
Outlier Detection Techniques for
Process Mining Applications

Lucantonio Ghionna1, Gianluigi Greco1, Antonella Guzzo2, and Luigi Pontieri3

Dept. of Mathematics1, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy
DEIS2, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy

ICAR-CNR3, Via P. Bucci 41C, 87036 Rende, Italy
{ghionna,ggreco}@mat.unical.it, {guzzo}@si.deis.unical.it,

{pontieri}@icar.cnr.it

Abstract. Classical outlier detection approaches may hardly fit process mining
applications, since in these settings anomalies emerge not only as deviations from
the sequence of events most often registered in the log, but also as deviations
from the behavior prescribed by some (possibly unknown) process model. These
issues have been faced in the paper via an approach for singling out anomalous
evolutions within a set of process traces, which takes into account both statistical
properties of the log and the constraints associated with the process model. The
approach combines the discovery of frequent execution patterns with a cluster-
based anomaly detection procedure; notably, this procedure is suited to deal with
categorical data and is, hence, interesting in its own, given that outlier detection
has mainly been studied on numerical domains in the literature. All the algorithms
presented in the paper have been implemented and integrated into a system pro-
totype that has been thoroughly tested to assess its scalability and effectiveness.

1 Introduction

Several efforts have recently been spent in the scientific community and in the industry
to exploit data mining techniques for the analysis of process logs [12], and to extract
high-quality knowledge on the actual behavior of business processes (see, e.g., [6, 3]). In
a typical process mining scenario, a set of traces (registering the sequencing of activities
performed along several enactments) is given to hand and the aim is to derive a model
explaining all the episodes recorded in them. Eventually, the “mined” model is used to
(re)design a detailed process schema, capable to support forthcoming enactments. As
an example, the event log (over activities a, b, ...o) shown in the right side of Figure 1
might be given in input, and the goal would be to derive a model like the one shown in
the left side, representing a simplified process schema according to the intuitive notation
where precedence relationships are depicted as directed arrows between activities (e.g.,
b must be executed after a and concurrently with c).

In the case where no exceptional circumstances occur in enactments, process min-
ing techniques have been proven to discover accurate process models. However, logs
often reflect temporary malfunctions and evolution anomalies (e.g., traces s9, ..., s14 in
the example above), whose understanding may help recognizing critical points in the
process that could yield invalid or inappropriate behavior.

Fig. 1. A schema Wex (left) and a log Lex(right) – trace frequencies are shown in brackets.

In the paper, this peculiar aspect of process mining is investigated and the problem
of singling out exceptional individuals (usually referred to as outliers in the literature)
from a set of traces is addressed.

Outlier detection has already found important applications in bioinformatics [1],
fraud detection [5], and intrusion detection [9], just to cite a few. When adapting these
approaches for process mining applications, novel challenges however come into play:

(C1) On the one hand, looking only at the sequencing of the events may be misleading
in some cases. Indeed, real processes usually allow for a high degree of concurrency,
and are to produce a lot of traces that only differ in the ordering between parallel
tasks. Consequently, the mere application of existing outlier detection approaches
for sequential data to process logs may yield many false positives, as a notable frac-
tion of task sequences might have very low frequency in the log. As an example, in
Figure 1, each of the traces in {s1, ..., s5} rarely occurs in the log, but it is not to
be classified as anomalous. Indeed, they correspond to a different interleaving of the
same enactment, which occurs in 10 of 40 traces.

(C2) On the other hand, considering the compliance with an ideal schema may lead
to false negatives, as some trace might well be supported by a model, yet represent-
ing a behavior that deviates from that observed in the majority of the traces. As an
example, in Figure 1, traces s6 and s7 correspond to the same behavior where all the
activities have been executed. Even though this behavior is admitted by the process
model on the left, it is anomalous since it only characterizes 3 of 40 traces.

Facing (C1) and (C2) is complicated by the fact that the process model underlying a
given set of traces is generally unknown and must be inferred from the data itself. E.g.,
in our running example, a preliminary question is how we can recognize the abnormality
of s9, ..., s14, without any a-priori knowledge about the model for the given process.

Addressing this question and subsequently (C1) and (C2) is precisely the aim the
paper, where an outlier detection technique tailored for process mining applications
is discussed. In a nutshell, rather than extracting a model that accurately describes all
possible execution paths for the process (but, the anomalies as well), the idea is of
capturing the “normal” behavior of the process by simpler (partial) models consisting of
frequent structural patterns. More precisely, outliers are found by a two-steps approach:

– First, we mine the patterns of executions that are likely to characterize the behavior
of a given log. In fact, we specialize earlier frequent pattern mining approaches
to the context of process logs, by (i) defining a notion of pattern which effectively
characterizes concurrent processes by accounting for typical routing constructs, and
by (ii) presenting an algorithm for their identification.

