical. Besides pure workowmanage-
ment systems many other software systems have adopted workow technology.
Consider for example ERP (Enterprise Resource Planning) systems such as SAP,
PeopleSoft, Baan and Oracle, CRM (Customer Relationship Management) soft-
ware, SCM (Supply Chain Management) systems, B2B (Business to Business)
applications, etc. which embed workow technology. Despite its promise, many
problems are encountered when applying workow technology. One of the prob-
lems is that these systems require a workow design, i.e., a designer has to

construct a detailed model accurately describing the routing of work. Modeling
a workow is far from trivial: It requires deep knowledge of the business process
at hand (i.e., lengthy discussions with the workers and management are needed)
and the workow language being used.

workflow
design

workflow
configuration

workflow
enactment

workflow
diagnosis

(2) workflow mining

(1) traditional approach

(3) Delta analysis

Fig. 1. The workow life-cycle is used to illustrate workow mining and Delta analysis
in relation to traditional workow design.

To compare workow mining with the traditional approach towards workow
design and enactment, consider the workow life cycle shown in Figure 1. The
workow life cycle consists of four phases: (A) workow design, (B) workow
con�guration, (C) workow enactment, and (D) workow diagnosis. In the tra-
ditional approach the design phase is used for constructing a workow model.
This is typically done by a business consultant and is driven by ideas of man-
agement on improving the business processes at hand. If the design is �nished,
the workow system (or any other system that is \process aware") is con�gured
as speci�ed in the design phase. In the con�guration phases one has to deal with
limitation and particularities of the workow management system being used
(cf. [5, 65]). In the enactment phase, cases (i.e., workow instances) are handled
by the workow system as speci�ed in the design phase and realized in the con-
�guration phase. Based on a running workow, it is possible to collect diagnostic
information which is analyzed in the diagnosis phase. The diagnosis phase can
again provide input for the design phase thus completing the workow life cycle.
In the traditional approach the focus is on the design and con�guration phases.

Less attention is paid to the enactment phase and few organizations system-
atically collect runtime data which is analyzed as input for redesign (i.e., the
diagnosis phase is typically missing).

The goal of workow mining is to reverse the process and collect data at
runtime to support workow design and analysis. Note that in most cases, prior
to the deployment of a workow system, the workow was already there. Also
note that in most information systems transactional data is registered (consider
for example the transaction logs of ERP systems like SAP). The information col-
lected at run-time can be used to derive a model explaining the events recorded.
Such a model can be used in both the diagnosis phase and the (re)design phase.

Modeling an existing process is inuenced by perceptions, e.g., models are
often normative in the sense that they state what \should" be done rather than
describing the actual process. As a result models tend to be rather subjective. A
more objective way of modeling is to use data related to the actual events that
took place. Note that workow mining is not biased by perceptions or normative
behavior. However, if people bypass the system doing things di�erently, the log
can still deviate from the actual work being done. Nevertheless, it is useful to
confront man-made models with models discovered through workow mining.

Closely monitoring the events taking place at runtime also enables Delta

analysis, i.e., detecting discrepancies between the design constructed in the de-
sign phase and the actual execution registered in the enactment phase. Workow
mining results in an \a posteriori" process model which can be compared with
the \a priori" model. Workow technology is moving into the direction of more
operational exibility to deal with workow evolution and workow exception
handling [2, 7, 10, 13, 20, 30, 39, 40, 64]. As a result workers can deviate from the
prespeci�ed workow design. Clearly one wants to monitor these deviations. For
example, a deviation may become common practice rather than being a rare
exception. In such a case, the added value of a workow system becomes ques-
tionable and an adaptation is required. Clearly, workow mining techniques can
be used to create a feedback loop to adapt the workow model to changing
circumstances and detect imperfections of the design.

The topic of workow mining is related to management trends such as Busi-
ness Process Reengineering (BPR), Business Intelligence (BI), Business Process
Analysis (BPA), Continuous Process Improvement (CPI), and Knowledge Man-
agement (KM). Workow mining can be seen as part of the BI, BPA, and KM
trends. Moreover, workow mining can be used as input for BPR and CPI ac-
tivities. Note that workow mining seems to be more appropriate for BPR than
for CPI. Recall that one of the basic elements of BPR is that it is radical and
should not be restricted by the existing situation [23]. Also note that workow
mining is not a tool to (re)design processes. The goal is to understand what is
really going on as indicated in Figure 1. Despite the fact that workow mining
is not a tool for designing processes, it is evident that a good understanding of
the existing processes is vital for any redesign e�ort.

This paper is a joint e�ort of a number of researchers using di�erent ap-
proaches to workow mining and is a spin-o� of the \Workow Mining Work-

shop"1. The goal of this paper is to introduce the concept of workow mining, to
identify scienti�c and practical problems, to present a common format to store
workow logs, to provide an overview of existing approaches, and to present a
number of mining techniques in more detail.

The remainder of this paper is organized as follows. First, we summarize
related work. In Section 3 we de�ne workow mining and present some of the
challenging problems. In Section 4 we propose a common XML-based format for
storing and exchanging workow logs. This format is used by the mining tools
developed by the authors and interfaces with some of the leading workow man-
agement systems (Sta�ware, MQSeries Workow, and InConcert). Sections 5, 6,
7, 8, and 9 introduce �ve approaches to workow mining focusing on di�erent
aspects. These sections give an overview of some of the ongoing work on work-
ow mining. Section 10 compares the various approaches and list a number of
open problems. Section 11 concludes the paper.

2 Related work

The idea of process mining is not new [8, 11, 15{17, 24{29,42{44, 53{57,61{63].
Cook and Wolf have investigated similar issues in the context of software en-
gineering processes. In [15] they describe three methods for process discovery:
one using neural networks, one using a purely algorithmic approach, and one
Markovian approach. The authors consider the latter two the most promising
approaches. The purely algorithmic approach builds a �nite state machine where
states are fused if their futures (in terms of possible behavior in the next k steps)
are identical. The Markovian approach uses a mixture of algorithmic and sta-
tistical methods and is able to deal with noise. Note that the results presented
in [6] are limited to sequential behavior. Cook and Wolf extend their work to
concurrent processes in [16]. They propose speci�c metrics (entropy, event type
counts, periodicity, and causality) and use these metrics to discover models out
of event streams. However, they do not provide an approach to generate ex-
plicit process models. Recall that the �nal goal of the approach presented in
this paper is to �nd explicit representations for a broad range of process mod-
els, i.e., we want to be able to generate a concrete Petri net rather than a set
of dependency relations between events. In [17] Cook and Wolf provide a mea-
sure to quantify discrepancies between a process model and the actual behavior
as registered using event-based data. The idea of applying process mining in
the context of workow management was �rst introduced in [11]. This work is
based on workow graphs, which are inspired by workow products such as IBM
MQSeries workow (formerly known as Flowmark) and InConcert. In this paper,
two problems are de�ned. The �rst problem is to �nd a workow graph gener-
ating events appearing in a given workow log. The second problem is to �nd
the de�nitions of edge conditions. A concrete algorithm is given for tackling the
�rst problem. The approach is quite di�erent from other approaches: Because

1 This workshop took place on May 22nd and 23rd 2002 in Eindhoven, The Nether-
lands.

the nature of workow graphs there is no need to identify the nature (AND or
OR) of joins and splits. As shown in [37], workow graphs use true and false to-
kens which do not allow for cyclic graphs. Nevertheless, [11] partially deals with
iteration by enumerating all occurrences of a given task and then folding the
graph. However, the resulting conformal graph is not a complete model. In [44],
a tool based on these algorithms is presented. Schimm [53, 54, 57] has developed
a mining tool suitable for discovering hierarchically structured workow pro-
cesses. This requires all splits and joins to be balanced. Herbst and Karagiannis
also address the issue of process mining in the context of workow management
[26, 24, 25, 28, 29, 27] using an inductive approach. The work presented in [27, 29]
is limited to sequential models. The approach described in [26, 24, 25, 28] also
allows for concurrency. It uses stochastic task graphs as an intermediate repre-
sentation and it generates a workow model described in the ADONIS modeling
language. In the induction step task nodes are merged and split in order to
discover the underlying process. A notable di�erence with other approaches is
that the same task can appear multiple times in the workow model. The graph
generation technique is similar to the approach of [11, 44]. The nature of splits
and joins (i.e., AND or OR) is discovered in the transformation step, where
the stochastic task graph is transformed into an ADONIS workow model with
block-structured splits and joins. In contrast to the previous papers, the work in
[8, 42, 43, 61, 62] is characterized by the focus on workow processes with concur-
rent behavior (rather than adding ad-hoc mechanisms to capture parallelism).
In [61, 62] a heuristic approach using rather simple metrics is used to construct
so-called \dependency/frequency tables" and \dependency/frequency graphs".
In [42] another variant of this technique is presented using examples from the
health-care domain. The preliminary results presented in [42, 61, 62] only pro-
vide heuristics and focus on issues such as noise. The approach described in [8]
di�ers from these approaches in the sense that for the � algorithm it is proven
that for certain subclasses it is possible to �nd the right workow model. In [3]
the � algorithm is extended to incorporate timing information.

Process mining can be seen as a tool in the context of Business (Process)
Intelligence (BPI). In [22, 52] a BPI toolset on top of HP's Process Manager is
described. The BPI tools set includes a so-called \BPI Process Mining Engine".
However, this engine does not provide any techniques as discussed before. Instead
it uses generic mining tools such as SAS Enterprise Miner for the generation of
decision trees relating attributes of cases to information about execution paths
(e.g., duration). In order to do workow mining it is convenient to have a so-
called \process data warehouse" to store audit trails. Such as data warehouse
simpli�es and speeds up the queries needed to derive causal relations. In [19,
46{48] the design of such warehouse and related issues are discussed in the
context of workow logs. Moreover, [48] describes the PISA tool which can be
used to extract performance metrics from workow logs. Similar diagnostics are
provided by the ARIS Process Performance Manager (PPM) [34]. The later tool
is commercially available and a customized version of PPM is the Sta�ware
Process Monitor (SPM) [59] which is tailored towards mining Sta�ware logs.

Note that none of the latter tools is extracting the process model. The main
focus is on clustering and performance analysis rather than causal relations as
in [8, 11, 15{17, 24{29,42{44, 53{57,61{63].

Much of the work mentioned above will be discussed in more detail in sec-
tions 5, 6, 7, 8, and 9. Before doing so, we �rst look at workow mining in
general and introduce a common XML-based format for storing and exchanging
workow logs.

3 Workow mining

The goal of workow mining is to extract information about processes from
transaction logs. Instead of starting with a workow design, we start by gathering
information about the workow processes as they take place. We assume that it
is possible to record events such that (i) each event refers to a task (i.e., a well-
de�ned step in the workow), (ii) each event refers to a case (i.e., a workow
instance), and (iii) events are totally ordered. Any information system using
transactional systems such as ERP, CRM, or workow management systems will
o�er this information in some form. Note that we do not assume the presence
of a workow management system. The only assumption we make, is that it
is possible to collect workow logs with event data. These workow logs are
used to construct a process speci�cation which adequately models the behavior
registered. The term process mining refers to methods for distilling a structured
process description from a set of real executions. Because these methods focus
on so-called case-driven process that are supported by contemporary workow
management systems, we also use the term workow mining.

Fig. 2. The sta�ware model

Table 1 shows a fragment of a workow log generated by the Sta�ware sys-
tem. In Sta�ware events are grouped on a case-by-case basis. The �rst column
refers to the task (description), the second to the type of event, the third to the
user generating the event (if any), and the last column shows a time stamp. The

Case 10
Directive Description Event User yyyy/mm/dd hh:mm
--

Start bvdongen@staffw_e 2002/06/19 12:58
Register Processed To bvdongen@staffw_e 2002/06/19 12:58
Register Released By bvdongen@staffw_e 2002/06/19 12:58
Send questionnaire Processed To bvdongen@staffw_e 2002/06/19 12:58
Evaluate Processed To bvdongen@staffw_e 2002/06/19 12:58
Send questionnaire Released By bvdongen@staffw_e 2002/06/19 13:00
Receive questionnaire Processed To bvdongen@staffw_e 2002/06/19 13:00
Receive questionnaire Released By bvdongen@staffw_e 2002/06/19 13:00
Evaluate Released By bvdongen@staffw_e 2002/06/19 13:00
Archive Processed To bvdongen@staffw_e 2002/06/19 13:00
Archive Released By bvdongen@staffw_e 2002/06/19 13:00

Terminated 2002/06/19 13:00
Case 9
Directive Description Event User yyyy/mm/dd hh:mm
--

Start bvdongen@staffw_e 2002/06/19 12:36
Register Processed To bvdongen@staffw_e 2002/06/19 12:36
Register Released By bvdongen@staffw_e 2002/06/19 12:35
Send questionnaire Processed To bvdongen@staffw_e 2002/06/19 12:36
Evaluate Processed To bvdongen@staffw_e 2002/06/19 12:36
Send questionnaire Released By bvdongen@staffw_e 2002/06/19 12:36
Receive questionnaire Processed To bvdongen@staffw_e 2002/06/19 12:36
Receive questionnaire Released By bvdongen@staffw_e 2002/06/19 12:36
Evaluate Released By bvdongen@staffw_e 2002/06/19 12:37
Process complaint Processed To bvdongen@staffw_e 2002/06/19 12:37
Process complaint Released By bvdongen@staffw_e 2002/06/19 12:37
Check processing Processed To bvdongen@staffw_e 2002/06/19 12:37
Check processing Released By bvdongen@staffw_e 2002/06/19 12:38
Archive Processed To bvdongen@staffw_e 2002/06/19 12:38
Archive Released By bvdongen@staffw_e 2002/06/19 12:38

Terminated 2002/06/19 12:38
Case 8
Directive Description Event User yyyy/mm/dd hh:mm
--

Start bvdongen@staffw_e 2002/06/19 12:36
Register Processed To bvdongen@staffw_e 2002/06/19 12:36
Register Released By bvdongen@staffw_e 2002/06/19 12:35
Send questionnaire Processed To bvdongen@staffw_e 2002/06/19 12:36
Evaluate Processed To bvdongen@staffw_e 2002/06/19 12:36
Send questionnaire Released By bvdongen@staffw_e 2002/06/19 12:36
Receive questionnaire Processed To bvdongen@staffw_e 2002/06/19 12:36
Receive questionnaire Expired bvdongen@staffw_e 2002/06/19 12:37
Receive questionnaire Withdrawn bvdongen@staffw_e 2002/06/19 12:37
Receive timeout Processed To bvdongen@staffw_e 2002/06/19 12:37
Receive timeout Released By bvdongen@staffw_e 2002/06/19 12:37
Evaluate Released By bvdongen@staffw_e 2002/06/19 12:37
Process complaint Processed To bvdongen@staffw_e 2002/06/19 12:37
Process complaint Released By bvdongen@staffw_e 2002/06/19 12:37
Check processing Processed To bvdongen@staffw_e 2002/06/19 12:37
Check processing Released By bvdongen@staffw_e 2002/06/19 12:38
Process complaint Processed To bvdongen@staffw_e 2002/06/19 12:37
Process complaint Released By bvdongen@staffw_e 2002/06/19 12:37
Check processing Processed To bvdongen@staffw_e 2002/06/19 12:37
Check processing Released By bvdongen@staffw_e 2002/06/19 12:38
Archive Processed To bvdongen@staffw_e 2002/06/19 12:38
Archive Released By bvdongen@staffw_e 2002/06/19 12:38

Terminated 2002/06/19 12:38

Table 1. A Sta�ware log.

corresponding Sta�ware model is shown in Figure 2. Case 10 shown in Table 1
follows the scenario where �rst task Register is executed followed Send question-
naire, Receive questionnaire, and Evaluate. Based on the Evaluation, the decision
is made to directly archive (task Archive) the case without further processing.
For Case 9 further processing is needed, while Case 8 involves a timeout and the
repeated execution of some tasks. Someone familiar with Sta�ware will be able
to decide that the three cases indeed follow a scenario possible in the Sta�ware
model shown in Figure 2. However, three cases are not suÆcient to automati-
cally derive the model of Figure 2. Note that there are more Sta�ware models
enabling the three scenarios shown in Table 1. The challenge of workow mining
is to derive \good" workow models with as little information as possible.

case identifier task identifier

case 1 task A

case 2 task A

case 3 task A

case 3 task B

case 1 task B

case 1 task C

case 2 task C

case 4 task A

case 2 task B

case 2 task D

case 5 task A

case 4 task C

case 1 task D

case 3 task C

case 3 task D

case 4 task B

case 5 task E

case 5 task D

case 4 task D

Table 2. A workow log.

To illustrate the principle of process mining in more detail, we consider the
workow log shown in Table 2. This log abstracts from the time, date, and event
type, and limits the information to the order in which tasks are being executed.
The log shown in Table 2 contains information about �ve cases (i.e., workow
instances). The log shows that for four cases (1, 2, 3, and 4) the tasks A, B,
C, and D have been executed. For the �fth case only three tasks are executed:
tasks A, E, and D. Each case starts with the execution of A and ends with the
execution of D. If task B is executed, then also task C is executed. However, for
some cases task C is executed before task B. Based on the information shown
in Table 2 and by making some assumptions about the completeness of the log

(i.e., assuming that the cases are representative and a suÆcient large subset of
possible behaviors is observed), we can deduce for example the process model
shown in Figure 3. The model is represented in terms of a Petri net [50]. The
Petri net starts with task A and �nishes with task D. These tasks are represented
by transitions. After executing A there is a choice between either executing B
and C in parallel or just executing task E. To execute B and C in parallel two
non-observable tasks (AND-split and AND-join) have been added. These tasks
have been added for routing purposes only and are not present in the workow
log. Note that for this example we assume that two tasks are in parallel if they
appear in any order. By distinguishing between start events and complete events
for tasks it is possible to explicitly detect parallelism (cf. Section 4).

A

AND
-split

B

C

AND
-join

D

E

Fig. 3. A process model corresponding to the workow log.

Table 2 contains the minimal information we assume to be present. In many
applications, the workow log contains a time stamp for each event and this
information can be used to extract additional causality information. In addition,
a typical log also contains information about the type of event, e.g., a start event
(a person selecting an task from a worklist), a complete event (the completion
of a task), a withdraw event (a scheduled task is removed), etc. Moreover, we
are also interested in the relation between attributes of the case and the actual
route taken by a particular case. For example, when handling traÆc violations: Is
the make of a car relevant for the routing of the corresponding traÆc violation?
(E.g., People driving a Ferrari always pay their �nes in time.)

For this simple example (i.e., Table 2), it is quite easy to construct a process
model that is able to regenerate the workow log (e.g., Figure 3). For more
realistic situations there are however a number of complicating factors:

{ For larger workow models mining is much more diÆcult. For example, if the
model exhibits alternative and parallel routing, then the workow log will
typically not contain all possible combinations. Consider 10 tasks which can
be executed in parallel. The total number of interleavings is 10! = 3628800. It
is not realistic that each interleaving is present in the log. Moreover, certain
paths through the process model may have a low probability and therefore
remain undetected.