– Second, we use an outlier detection approach which is cluster-based, i.e., it com-
putes a clustering for the logs (where the similarity measure roughly accounts for
how many patterns jointly characterize the execution of the traces) and finds out-
liers as those individuals that hardly belong to any of the computed clusters or that
belong to clusters whose size is definitively smaller than the average cluster size.

By this way, we will discover, e.g., that traces s9, ..., s14 do not follow any of the
frequent behaviors registered in the log. Moreover, we will reduce the risk of both false
positives (traces are compared according to behavioral patterns rather than to the pure
sequencing of activities) and false negatives (traces that comply with the model might
be seen as outliers, if they correspond to unfrequent behavior)—cf. (C1) and (C2).

Organization. The above techniques are illustrated in more details in Section 2, while
basic algorithmic issues are discussed in Section 3. After illustrating experimental re-
sults in Section 4, we draw some concluding remarks in Section 5.

2 Formal Framework

Process-oriented commercial systems usually store information about process enact-
ments by tracing some events related to the execution of the various activities. By ab-
stracting from the specificity of the various systems, as commonly done in the literature,
we may view a log L for them as a bag of traces over a given set of activities, where
each trace t in L has the form t[1]t[2]...t[n], with t[i] (1 ≤ i ≤ n) being an activity iden-
tifier. Next, these traces are assumed to be given in input and the problem of identifying
anomalies among them is investigated.

Behavioral Patterns over Process Logs. The first step for detecting outliers is to char-
acterize the “normal” behavior registered in a process log. In the literature, this is gener-
ally done by assessing the causal relationships holding between pairs of activities (e.g.,
[3, 10]). However, this does not suffice to our aims, as abnormality may emerge not
only w.r.t. the sequencing of activities, but also w.r.t. constructs such as branching and
synchronization. Hence, towards a richer view of process behaviors, we next focus on
the identification of those features that emerge as complex patterns of executions.

Definition 1 (S-Pattern). A structural pattern (short: S -pattern) over a given set A of
activities is a graph p = 〈Ap, Ep〉, with Ap = {n, n1, . . . nk} ⊆ A such that either:
(a) Ep = {n} × ({n1, . . . nk}) – in this case, p is called a FORK -pattern–, or (b)
Ep = ({n1, . . . nk}) × {n} – in this case, p is called a JOIN -pattern. Moreover, the
size of p, denoted by size(p), is the cardinality of Ep. ut

In particular, an S -pattern with size 1 is both a FORK -pattern and a JOIN -pattern,
and simply models a causal precedence between two activities. This is, for instance, the

case of patterns p3, p4, and p5 in Figure 1. Instead, higher size patterns account for fork
and join constructs, which are typically meant to express parallel execution (cf. p1) and
synchronization (cf. p2), respectively, within concurrent processes. The crucial question
is now to formalize the way in which patterns emerge for process logs.

Definition 2 (Pattern Support). Let t be a trace and p = 〈Ap, Ep〉 be an S -pattern. We
say that t complies with p, if (a) t includes all the activities in Ap and (b) the projection
of t over Ap is a topological sorting of p, i.e., there are not two positions i, j inside t
such that i < j and (t[j], t[i]) ∈ Ep. Then, the support of p w.r.t. t, is defined as:

supp(p, t) =
{

min(t[i],t[j])∈Ep
e−|{t[k] 6∈Ap|i<k<j}|, if t complies with p

0, otherwise.

This measure is naturally extended to any trace bag L and pattern set P as follows:
supp(p, L)= 1

|L| ×
∑

t∈L supp(p, t) and supp(P, t)= 1
|P | ×

∑
p∈P supp(p, t). 2

In words, a pattern p is not supported in a trace t if some relation of precedence
encoded in the edges of p is violated t. Otherwise, the support of p decreases at the
growing of the minimum number of spurious activities (i.e., {t[k] 6∈ Ap | i < k < j})
that occur between any pair of activities in the endpoints of the edges in p.