{ Workow logs will typically contain noise, i.e., parts of the log can be in-
correct, incomplete, or refer to exceptions. Events can be logged incorrectly

because of human or technical errors. Events can be missing in the log if
some of the tasks are manual or handled by another system/organizational
unit. Events can also refer to rare or undesired events. Consider for example
the workow in a hospital. If due to time pressure the order of two events
(e.g., make X-ray and remove drain) is reversed, this does not imply that
this would be part of the regular medical protocol and should be supported
by the hospital's workow system. Also two causally unrelated events (e.g.,
take blood sample and death of patient) may happen next to each other
without implying a causal relation (i.e., taking a sample did not result in
the death of the patient; it was sheer coincidence). Clearly, exceptions which
are recorded only once should not automatically become part of the regular
workow.

{ Table 2 only shows the order of events without giving information about
the type of event, the time of the event, and attributes of the event (i.e.,
data about the case and/or task). Clearly, it is a challenge to exploit such
additional information.

Sections 5, 6, 7, 8, and 9 will present di�erent approaches to some of these
problems.

To conclude this section, we point out legal issues relevant when mining
(timed) workow logs. Clearly, workow logs can be used to systematically mea-
sure the performance of employees. The legislation with respect to issues such
as privacy and protection of personal data di�ers from country to country. For
example, Dutch companies are bound by the Personal Data Protection Act (Wet
Bescherming Persoonsgegeven) which is based on a directive from the European
Union. The practical implications of this for the Dutch situation are described
in [14, 31, 51]. Workow logs are not restricted by these laws as long as the in-
formation in the log cannot be traced back to individuals. If information in the
log can be traced back to a speci�c employee, it is important that the employee
is aware of the fact that her/his activities are logged and the fact that this log-
ging is used to monitor her/his performance. Note that in a timed workow log
we can abstract from information about the workers executing tasks and still
mine the process. Therefore, it is possible to avoid collecting information on
the productivity of individual workers and legislation such as the Personal Data
Protection Act does not apply. Nevertheless, the logs of most workow systems
contain information about individual workers, and therefore, this issue should
be considered carefully.

4 Workow logs: A common XML format

In this section we focus on the syntax and semantics of the information stored in
the workow log. We will do this by presenting a tool independent XML format
that is used by each of the mining approaches/tools described in the remainder.
Figure 4 shows that this XML format connects transactional systems such as
workow management systems, ERP systems, CRM systems, and case handling
systems. In principle, any system that registers events related to the execution of

tasks for cases can use this tool independent format to store and exchange logs.
The XML format is used as input for the analysis tools presented in sections 5,
6, 7, 8, and 9. The goal of using a single format is to reduce the implementation
e�ort and to promote the use of these mining techniques in multiple contexts.

Staffware

InConcert

MQ Series

workflow management systems

FLOWer

Vectus

Siebel

case handling / CRM systems

SAP R/3

BaaN

Peoplesoft

ERP systems

common XML format for storing/
exchanging workflow logs

EMiT
Little

Thumb

mining tools

InWoLvE
Process

Miner
Exper-
DiTo

Fig. 4. The XML format as the solver/system independent medium .

Table 3 shows the Document Type De�nition (DTD) [12] for workow logs.
This DTD speci�es the syntax of a workow log. A workow log is a consis-
tent XML document, i.e., a well-formed and valid XML �le with top element
WorkFlow log (see Table 3). As shown, a workow log consists of (optional)
information about the source program and information about one or more work-
ow processes. Each workow process (element process) consists of a sequence
of cases (element case) and each case consists of a sequence of log lines (element
log line). Both processes and cases have an id and a description. Each line in the
log contains the name of a task (element task name). In addition, the line may
contain information about the task instance (element task instance), the type
of event (element event), the date (element date), and the time of the event
(element time).

It is advised to make sure that the process description and the case descrip-
tion are unique for each process or case respectively. The task name should be
a unique identi�er for a task within a process. If there are two or more tasks
in a process with the same task name, they are assumed to refer to the same

<!ELEMENT WorkFlow_log (source?, process+)>

<!ELEMENT source EMPTY>

<!ATTLIST source

program (staffware | inconcert | pnet | IBM_MQ | other) #REQUIRED

>

<!ELEMENT process (case*)>

<!ATTLIST process

id ID #REQUIRED

description CDATA "none"

>

<!ELEMENT case (log_line*)>

<!ATTLIST case

id ID #REQUIRED

description CDATA "none"

>

<!ELEMENT log_line (task_name, task_instance?, event?, date?, time?)>

<!ELEMENT task_name (#PCDATA)>

<!ELEMENT task_instance (#PCDATA)>

<!ELEMENT event EMPTY>

<!ATTLIST event

kind (normal | schedule | start | withdraw | suspend |

resume | abort | complete) #REQUIRED

>

<!ELEMENT date (#PCDATA)>

<!ELEMENT time (#PCDATA)>

Table 3. The XML DTD for storing and exchanging workow logs.

task. (For example, in Sta�ware it is possible to have two tasks with di�erent
names, but the same description. Since the task description and not the task
name appears in the log this can lead to confusion.) Although we assume tasks
to have a unique name, there may be multiple instances of the same task. Con-
sider for example a loop which causes a task to be executed multiple times for a
given case. Therefore, one can add the element task instance to a log line. This
element will typically be a number, e.g., if task A is executed for the �fth time,
element task name is \A" and element task instance is \5". The date and time

elements are also optional. The date element must be in the following format:
dd-mm-yyyy. So each date consists of exactly 10 characters of which there are
2 for the day, 2 for the month (i.e., 01 for January) and 4 for the year. The
time element must be in the following format: HH:MM(:ss(:mmmmmm)). So
each time-element consists of �ve, eight or seventeen characters of which there
are two for the hour (00 - 23), two for the minutes (00 - 59) and optionally two
for the seconds (00-59) and again optionally six for the fraction of a second that
has passed. The complete log has to be sorted in the following way: Per case, all
log entry's have to appear in the order in which they took place.

If information is not available, one can enter default values. For example,
when storing the information shown in Table 2 the event type will be set to
normal and the date and time will be set to some arbitrary value. Note that it
is also fairly straightforward to map the Sta�ware log of Table 1 onto the XML
format.

Schedule Suspend Resume

Withdraw Abort

CompleteStart

New

Scheduled Active

Suspended

Completed

Terminated

Fig. 5. A Finite State Machine describing the event types.

Table 3 speci�es the syntax of the XML �le. The semantics of most constructs
are self-explaining except for the element event, i.e., the type of event. We identify
eight event types: normal, schedule, start, withdraw, suspend, resume, abort, and
complete. To explain these event types we use the Finite State Machine (FSM)
shown in Figure 5. The FSM describes all possible states of a task from creation

to completion. The arrows in this �gure describe all possible transitions between
states and we assume these transitions to be atomic events (i.e., events that
take no time). State New is the state in which the task starts. From this state
only the event Schedule is possible. This event occurs when the task becomes
ready to be executed (i.e., enabled or scheduled). The resulting state is the
state Scheduled. In this state the task is typically in the worklist of one or more
workers. From state Scheduled two events are possible: Start and Withdraw. If
a task is withdrawn, it is deleted from the worklist and the resulting state is
Terminated. If the task is started it is also removed from the worklist but the
resulting state is Active. In state Active the actual processing of the task takes
places. If the processing is successful, the case is moved to state Completed via
event Complete. If for some reason it is not possible to complete, the task can
be moved to state Terminated via an event of type Abort. In state Active it is
also possible to suspend a task (event Suspend). Suspended tasks (i.e., tasks in
state Suspended) can move back to state Active via the event Resume.

The events shown in Figure 5 are at a more �ne grained level than the events
shown in Table 2. Sometimes it is convenient to simply consider tasks as atomic
events which do not take any time and always complete successfully. For this
purpose, we use the event type Normal which is not shown in Figure 5. Events
of type Normal can be considered as the execution of events Schedule, Start, and
Complete in one atomic action.

Some systems log events at an even more �ne-grained level than Figure 5.
Other systems only log some of the events shown in Figure 5. Moreover, the
naming of the event types is typically di�erent. As an example, we consider the
workow management system Sta�ware and the log shown in Table 1. Sta�ware
records the Schedule, Withdraw, and Complete events. These events are named
respectively \Processed To", \Withdrawn", and \Released By" (see Table 1).
Sta�ware does not record start, suspend, resume, and abort event. Moreover, it
records event types not in Figure 5, e.g., \Start"2, \Expired", and \Terminated".
When mapping Sta�ware logs onto the XML format, one can choose to simply
�lter out these events or to map them on events of type normal.

The FSM representing the potential events orders recorded by IBM MQSeries

Workow is quite di�erent from the common FSM shown in Figure 5. (For more
details see [33].) Therefore, we need a mapping of events and event sequences
originating from MQSeries into events of the common FSM. MQSeries records
corresponding events for all events represented in the common FSM. Due to
the fact that MQSeries FSM has more states and transitions than the common
FSM, there are sets of events that must be mapped into a single event of the
common FSM. The most frequent event sequence in MQSeries is Activity ready
- Activity started - Activity implementation completed. This sequence is logged
whenever an activity is executed without any exceptions or complications. It is
mapped into Schedule - Start - Complete. Furthermore, there are a lot of di�er-
ent special cases. For example, an activity may be cancelled while being in state

2 The start event in Sta�ware denotes the creation of a case and should not be confused
with the start event in Figure 5.

Scheduled. The order of events in the common FSM is Schedule - Withdraw. The
equivalent �rst event in MQSeries FSM is Activity ready. The second event could
be Activity inError, Activity expired, User issued a terminate command, Activ-
ity force-�nished or Activity terminated. So, a sequence with �rst part Activity
ready and one of the �ve events mentioned before as second part is mapped into
Schedule - Withdraw. Another di�erence is that an activity may be cancelled
while running, i.e., it is in state Active. MQSeries will log this case in form of a
sequence starting with Activity ready, proceeding with Activity started, and end-
ing with one of the �ve events speci�ed above. Such a sequence is mapped into
Schedule - Start - Abort. Beside these examples, there are many more cases that
have to be handled. The tool QuaXMap (MQSeries Audit Trail XML Mapper,
[53]) implements the complete mapping.

Let us return to Figure 4. At this moment, we have developed translations
from the log �les of workow management systems Sta�ware (Sta�ware PLC,
[58]), InConcert (TIBCO, [60]), and MQSeries Workow (IBM, [32]) to our XML
format. In the future, we plan to provide more translations from a wide range of
systems (ERP, CRM, case handling, and B2B systems). Experience shows that
it is also fairly simple to extract information from enterprise-speci�c informa-
tion systems and translate this to the XML format (as long as the information
is there). Figure 4 also shows some of the mining tools available. These tools
support the approaches presented in the remainder of this paper and can all
read the XML format.

5 Which class of workow processes can be rediscovered?

- An approach based on Petri net theory

The �rst approach we would like to discuss in more detail uses a speci�c class
of Petri nets, named workow nets (WF-nets), as a theoretical basis [1, 4]. Some
of the results have been reported in [3, 8] and there are two tools to support
this approach: EMiT [3] and MiMo [8]. Note that the tool Little Thumb (see
Section 6) also support this approach but in addition is able to deal with noise.

In this more theoretical approach, we do not focus on issues such as noise.
We assume that there is no noise and that the workow log contains \suÆcient"
information. Under these ideal circumstances we investigate whether it is possible
to rediscover the workow process, i.e., for which class of workow models is it
possible to accurately construct the model by merely looking at their logs. This
is not as simple as it seems. Consider for example the process model shown
in Figure 3. The corresponding workow log shown in Table 2 does not show
any information about the AND-split and the AND-join. Nevertheless, they are
needed to accurately describe the process.

To illustrate the rediscovery problem we use Figure 6. Suppose we have a log
based on many executions of the process described by a WF-net WF 1. Based on
this workow log and using a mining algorithm we construct a WF-net WF 2.
An interesting question is whether WF 1 = WF 2. In this paper, we explore the
class of WF-nets for which WF 1 =WF 2.

generate workflow log
based on WF-net

construct WF-net based
on applying workflow

mining techniques

workflow log

WF-net WF-net

WF1 WF2

WF1 = WF2 ?

Fig. 6. The rediscovery problem: For which class of WF-nets is it guaranteed thatWF2

is equivalent to WF1?

As shown in [8] it is impossible to rediscover the class of all WF-nets. How-
ever, the � algorithm described in [3, 8] can successfully rediscover a large class
of practically relevant WF-nets. For this result, we assume logs to be complete in
the sense that if two events can follow each other, they will follow each other at
least once in the log. Note that this local criterion does not require the presence
of all possible execution sequences.

The � algorithm is based on four ordering relations which can be derived
from the log: >W , →W , #W , and ‖W . Let W be a workow log over a set of
tasks T , i.e., W ∈ P(T ∗). (The workow log is simply a set or traces, one for
each case, and we abstract from time, data, etc.). Let a; b ∈ T : (1) a >W b if
and only if there is a trace � = t1t2t3 : : : tn−1 and i ∈ {1; : : : ; n − 2} such that
� ∈ W and ti = a and ti+1 = b, (2) a →W b if and only if a >W b and b �>W a,
(3) a#W b if and only if a �>W b and b �>W a, and (4) a‖W b if and only if a >W b

and b >W a. a >W b if for at least one case a is directly followed by b. This does
not imply that there is a causal relation between a and b, because a and b can
be in parallel. Relation →W suggests causality and relations ‖W and #W are
used to di�erentiate between parallelism and choice. Since all relations can be
derived from >W , we assume the log to be complete with respect to >W (i.e.,
if one task can follow another task directly, then the log should have registered
this potential behavior).

It is interesting to observe that classical limits in Petri-net theory also apply
in the case of workow mining. For example, the � algorithm has problems deal-
ing with non-free-choice constructs [18]. It is well-known that many problems
that are undecidable for general Petri nets are decidable for free-choice nets.
This knowledge has been used to indicate the limits of workow mining. An-
other interesting observation is that there are typically multiple WF-nets that
match with a given workow log. This is not surprising because two syntactically
di�erent WF-nets may have the same behavior. The � algorithm will construct

the \simplest" WF-net generating the desired behavior. Consider for example
the log shown in Table 2. The � algorithm will construct a smaller WF-net (i.e.,
smaller than the WF-net shown in Figure 3) without explicitly representing the
AND-split and AND-join transitions as they are not visible in the log. The re-
sulting net is shown in Figure 7. Note that the behavior of the WF-net shown
in Figure 7 is equivalent to the behavior of the WF-net shown in Figure 3 using
trace equivalence and abstracting from the AND-split and AND-join.

A

B

C D

E

Fig. 7. The WF-net generated by the � algorithm using the log shown in Table 2.

A limitation of the � algorithm is that certain kinds of loops and multiple
tasks having the same name cannot be detected. It seems that the problems
related to loops can be resolved. Moreover, the � algorithm can also mine timed
workow logs and calculate all kinds to performance metrics. All of this is sup-
ported by the mining tool EMiT (Enhanced Mining Tool, [3]). EMiT can read
the XML format and provides translators from Sta�ware and InConcert to this
format. Moreover, EMiT fully supports the transactional task model shown in
Figure 5. The output of EMiT is a graphical process model including all kinds
of performance metrics. Figure 8 shows a screenshot of EMiT while analyzing a
Sta�ware log.

6 How to deal with noise and incomplete logs:

Heuristic approaches

The formal approach presented in the preceding section presupposes perfect
information: (i) the log must be complete (i.e., if a task can follow another
task directly, the log should contain an example of this behavior) and (ii) we
assume that there is no noise in the log (i.e., everything that is registered in the
log is correct). However, in practical situations logs are rarely complete and/or
noise free. Therefore, in practical situations, it becomes more diÆcult to decide
if between two events say a, b one of the three basic relations (i.e., a →W b,
a#W b, and a‖W b) holds. For instance the causality relation (a →W b) between
two tasks a and b only holds if and only if in the log there is a trace in which
a is directly followed by b (i.e., the relation a >W b holds) and there is no

Fig. 8. A screenshot of the mining tool EMiT.

trace in which b is directly followed by a (i.e., not b >W a). However, in a noisy
situation one erroneous example can completely mess up the derivation of a right
conclusion. For this reason we try to developed heuristic mining techniques which
are less sensitive for noise and the incompleteness of logs. Moreover, we try to
conquer some other limitations of the � algorithm (e.g., certain kinds of loops
and non-free-choice constructs).

In our heuristic approaches [61, 62, 43] we distinguish three mining steps: Step
(i) the construction of a dependency/frequency table (D/F-table), Step (ii) the
mining of the basic relations out of the D/F-table (the mining of the R-table),
and Step (iii) the reconstruction of the WF-net out of the R-table.

6.1 Construction of the dependency/frequency table

The starting point in our workow mining techniques is the construction of
a D/F-table. For each task a the following information is abstracted out of the
workow log: (i) the overall frequency of task a (notation #A3), (ii) the frequency
of task a directly preceded by task b (notation #B < A), (iii) the frequency of a
directly followed by task b (notation #A > B), (iv) the frequency of a directly or
indirectly preceded by task b but before the previous appearance of b (notation
#B <<< A), (v) the frequency of a directly or indirectly followed by task b

but before the next appearance of a (notation #A >>> B), and �nally (vi)

3 Note that we use a capital letter when referring to the number of occurrences of
some task.

a metric that indicates the strength of the causal relation between task a and
another task b (notation #A → B).

Metrics (i) through (v) seem clear without extra explanation. The underlying
intuition of metric (vi) is as follows. If it is always the case that, when task a

occurs, shortly later task b also occurs, then it is plausible that task a causes the
occurrence of task b. On the other hand, if task b occurs (shortly) before task a, it
is implausible that task a is the cause of task b. Below we de�ne the formalization
of this intuition. If, in an event stream, task a occurs before task b and n is the
number of intermediary events between them, the #A → B-causality counter is
incremented with a factor Æn (Æ is a causality fall factor and Æ ∈ [0:0 : : : 1:0]). In
our experiments Æ is set to 0.8. The e�ect is that the contribution to the causality
metric is maximal 1 (if task b appears directly after task a then n = 0 and Æn = 1
and decreases if the distance increases. The process of looking forward from task
a to the occurrence of task b stops after the �rst occurrence of task a or task
b. If task b occurs before task a and n is again the number of intermediary
events between them, the #A → B-causality counter is decreased with a factor
Æn. After processing the whole workow log the #A → B-causality counter is
divided by the minimum overall frequency of task a and b (i.e., min(#A;#B)).
Note that the value of #A → B can be relatively high even when there is no
trace in the log in which a is directly followed by b (i.e., the log is not complete).

6.2 The basic relations table (R-table) out of the D/F-table

Using relatively simple heuristics, we can determine the basic relations (a →W b,
a#W b, and a‖W b) out of the D/F-table. As an example we look at a heuristic
rule for the a →W b-relation as presented in the previous section and [61].