While at a first sight this notions may appear similar to classical definitions from
frequent pattern mining research, some crucial and substantial differences come instead
into play. Indeed, the careful reader may have noticed that our notion of support is not
anti-monotonic regarding graph containment. This happens because adding an edge of
the form (x, y) to a given pattern may well lead to increase its support, since one further
activity (either x or y) may be no longer viewed as a spurious one. Consequently, the
space of all the possible S -patterns does not form a lattice, and classical level-wise
approaches cannot be used to single out those patterns whose support over a log L is
greater than a given threshold σ, hereinafter called σ-frequent patterns.

In addition, differently from many pattern mining approaches, the frequency of a
pattern p does not necessarily indicate its relevance to modeling the process behavior.
In particular, when comparing two σ-frequent patterns p and p′ such that p is a subgraph
of p′, we can safely focus on p′ if its frequency does not differ significantly from that of
p; otherwise, i.e., if p is much more frequent than p′, the subpattern p is also interesting
its own, as it can help recognizing relevant behavioral clusters. This is formalized below.

Definition 3 (Interesting Patterns). Let L be a log, and σ, γ be two real numbers.
Given two S -patterns p and p′, we say that p′ γ-subsumes p, denoted by p vγ p′, if p is
a subgraph of p′ and supp(p, L)− supp(p′, L) < γ · supp(p′, L). Further, an S -pattern
p is (σ, γ)-maximal w.r.t. L if (a) p is σ-frequent on L and (b) there is no other S -pattern
p′ over A s.t. size(p′)=size(p) + 1, p′ is σ-frequent on L, and p vγ p′. 2

Cluster-based Outliers. Once that “normality” has been modeled by means of the
discovery of interesting patterns, we can then look for those individuals whose behavior
deviates from the normal one. To this end, the second step of our outlier detection
approach performs a “co-clustering” (see, e.g., [2]) of patterns and traces, based on their

mutual correlation captured by the supp measure. Intuitively, we look for associating
pattern clusters with trace clusters, so that outliers emerge as those individuals that are
not associated to any pattern cluster or that belong to clusters whose size is definitively
smaller than the average cluster size. Abstracting from the specificity of the mining
algorithm (discussed in Section 3), the output of this method is formalized below.

Definition 4 (Coclusters and Outliers). An α-coclustering for a log L and a set P of
S -patterns is a tuple C=〈P̂ , L̂,M〉 where:

– P̂={p̂1, ..., p̂k} is a set of non-empty P ’s subsets (named pattern clusters) s.t.⋃k
j=1 p̂j = P ;

– L̂={l̂1, ..., l̂h} is a set of non-empty disjoint L’s subsets (named trace clusters) such
that

⋃h
i=1 l̂i = {t ∈ L | ∃p̂i ∈ P̂ s.t. supp(p̂i, t) ≥ α};

– M : P̂ 7→ L̂ is an invertible function that associates each pattern cluster p̂j with a
trace cluster l̂i and vice-versa, i.e., l̂i = M(p̂j) and p̂j = M−1(l̂i).

Moreover, given two real numbers α, β in [0..1], a trace t ∈ L is an (α, β)-outlier w.r.t.
C if either (a) t 6∈ ⋃h

i=1 l̂i, or (b) |l̂i| < β × 1
h

∑
l̂j∈L̂ |l̂j |, where t ∈ l̂i. 2

In words, we define outliers according to a number of clusters, discovered for both
traces and patterns based on their mutual correlations, which represent different behav-
ioral classes. More specifically, two different kinds of outlier emerge; indeed, condition
(a) deems as outlier any trace that is not assigned to any cluster (according to the min-
imum support α), while condition (b) estimates as outliers all the traces falling into
small clusters (smaller than a fraction β of the average clusters’ size).

3 An Algorithm for Detecting Outliers

In this section, we discuss the TraceOutlierMining algorithm that discovers a set
of outliers, based on the computation scheme and the framework described so far. The
algorithm is shown in Figure 2: Given a log L, a natural number pattSize and four
real thresholds σ,γ, α and β, it first computes a set P of (σ, γ)-maximal S -patterns via
the function FindPatterns, while restricting the search to patterns with no more
than pattSize arcs. Then, an α-coclustering for L and P is extracted with the func-
tion FindCoClusters (Step 2). The remaining steps are just meant to build a set U
of traces that are (α, β)-outliers w.r.t. this coclustering, by checking the conditions in
Definition 4 on all traces. Clearly, the main computation efforts hinge on the functions
FindPatterns and FindCoClusters, which are thus thoroughly discussed next.

Function FindPatterns. The main task when mining (σ, γ)-maximal S -patterns is
the mining of σ-frequent S -patterns, as the former S -patterns directly derive from the
latter ones. Unfortunately, a straightforward level-wise approach cannot be used to this
end, since the support supp is not anti-monotonic w.r.t. pattern containment.