IF ((#A → B ≥ N) AND (#A > B ≥ �) AND (#B < A ≤ �))
THEN a →W b

The �rst condition (#A → B ≥ N) uses the noise factor N (default value
0.05). If we expect more noise, we can increase this factor. The �rst condition
calls for a higher positive causality between task a and b than the value of
the noise factor. The second condition (#A > B ≥ �) contains a threshold
value �. If we know that we have a workow log that is totally noise free, then
every task-pattern-occurrence is informative. However, to protect our induction
process against inferences based on noise, only task-pattern-occurrences above a
threshold frequency N are reliable enough for our induction process. To limit the
number of parameters the value � is automatically calculated using the following

equation: � = 1 + Round(N×#L)
#T . In this expression N is the noise factor, #L is

the number of trace lines in the workow log, and #T is the number of elements
(di�erent tasks). Using these heuristic rules we can build a →W b-relation and
group the results in the so-called relations table (R-table).

6.3 The reconstruction of the WF-net out of the R-table

In step (iii) of our heuristic approaches, we can use the same � algorithm as in
the formal approach. The result is a process model (i.e., Petri net). In a possible
extra step, we use the task frequency to check if the number of task-occurrences
is consistent with the resulting Petri-net.

To test the approach we use Petri-net-representations of di�erent free-choice
workow models. All models contain concurrent processes and loops. For each
model we generated three random workow logs with 1000 event sequences: (i)
a workow log without noise, (ii) one with 5% noise, and (iii) a log with 10%
noise. Below we explain what we mean with noise. To incorporate noise in our
workow logs we de�ne four di�erent types of noise generating operations: (i)
delete the head of a event sequence, (ii) delete the tail of a sequence, (iii) delete a
part of the body, and �nally (iv) interchange two random chosen events. During
the deletion-operations at least one event and at most one third of the sequence
is deleted. The �rst step in generating a workow log with 5% noise is a normal
random generated workow log. The next step is the random selection of 5%
of the original event sequences and applying one of the four above described
noise generating operations on it (each noise generation operation with an equal
chance of 1/4). Applying the method presented in this section on the material
without noise we found exact copies of the underlying WF-nets. If we add 5%
noise to the workow logs, the resulting WF-nets are still perfect. However, if
we add 10% noise to the workow logs the WF-nets contains errors. All errors
are caused by the low threshold value. If we increase the noise factor value to a
higher value (N = 0:10), all errors disappear. For more details we refer to [61].

The use of a threshold value is a disadvantage of the �rst approach. We are
working on two possible solutions: (1) the use of machine learning techniques for
automatically induction of an optimal threshold [43], and (2) the formulation
of other measurements and rules without thresholds. Some of these heuristics
are implemented in the heuristic workow mining tool Little Thumb. (The tool
is named after the fairy tail \Little Thumb" where a boy, not taller than a
thumb, �rst leaves small stones to �nd his way back. The stones refer to mining
using complete logs without noise. Then the boy leaves bread crusts that are
partially eaten by birds. The latter situation refer to mining with incomplete
logs with noise. Another analogy is the observation that the tool uses \rules
of thumb" to extract causal relations.) Little Thumb follows the XML-input
standard presented in Section 4.

7 How to measure the quality of a mined workow

model?

- An experimental approach

As we already mentioned in Section 5, there are classes of Petri nets for which we
can formally prove that the mined model is equivalent or has a behavior similar
to the original Petri net. In this section we search for more general methods to
measure the quality of mined workow models.

An important criterion for the quality of a mined workow model is the con-
sistency between the mined model and the traces in the workow log. Therefore,
a standard check for a mined model, is to try to execute all traces of the work-
ow log in the discovered model. If the trace of a case cannot be executed in the
Petri net, there is a discrepancy between the log and the model. This is a simple
�rst check. However, for each workow log it is possible to de�ne a trivial model
that is able to generate all traces of the workow log (and many more). Another
problem is the execution of traces with noise (i.e., the error is not in the model
but in the log)

In our experimental setup, we assume that we know the workow model that
is used to generate the workow log. In this subsection we will concentrate on
methods to measure the quality of a mined workow model by comparing it with
the original model (i.e. the workow model used for generating the workow log
used for mining). We will measure the quality of the mined model by specifying
the amount of correctly detected basic relations, i.e. the correctness of the R-
table descibed in the previous section.

The basic idea is to de�ne a kind of a test bed to measure the performance
of di�erent workow mining methods. In order to generate testing material that
resembles real workow logs, we identify some of the elements that vary from
workow to workow and subsequently a�ect the workow log. They are (i) the
total number of events types, (ii) the amount of available information in the
workow log, (iii) the amount of noise and (iv) the imbalance in OR-splits and
AND-splits. Therefore, we used a data generation procedure in which the four
mentioned elements vary in the following way:

1. The number of task types: we generate Petri nets with 12, 22, 32 and 42
event types.

2. The amount of information in the process log or log size: the amount of
information is expressed by varying the number of cases. We consider logs
with 200, 400, 600, 800 and 1000 cases.

3. The amount of noise: we generate noise by performing four di�erent oper-
ations on the event sequences representing individual cases: (i) delete the
head of a event sequence, (ii) delete the tail of a sequence, (iii) delete a part
of the body and (iv) interchange two randomly chosen events. During the
noise generation process, minimally one event and maximally one third of
the sequence is deleted. We generate �ve levels of noise: 0% noise (the initial
workow log without noise), 5% noise, 10%, 20% and 50% (we select 5%,
10%, 20% and respectively 50% of the original event sequences and we apply
one of the four above described noise generation operations).

4. The imbalance of execution priorities: we assume that tasks can be executed
with priorities between 0 and 2. In Figure 9 there is a choice after executing
the event A (which is an OR-split). This choice may be balanced, i.e., task
B and task F can have equal probabilities, or not. For example, task B can
have an execution priority of 0.8 and task F 1.5 causing F to happen almost
twice as often as B. The execution imbalance is produced on four levels:
{ Level 0, no imbalance: all tasks have the execution priority 1;

{ Level 1, small imbalance: each task can be executed with a priority ran-
domly chosen between 0.9 and 1.1;

{ Level 2, medium imbalance: each task can be executed with a priority
randomly chosen between 0.5 and 1.5;

{ Level 3, high imbalance: each task can be executed with a priority ran-
domly chosen between 0.1 and 1.9.

A

F

B

D

C E

H

G I

K

J

L

0.8

1.5

Fig. 9. Example of an unbalanced Petri net. Task B has an execution priority of 0.8
and task F an execution priority of 1.5.

The workow logs produced with the proposed procedure allow the testing
of di�erent workow mining methods, especially when it is desired to assess the
method robustness against noise and incomplete data. We used the generated
data for testing our heuristic approach discussed in the previous section.

The experiments show that our method is highly accurate when it comes
to �nding causal, exclusive and parallel relations. In fact we have been able to
�nd almost all of them in the presence of incompleteness, imbalance and noise.
Moreover, we gained the following insights:

{ As expected, more noise, less balance and less cases, each have a negative
e�ect on the quality of the result. The causal relations (i.e. a →W b) can
be predicted more accurately if there is less noise, more balance and more
cases.

{ There is no clear evidence that the number of event types have an inuence
on the performance of predicting causal relations. However, causal relations
in a structurally complex Petri net (e.g., non-free choice) can be more diÆcult
to detect.

{ Because the detection of exclusive/parallel relations (a#W b and a‖W b) de-
pends on the detection of the causal relation, it is diÆcult to formulate
speci�c conclusions for the quality of exclusive/parallel relations. It appears
that noise is a�ecting exclusive and parallel relations in a similar way as the
causal relation, e.g., if the level of noise is increasing, the accuracy of �nding
parallelism is decreasing.

When mining real workow data, the above conclusions can play the role of useful
recommendations. Usually it is diÆcult to know the level of noise and imbalance
beforehand. However, during the mining process it is possible to collect more

data about these metrics. This information can be used to motivate additional
e�orts to collect more data.

The software supporting this experimental approach is called ExperDiTo (Ex-
perimental Discovery Tool). The generated data are available to be downloaded
as benchmarks from http://tmitwww.tm.tue.nl/staff/lmaruster/.

8 How to mine workow processes with duplicate tasks? -

An inductive approach

The approaches presented in the preceding sections assume that a task name
should be a unique identi�er within a process, i.e., in the graphical models it
is not possible to have multiple building blocks referring to the same task. For
some processes this requirement does not hold. There may be more than one task
sharing the same name. An example of such a process is the part release process
for the development of passenger car from [25], which is shown in Figure 10.
Although one may �nd unique names (e.g. \notifyEng-1", \notifyEng-2") even
for these kind of processes, requiring unique names for the workow mining
procedure would be a tough requirement (compare [16]). Providing unique task
names requires that the structure of the process is known at least to some extent.
This is unrealistic if the workow mining procedure is to be used to discover the
structure.

In [26] we present a solution for mining workow models with non-unique
task names. It consists of two steps: the induction and the transformation step.

In the induction step a Stochastic Task Graph (also referred to as Stochastic
Activity Graph, SAG [26]) is induced from the workow log. The induction algo-
rithm can be described as a graph generation algorithm (InduceUniqueNodeSAG)
that is embedded into a search procedure.

The search procedure borrows ideas from machine learning and grammatical
inference [49]. It searches for a mapping from task instances in the workow log
to task nodes in the workow model. The search space can be described as a
lattice of such mappings. Between the mappings there is a partial ordering (more
general than/more speci�c than). The lattice is limited by a top or most general
mapping (every task instance with name X is mapped to one single task node
with name X) and a bottom or most speci�c element (the mapping is a bijection
between task instances in the log and task nodes of the workow model). Our
search algorithm searches top down starting with the most general mapping for
an optimal mapping. More speci�c mappings are created using a split operator.
The split operator splits up all task instances mapped to the same task node of
the model in two groups which are mapped two di�erent task nodes by renaming
task nodes. In the example shown in Figure 11 the task instances with names A
and C of workow log E1 are split in A, A', C and C' using two split operations.

The InduceUniqueNodeSAG is called for a �xed mapping from instances to
task nodes and it generates a stochastic task graph for this mapping as indicated

Fig. 10. The release process.

E2 A

A A’

B C’

A

B

C

k12

C B

✲ ✲

✕

✕

✲

✲

✲ ✲

k13 k14

k22

k23

k24

k25

k32 k33 k34

A’

k35

❄

induceUniqueNodeSAG

activity graph G2

A

B

C

✕

✲ C’

v1

v2

v3

✲ A’

✲
✕

v4

v5

v◦v�

split

✲

E1 A

A A

B C

A

B

C

k12

C B

✲ ✲

✕

✕

✲ ✲ ✲

induceUniqueNodeSAG

k13 k14

k22

k23

k24

k25

k32 k33 k34

A

k35

A

B

C

✕

✕

v1

v2

v3

☛

❑v�

✲

v◦

activity graph G1

✲

Fig. 11. The split operation.

in Figure 11. It is very similar to the approach presented in [11]. The main dif-
ferences are a slightly di�erent de�nition of the dependency relation and two ad-
ditional steps for inserting copies of task nodes where required and for clustering
task nodes sharing common predecessors. A notable di�erence to the formal ap-
proach in Section 5 is the determination of dependencies. InduceUniqueNodeSAG
considers every pair of task instances occurring in the same instance - regardless
of the number of task instances in between - for the determination of the de-
pendency relation. The transitive reduction is used to identify direct successors.
Note that the formal approach presented Section 5 considers only pairs of direct
successors for determining the dependency relation.

The search algorithm applies beam-search. The search is guided by the log
likelihood of the SAG per sample. The calculation of the log likelihood requires a
stochastic sample. This means that the induction algorithm handles n workow
instances sharing exactly the same ordering of tasks as n di�erent cases. For
the formal approach (cf. Section 5) one instance for each ordering of tasks is
enough. Using this information one is able to calculate not only the likelihood of
the SAG but also the probability of tasks and edges. This information is useful
to distinguish common from rare behavior.

In the transformation step the SAG is transformed into a block-structured
workow-model in the ADONIS format. This step is needed because the stochas-
tic task graph provided by the induction phase does not explicitly distinguish
alternative and parallel routing. The transformation phase can be decomposed
into three main steps: (1) the analysis of the synchronization structures of the

workow instances in the workow log, (2) the generation of the synchronization
structure of the workow model, and (3) the generation of the model. Details of
the transformation steps are given in [26].

The workow mining tool InWoLvE (Inductive Workow Learning via Ex-
amples) implements the described mining algorithm and two further induction
algorithms, which are restricted to sequential workow models. InWoLvE has
an interface to the business process management system ADONIS [36] for inter-
changing workow logs and process models. It has been successfully applied to
workow traces generated from real-life workow models (such as the one shown
in Figure 10) and from a large number of arti�cial workow models.

Further details and additional aspects such as a transformation from the
SAG to a well-behaved Petri net, an additional split operator for dealing with
noise, and the results of the experimental evaluation are described in [26].

9 How to mine block-structured workows? -

A data mining approach

The last approach discussed in this paper is tailored towards mining block-
structured workows. There are two notable di�erences with the approaches
presented in the preceding four sections. First of all, only block structured work-
ow patterns are considered. Second, the mining algorithm is based on rewriting
techniques rather than graph-based techniques. In addition, the objective of this
approach is to mine complete and minimal models: Complete in the sense that
all recorded cases are covered by the extracted model, minimal in the sense
that only recorded cases are covered. To achieve this goal the approach uses
a stronger notion of completeness than e.g. the completeness notion based on
direct successor (cf. Section 5).

Before we can mine a workow model from event-based data it is neces-
sary to determine what kind of model the output should be, i.e., the workow
language being used or the class of workow models considered. Di�erent lan-
guages/classes of models have di�erent meta models. We distinguish two major
groups of workowmeta-models: graph-oriented meta-models and block-oriented
meta-models. This approach is based on a block-oriented meta-model. Models
of this meta-model (i.e., block-structured workows) are always well-formed and
sound.

Block-structured models are made up from blocks which are nested. These
building blocks of block-structured models can be di�erentiated into operators
and constants. Operators build the process ow, while constants are the tasks
or sub-workows that are embedded inside the process ow. We build a block-
structured model in a top-down fashion by setting one operator as starting point
of the workow and nest other operators as long as we get the desired ow
structure. At the bottom of this structure we embed constants into operators
which terminate the nesting process. A block-structured workow model is a
tree whose leafs are always operands.

Besides the tree representation of block-structured models we can specify
them as a set of terms. Let S denote the operator sequence, P denote the oper-
ator parallel, and a; b; c denote three di�erent tasks, the term S(a; P (b; c)), for
example, represents a workow performing task a completely before task b and
task c are performed in parallel. Because of the model's block-structure each
term is always well-formed. Further on, we can specify an algebra that consists
of axioms for commutativity, distributivity, associativity, etc. These axioms form
the basis for term rewriting systems we can use for mining workows. A detailed
description of the meta-model can be found in [54].

Based on the block-structured meta-model a process mining procedure ex-
tracts workow models from event-based data. The procedure consists of the
following �ve steps that are performed in sequential order.

First, the procedure reads event-based data that belongs to a certain process
and builds a trace for each process instance from this data. A trace is a data
structure that contains all start and complete events of a process instance in
correct chronological order. After building traces, they are condensed on the
basis of their sequence of start and complete events. Each trace group constitutes
a path in the process schema.

Second, a time-forward algorithm constructs an initial process model from
all trace groups. This model is in a special form called Disjunctive Normal Form
(DNF). A process model in this form starts with an alternative operator and
enumerates inside this block all possible paths of execution as blocks that are
built up without any alternative operator. For each trace group such a block is
constructed by the algorithm and added to the alternative operator that builds
the root of the model.

The next step deals with relations between tasks that result from the random
order of performing tasks without a real precedence relation between them. These
pseudo precedence relations have to be identi�ed and then removed from the
model. In order to identify pseudo precedence relations the model is transformed
by a term rewriting system into a form that enumerates all sequences of tasks
inside parallel operators embedded into the overall alternative. Then, a searching
algorithm determines which of these sequences are pseudo precedence relations.
This is determined by �nding the smallest subset of sequences that completely
explains the corresponding blocks in the initial model. All sequences out of the
subset are pseudo precedence relations and therefore removed. At the end of this
step, the initial transformation is reversed by a term rewriting system.

Because the process model was built in DNF, it is necessary to split the
model's overall alternative and to move the partial alternatives as near as possi-
ble to the point in time where a decision cannot be postponed any longer. This is
done by a transformation step using another term rewriting system. It is based
on distributivity axioms and merges blocks while shifting alternative operators
towards later points in time. It also leads to a condensed form of the model.

The last step is an optional decision-mining step that is based on decision
tree induction. In this step an induction is performed for each decision point
of the model. In order to perform this step we need data about the workow

context for each trace. From these data a tree induction algorithm builds decision
trees. These trees are transformed into rules and then attached to the particular
alternative operators.

After performing all steps, the output comes in form of a block-structured
model that is complete and minimal. The process mining procedure is reported
in more detail in [55, 56].

Fig. 12. The Tool Process Miner.

The approach on mining block-structured models is supported by a tool
named Process Miner. This tool can read event-based workow data from data-
bases or from �les in the XML format presented in Section 4. It then auto-
matically performs the complete process mining procedure on this data. The
decision-mining step is omitted if no context data are provided.

Process Miner comes with an graphical user interface (see Figure 12). It
displays the output model in a graphical editor in form of a diagram and a tree.
Additionally, it allows the user to edit a model and to export it for further use. It
also contains a workow simulation component. A description of Process Miner

can be found in [57].

10 Comparison and open problems

As indicated in sections 5, 6, 7, 8, and 9 tools such as EMiT, Little Thumb,
InWoLvE, and Process Miner are driven by di�erent problems. In this section,
we compare these approaches. To refer to each approach we use the name of the
corresponding tool. EMiT [3] was introduced in Section 5 to explore the limits of
mining (Which class of workow processes can be rediscovered?). Little Thumb
[9, 63] was introduced in Section 6 to illustrate how heuristics can be used to
tackle the problem of noise. Section 8 presented the concepts the tool InWoLvE

[26] is based on. One of the striking features of this tool is the ability to deal
with duplicate tasks. Section 9 introduced the Process Miner [57], exploiting
the properties of block-structured workows through rewriting rules. In the re-
mainder, we will compare the approaches represented by EMiT, Little Thumb,
InWoLvE, and Process Miner. Note that we do not include the tool ExperDiTo
(described in Section 7) in this comparison because it builds on EMiT and Little
Thumb and does not o�er alternative mining techniques.

To compare the approaches represented by EMiT, Little Thumb, InWoLvE,
and Process Miner, we focus on nine aspects: Structure, Time, Basic parallelism,
Non-free choice, Basic loops, Arbitrary loops, Hidden tasks, Duplicate tasks, and
Noise. For each of these nine aspects we compare the four tools as indicated in
Table 4 and described as follows.