To face this problem, FindPatterns uses a relaxed notion of support (denoted by
supp′) which optimistically decreases the counting of spurious activities by a “bonus”

Input: A log L, an upper bound pattSize ∈ N
+ for pattern size, and four real numbers σ, γ, α and β

Output: A set of (α, β)-outlier
Method: Perform the following steps:

1 P := FindPatterns (L,pattSize,σ);
2 〈P̂ , L̂,M〉 := FindCoClusters(L,P ,α);
3 U := ∅; avgSize := 1

|L̂|

∑
l̂j∈L̂

|l̂j |;
4 for each trace t in L do
5 if t 6∈

⋃h
i=1 l̂i, or |l̂i| < β × 1

h

∑
l̂j∈L̂

|l̂j |, where t ∈ l̂i then U :=U ∪ {t};

6 return U ;

Function FindPatterns(L: log; pattSize: natural number; σ: real number): set of S -patterns;
P1 Compute the set L1 = {p is an S -pattern | supp′(p, L) ≥ σ and size(p) = 1 } in a scan of L;
P2 k := 2; R := ∅
P3 repeat
P4 Candk := generateCandidates(Lk−1, L1);
P5 Compute supp(p, L) and supp′(p, L) for each p ∈ Candk through a scan of L;
P6 Lk := {p ∈ Candk | supp′(p, L) ≥ σ}; // filter out “unfrequent” patterns
P7 R := R ∪ {p ∈ Lk−1 |6 ∃p′ ∈ Lk s.t. p vγ p′ }; // select(σ, γ)-maximal patterns (cf. Def.??)
P8 k := k + 1;
P9 until Lk = ∅ or k + 1 = pattSize ;
P10 return R;

Function FindCoClusters(L: log; P : S -patterns; α: real number): α-coclustering;

C1 for each pair of patterns pi, pj in P do M(i, j) :=
| {t′|supp(pi,t′)≥α∧supp(pj,t′)≥α} |

| {t′|supp(pi,t′)≥α∨supp(pj,t′)≥α} |

C2 Compute a partition P∗ of P by applying the MCL clustering algorithm to M ;
C3 L̂ := ∅; P̂ := ∅; M := ∅;
C4 for each trace t in L

C5 p̂t :=
⋃

p̂∗∈P∗ {p̂∗ | supp(p̂∗, t) ≥ α} ;
C6 if P contains p̂t // clusterp̂t already exists and is hence associated with some trace cluster
C7 Let l̂t = M(pt) be the cluster currently associated with p̂t, and l̂tnew = l̂t ∪ {t} ;
C8 L̂ := L̂ − {l̂t} ∪ {l̂tnew}; M(p̂t) := l̂tnew ;
C9 else
C10 L̂ := L̂ ∪ { {t} }; P̂ := P̂ ∪ {pt}; M(p̂t) := {t};
C11 end if
C12 end for
C13 return 〈P̂ , L̂,M〉;

Fig. 2. Algorithm TraceOutlierMining

that depends on the size of the pattern at hand: the lower the size the more the bonus.
More precisely, within Definition 2, for each arc (t[i], t[j]) in p, we replace the term
|{t[k] 6∈ Ap | i < k < j}| with min{ |{t[k] 6∈ Ap | i < k < j}|, pattSize − size(p)}. The
reason for this is that, in the best case, each of the pattSize−size(p) arcs that might be
added to p, along the level-wise computation of patterns, will just fall between i and j.

It can be shown that function supp′ is both anti-monotonic and “safe”, in that it does
not underestimate the real support of candidate patterns. We can hence exploit it to
implement a level-wise search of patterns: After building (in Step P1) the basic set L1

of frequent S -patterns with size 1 (i.e., frequent activity pairs), an iterative scheme is
used to incrementally compute any other set Lk, for increasing pattern size k (Steps P4–
P8), until either no more patterns are generated or k reaches the upper bound given as
input. In more detail, for each k > 1, the function generateCandidates is first used to
produce the set Candk of k-sized candidate patterns, by suitably extending the patterns
in Lk−1 with those in L1 (Step P4). The set Lk is then filled with the candidate patterns
in Candk that really get an adequate support in the log (Steps P5- P6). By construction
of supp′, Lk is guaranteed to include (at least) all σ-frequent S -patterns with size k.