Structure The �rst aspect refers to the structure of the target language. Lan-
guages such as Petri nets [50] are graph-based while textual languages such
as �-calculus [45] are block-oriented. EMiT and Little Thumb are based on
Petri nets and therefore graph-oriented. InWoLvE is also graph-based and
Process Miner is the only block-oriented language.

Time Many logs also record time stamps of events. This information can be
used to calculate performance indicators such as waiting/synchronization
times, ow times, utilization, etc.

Basic parallelism All the tools are able to detect and handle parallelism. Sim-
ple processes where each AND-split corresponds to an AND-join can be
mined by EMiT, Little Thumb, InWoLvE, and Process Miner. However, each
of the four tools imposes requirements on the process in order to correctly
extract the right model.

Non-free choice The Non-free choice (NFC) construct was mentioned in Sec-
tion 5 as an example of a workow pattern that is diÆcult to mine. NFC
processes mix synchronization and choice in one construct as described in
[18]. None of the four tools can deal with such constructs. Nevertheless, they
are highly relevant as indicated in [6, 38].

Basic loops Each of the four tools can deal with loops. However, just like with
parallelism, each of the tools imposes restrictions on the structure of these
loops in order to guarantee the correctness of the discovered model.

Arbitrary loops None of the tools supports arbitrary loops. For example, the
tool Process Miner can only have loops with a clear block structure. Note
that not every loop can be modeled like this cf. [38]. EMiT and Little Thumb

initially had problems with loops of length 1 or 2. These problems have been
(partially) solved by a preprocessing step. Note that to detect \short loops"
more observations are required.

Hidden tasks Occurrences of speci�c tasks may not be recorded in the log.
This is a fundamental problem since without this information processes are
incomplete. Despite the fact that it will never be possible to detect task
occurences that are not recorded, there could be facilities to indicate the
presence of a so-called \hidden task". Suppose that a workow language
has special control tasks to model AND-splits and AND-joins. Even if these
control tasks are not logged, one could still deduce their presence. None of
the four tools supports the detection of hidden tasks in a structured manner.

Duplicate tasks EMiT, Little Thumb and Process Miner assume that each
task appears only once in the workow, i.e., the same task cannot be used in
two di�erent parts of the processes. (Note that this does not refer to loops.
In a loop, the same part of the processes is repeatedly executed.) InWoLvE
is the only tool dealing with this issue.

Noise The term noise is used to refer to the situation where the log is incomplete
or contains errors. A similar situation occurs if a rare sequence of events
takes place which is not representative for the typical ow of work (i.e.,
an exception). In both cases the resulting model can be incorrect (i.e., not
representing the typical ow of work). EMiT and Process Miner do not o�er
features for dealing with noise. Little Thumb is able to deal with noise by
using a set of heuristics which can be �ne-tuned to tackle speci�c types of
noise. InWoLvE uses a stochastic model which allows for the distinguishing
common from rare behavior.

EMiT
Little

Thumb
InWoLvE

Process

Miner
Structure Graph Graph Graph Block

Time Yes No No No

Basic parallelism Yes Yes Yes Yes

Non-free choice No No No No

Basic loops Yes Yes Yes Yes

Arbitrary loops Yes Yes No No

Hidden tasks No No No No

Duplicate tasks No No Yes No

Noise No Yes Yes No

Table 4. Comparing EMiT, Litte Thumb, InWoLvE, and Process Miner.

Table 4 shows that there are still a number of open problems. Few of the
tools exploit timing information. Although EMiT extracts information on wait-
ing times, ow times, and utilization from the log, time stamps are not used to
improve the mining result. Similarly, other pieces of information like the data

objects being changed or the identity of the person executing a task are not
exploited by the existing approaches. Existing approaches can deal with basic
routing constructs such as basic parallelism and basic loops. However, these ap-
proaches fail when facing advanced routing constructs involving non-free choice
constructs, hidden tasks, or duplicate tasks. Last but not least, there is the prob-
lem of noise. Although tools such as Little Thumb and InWoLvE can deal with
some noise, empirical research is needed to evaluate and improve the heuristics
being used.

The comparison shown in Table 4 can be used to position the various ap-
proaches. However, to truly compare the results there should be a number of
benchmark examples. Section 7 discussed a number of small experiments that
can be used for this purpose. However, for a real benchmark larger and more
realistic examples are needed. Clearly, the XML format presented in Section 4
can be used to store these benchmark examples.

11 Conclusion

In this paper, we presented an overview of the various problems, techniques,
tools, and approaches for workow mining. It is quite interesting to see how
the �ve approaches presented in sections 5, 6, 7, 8, and 9 di�er and are driven
by di�erent problems. The more formal approach described in Section 5 uses
Petri-net theory to characterize the class of workow models that can be mined.
The more heuristic approaches in sections 6 and 7 focus on issues such as noise
and determining the quality of mining result. Unlike the other approaches, the
approach in Section 8 takes into account the fact that there may be multiple
tasks having the same label. Finally, the approach in Section 9 exploits the
block structure (i.e., corresponding AND/XOR splits and AND/XOR joins) of
many processes. Each of these approaches has its strengths and weaknesses.

Section 10 compared the approaches by focusing on nine aspects (Structure,
Time, Basic parallelism, Non-free choice, Basic loops, Arbitrary loops, Hidden
tasks, Duplicate tasks, and Noise). This comparison reveals di�erences and also
points out problems that need to be tackled.

To join forces and to share knowledge and development e�orts, we introduced
a tool-independent XML format. This format was given in Section 4 and we
would like to encourage other researchers/developers in this domain to use this
format.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workow Management.
The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

2. W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Man-
agement: Models, Techniques, and Empirical Studies, volume 1806 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 2000.

3. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems
(EDCIS 2002), volume 2480 of Lecture Notes in Computer Science, pages 45{63.
Springer-Verlag, Berlin, 2002.

4. W.M.P. van der Aalst and K.M. van Hee.Workow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workow Patterns. QUT Technical report, FIT-TR-2002-
02, Queensland University of Technology, Brisbane, 2002. (Also see
http://www.tm.tue.nl/it/research/patterns.).

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P.
Barros. Workow Patterns. QUT Technical report, FIT-TR-2002-
02, Queensland University of Technology, Brisbane, 2002. (Also see
http://www.tm.tue.nl/it/research/patterns.) To appear in Distributed and Par-
allel Databases.

7. W.M.P. van der Aalst and S. Jablonski. Dealing with Workow Change: Identi�ca-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267{276, 2000.

8. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workow Mining:
Which Processes can be Rediscovered? BETA Working Paper Series, WP 74,
Eindhoven University of Technology, Eindhoven, 2002.

9. W.M.P. van der Aalst and T. Weijters. X-tra - KLeinduimpje in Workowland:
Op zoek naar procesdata. Scope, 10(12):38{40, 2002.

10. A. Agostini and G. De Michelis. Improving Flexibility of Workow Management
Systems. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors, Business
Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 218{234. Springer-Verlag, Berlin, 2000.

11. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
ow Logs. In Sixth International Conference on Extending Database Technology,
pages 469{483, 1998.

12. T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. eXtensible Markup
Language (XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml, 2000.

13. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workow Evolution. In Proceedings
of ER '96, pages 438{455, Cottubus, Germany, Oct 1996.

14. College Bescherming persoonsgegevens (CBP; Dutch Data Protection Authority).
http://www.cbpweb.nl/index.htm.

15. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215{249, 1998.

16. J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings
of the Sixth International Symposium on the Foundations of Software Engineering
(FSE-6), pages 35{45, 1998.

17. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147{176, 1999.

18. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

19. J. Eder, G.E. Olivotto, and Wolfgang Gruber. A Data Warehouse for Workow
Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International Conference on
Engineering and Deployment of Cooperative Information Systems (EDCIS 2002),
volume 2480 of Lecture Notes in Computer Science, pages 1{15. Springer-Verlag,
Berlin, 2002.

20. C.A. Ellis and K. Keddara. A Workow Change Is a Workow. In W.M.P. van der
Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of Lecture Notes in Computer
Science, pages 201{217. Springer-Verlag, Berlin, 2000.

21. L. Fischer, editor. Workow Handbook 2001, Workow Management Coalition.
Future Strategies, Lighthouse Point, Florida, 2001.

22. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB'01), pages 159{168. Morgan Kaufmann, 2001.

23. M. Hammer and J. Champy. Reengineering the corporation. Nicolas Brealey Pub-
lishing, London, 1993.

24. J. Herbst. A Machine Learning Approach to Workow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183{194. Springer-Verlag, Berlin, 2000.

25. J. Herbst. Dealing with Concurrency in Workow Induction. In U. Baake, R. Zo-
bel, and M. Al-Akaidi, editors, European Concurrent Engineering Conference. SCS
Europe, 2000.

26. J. Herbst. Ein induktiver Ansatz zur Akquisition und Adaption von Workow-
Modellen. PhD thesis, Universit�at Ulm, November 2001.

27. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workow Man-
agement to Support Acquisition and Adaptation of Workow Models. In Pro-
ceedings of the Ninth International Workshop on Database and Expert Systems
Applications, pages 745{752. IEEE, 1998.

28. J. Herbst and D. Karagiannis. An Inductive Approach to the Acquisition and
Adaptation of Workow Models. In M. Ibrahim and B. Drabble, editors, Proceed-
ings of the IJCAI'99 Workshop on Intelligent Workow and Process Management:
The New Frontier for AI in Business, pages 52{57, Stockholm, Sweden, August
1999.

29. J. Herbst and D. Karagiannis. Integrating Machine Learning and Workow Man-
agement to Support Acquisition and Adaptation of WorkowModels. International
Journal of Intelligent Systems in Accounting, Finance and Management, 9:67{92,
2000.

30. T. Herrmann, M. Ho�mann, K.U. Loser, and K. Moysich. Semistructured models
are surprisingly useful for user-centered design. In G. De Michelis, A. Giboin,
L. Karsenty, and R. Dieng, editors, Designing Cooperative Systems (Coop 2000),
pages 159{174. IOS Press, Amsterdam, 2000.

31. B.J.P. Hulsman and P.C. Ippel. Personeelsinformatiesystemen: De Wet Persoon-
sregistraties toegepast. Registratiekamer, The Hague, 1994.

32. IBM. IBM MQSeries Workow - Getting Started With Buildtime. IBM Deutsch-
land Entwicklung GmbH, Boeblingen, Germany, 1999.

33. IBM. IBM MQseries Workow Programming Guide Version 3.3. IBM Corporation,
Armonk, USA, 2001.

34. IDS Scheer. ARIS Process Performance Manager (ARIS PPM). http://www.ids-
scheer.com, 2002.

35. S. Jablonski and C. Bussler. Workow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

36. S. Junginger, H. K�uhn, R. Strobl, and D. Karagiannis. Ein Gesch�afts-
prozessmanagement-Werkzeug der n�achsten Generation { ADONIS: Konzeption
und Anwendungen. Wirtschaftsinformatik, 42(3):392{401, 2000.

37. B. Kiepuszewski. Expressiveness and Suitability of Languages for Con-
trol Flow Modelling in Workows (submitted). PhD thesis, Queens-
land University of Technology, Brisbane, Australia, 2002. Available via
http://www.tm.tue.nl/it/research/patterns.

38. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fun-
damentals of Control Flow in Workows. QUT Technical report, FIT-TR-
2002-03, Queensland University of Technology, Brisbane, 2002. (Also see
http://www.tm.tue.nl/it/research/patterns.) To appear in Acta Informatica.

39. M. Klein, C. Dellarocas, and A. Bernstein, editors. Proceedings of the CSCW-98
Workshop Towards Adaptive Workow Systems, Seattle, Washington, November
1998.

40. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workow Systems,
volume 9 of Special issue of the journal of Computer Supported Cooperative Work,
2000.

41. F. Leymann and D. Roller. Production Workow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

42. L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters, A. van den Bosch, and
W. Daelemans. Automated Discovery of Workow Models from Hospital Data. In
B. Kr�ose, M. de Rijke, G. Schreiber, and M. van Someren, editors, Proceedings of
the 13th Belgium-Netherlands Conference on Arti�cial Intelligence (BNAIC 2001),
pages 183{190, 2001.

43. L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van den Bosch.
Process Mining: Discovering Direct Successors in Process Logs. In Proceedings of
the 5th International Conference on Discovery Science (Discovery Science 2002),
volume 2534 of Lecture Notes in Arti�cial Intelligence, pages 364{373. Springer-
Verlag, Berlin, 2002.

44. M.K. Maxeiner, K. K�uspert, and F. Leymann. Data Mining von Workow-
Protokollen zur teilautomatisierten Konstruktion von Prozemodellen. In Proceed-
ings of Datenbanksysteme in B�uro, Technik und Wissenschaft, pages 75{84. Infor-
matik Aktuell Springer, Berlin, Germany, 2001.

45. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

46. M. zur M�uhlen. Process-driven Management Information Systems Combining
Data Warehouses and Workow Technology. In B. Gavish, editor, Proceedings of
the International Conference on Electronic Commerce Research (ICECR-4), pages
550{566. IEEE Computer Society Press, Los Alamitos, California, 2001.

47. M. zur M�uhlen. Workow-based Process Controlling-Or: What You Can Mea-
sure You Can Control. In L. Fischer, editor, Workow Handbook 2001, Workow
Management Coalition, pages 61{77. Future Strategies, Lighthouse Point, Florida,
2001.

48. M. zur M�uhlen and M. Rosemann. Workow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1{10. IEEE Computer Society Press, Los Alamitos, California, 2000.

49. R. Parekh and V. Honavar. Automata Induction, Grammar Inference, and Lan-
guage Acquisition. In Dale, Moisl, and Somers, editors, Handbook of Natural Lan-
guage Processing. New York: Marcel Dekker, 2000.

50. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

51. L.B. Sauerwein and J.J. Linnemann. Guidelines for Personal Data Processors:
Personal Data Protection Act. Ministry of Justice, The Hague, 2001.

52. M. Sayal, F. Casati, and M.C. Shan U. Dayal. Business Process Cockpit. In Pro-
ceedings of 28th International Conference on Very Large Data Bases (VLDB'02),
pages 880{883. Morgan Kaufmann, 2002.

53. G. Schimm. Process Mining. http://www.processmining.de/.
54. G. Schimm. Generic Linear Business Process Modeling. In S.W. Liddle, H.C. Mayr,

and B. Thalheim, editors, Proceedings of the ER 2000 Workshop on Conceptual
Approaches for E-Business and The World Wide Web and Conceptual Modeling,
volume 1921 of Lecture Notes in Computer Science, pages 31{39. Springer-Verlag,
Berlin, 2000.

55. G. Schimm. Process Mining elektronischer Gesch�aftsprozesse. In Proceedings Elek-
tronische Gesch�aftsprozesse, 2001.

56. G. Schimm. Process Mining linearer Prozessmodelle - Ein Ansatz zur automa-
tisierten Akquisition von Prozesswissen. In Proceedings 1. Konferenz Profes-
sionelles Wissensmanagement, 2001.

57. G. Schimm. Process Miner - A Tool for Mining Process Schemes from Event-
based Data. In S. Flesca and G. Ianni, editors, Proceedings of the 8th European
Conference on Arti�cial Intelligence (JELIA), volume 2424 of Lecture Notes in
Computer Science, pages 525{528. Springer-Verlag, Berlin, 2002.

58. Sta�ware. Sta�ware 2000 / GWD User Manual. Sta�ware plc, Berkshire, United
Kingdom, 2000.

59. Sta�ware. Sta�ware Process Monitor (SPM). http://www.sta�ware.com, 2002.
60. Tibco. TIB/InConcert Process Designer User's Guide. Tibco Software Inc., Palo

Alto, CA, USA, 2000.
61. A.J.M.M. Weijters and W.M.P. van der Aalst. Process Mining: Discovering Work-

ow Models from Event-Based Data. In B. Kr�ose, M. de Rijke, G. Schreiber, and
M. van Someren, editors, Proceedings of the 13th Belgium-Netherlands Conference
on Arti�cial Intelligence (BNAIC 2001), pages 283{290, 2001.

62. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workow Models
from Event-Based Data. In V. Hoste and G. de Pauw, editors, Proceedings of
the 11th Dutch-Belgian Conference on Machine Learning (Benelearn 2001), pages
93{100, 2001.

63. A.J.M.M. Weijters and W.M.P. van der Aalst. Workow Mining: Discovering
Workow Models from Event-Based Data. In C. Dousson, F. H�oppner, and
R. Quiniou, editors, Proceedings of the ECAI Workshop on Knowledge Discovery
and Spatial Data, pages 78{84, 2002.

64. M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workow Management System. In R. Sprague, editor, Proceedings of the Thirty-
Fourth Annual Hawaii International Conference on System Science (HICSS-34).
IEEE Computer Society Press, Los Alamitos, California, 2001.

65. Workow Patterns Home Page. http://www.tm.tue.nl/it/research/patterns.

About the authors

Wil van der Aalst is a full professor of Information Systems and head of
the section of Information and Technology of the Department of Technology
Management at Eindhoven University of Technology. He is also a part-time full
professor at the Computing Science faculty at the department of Mathematics
and Computer Science at the same university. His research interests include in-
formation systems, simulation, Petri nets, process models, workowmanagement
systems, veri�cation techniques, enterprise resource planning systems, computer
supported cooperative work, and interorganizational business processes.

Boudewijn van Dongen is a student at the Department of Computer Sci-
ence and Mathematics at Eindhoven University of Technology, Eindhoven, The
Netherlands. In 2002 he conducted a project on workow mining and developed
the workow mining tool EMiT. Currently, he is doing his master thesis at the
Department of Computer Science and Mathematics, after which he will become
a Ph.D. candidate at the Department of Technology Management at Eindhoven
University of Technology.

Joachim Herbst studied computer science at the University of Ulm, where he
also did his Ph.D. in the area of workowmining. Since 1995 he has been working
for DaimlerChrysler Research and Technology. His research interests include
machine learning, workow management, enterprise application integration and
concurrent engineering.

Laura Maruster received her B.S. degree in 1994 and M.S. in 1995, both in
Computer Science Department at West University of Timisoara, Romania. At
present she is a Ph.D candidate of the Department of Technology Management of
Eindhoven University of Technology, Eindhoven, The Netherlands. Her research
interests include induction of machine learning and statistical models, process
mining and knowledge discovery.

Guido Schimm studied computer science and business economy at the Univer-
sity of Wernigerode, Germany. He joined the Oldenburg Institute for Computer
Science Tools and Systems (OFFIS) in 1999 as a member of the business intelli-
gence and knowledge management team. Guido has been engaged in many ERP
and workow projects. Currently, his research interest is focused on theoretical
foundation and practical implementation of workow mining technologies.

Ton Weijters is associate professor at the Department of Technology Manage-
ment of the Eindhoven University of Technology (TUE), and member of the
BETA research group. Currently he is working on (i) the application of Knowl-
edge Engineering and Machine Learning techniques for planning, scheduling, and
process mining (ii) fundamental research in the domain of Machine Learning and

Knowledge Discovering. He is the author of many scienti�c publications in the
mentioned research �eld.