Eventually, by a straightforward application of Definition 3 to the patterns in Lk−1

and Lk, all (σ, γ)-maximal S -patterns with size k−1 are correctly extracted and added
to the set R, the ultimate outcome of FindPatterns. In fact, in Step P7 the original
function supp is actually used for checking (σ.γ)-maximality.

Function FindCoClusters. The function FindCoClusters encodes a method
for simultaneously clustering a log and its associated S -patterns. Provided with a log L,
a set P of S -patterns and a threshold α, the function computes, in a two-step fashion, an
α-coclustering 〈P̂ , L̂,M〉 for L and P , where P̂ (resp., L̂) is the set of pattern (resp.,
trace) clusters, while M is a mapping from P̂ to L̂.

At start, a preliminary partition P ∗ of P is built by applying a clustering procedure
to a similarity matrix S for P , where the similarity between two patterns roughly esti-
mates the likelihood that they occur in the same trace. Precisely, similarity values are
computed (Step C1) by regarding supp as a sort of contingency table over P and L (i.e.,
(p, t) measures the correlation between the pattern p and the trace t), and by filtering out
low correlation values according to the threshold α. Clearly, many classical clustering
algorithms could be used to extract P ∗ out of the matrix M (Step C2). In fact, we used
an enhanced implementation of the Markov Cluster Algorithm, which achieved good
results on several large datasets [4], and choose the number of clusters autonomously.

In the second phase (Steps C3-C13), the preliminary clustering P ∗ of the patterns
is refined, and yet used as a basis for simultaneously clustering the traces of L: new,
“high order” pattern clusters are built by merging together basic pattern clusters that
relate to the same traces. More precisely, each trace t in the log induces a pattern cluster
p̂t, which is the union of all the (basic) clusters in P ∗ that are correlated enough to t,
still based on the function supp and threshold α. It may happen that the cluster p̂t is
already in P̂ , for it was induced by some other traces; in this case we retrieve, by using
the mapping M, the cluster l̂t containing these traces (Step C7), and extend it with the
insertion of t (Step C8). Otherwise, we save a new trace cluster, just consisting of t,
in L̂, and update M to store the association between this new cluster and p̂t, which is
stored as well, in P̂ , as a novel pattern cluster (Step C10).

We pinpoint that algorithm TraceOutlierMining can be implemented without
importing the entire input log in main memory, as we may just scan it k times to find the
patterns, plus two further times to build the matrix M and map the traces to the clusters
(Steps C4-C12). Thus, main memory computation is just limited to the clustering of
interesting patterns, whose overall size can be kept low by suitably setting the thresholds
σ and γ (cf. Def. 3). This can ensure scalability over huge datasets.

4 Experimental Results

The proposed approach has been implemented in a Java prototype system, and thor-
oughly tested to assess its scalability and accuracy, on a 1800MHz/2GB Pentium IV
machine running Windows XP Pro. To this aim, we developed a generator that randomly
produces a process log of NT traces, by enabling to control several data distribution fea-
tures. Traces in the log are distributed along NC clusters, so that pout

C × NT of them
fall into clusters whose size is smaller than the average. In addition, pout × NT traces

Fig. 3. Accuracy Results.

are produced that do not comply with any of the clusters. Hence, the total percentage
of outliers in the dataset is pout

C + pout. In a nutshell, the generator works as follows:
First, it builds a set P of disjoint subschemas whose sizes are taken from a gaussian
distribution with mean SP , and then combines them into a schema WP over NA ac-
tivities, where each sub-schema is allowed to be run independently. Then, NC subsets
of P are randomly selected and enacted (according to pout

C) in WP , thereby generating
the various clusters of traces over a total of (1− pout)×NT traces. Finally, pout ×NT

traces are generated by simulating enactments that do not comply with WP .

Accuracy. Firstly, we evaluated the effectiveness of the approach against various in-
put logs, containing different percentage of outliers. To this purpose, logs were gener-
ated by varying both pout (from 0.02 to 0.32) and pout

C (from 0.05 to 0.15), and using
fixed values for the other parameters: NA=180, NT =16000, NC=4, and SP =6. Fig-
ures 3.(a), 3.(b), and 3.(c) illustrate accuracy results obtained on these data, by applying
the TraceOutlierMining algorithm with γ=4, α=0.4 and β=0.5, and pattSize=8.
More precisely, Figure 3.(a) depicts the accuracy of the approach in rediscovering all the
clusters in the input log, according to the standard micro-averaged precision measure—
computed by averaging, over all the mined clusters, the frequency of the majority class
in each cluster (i.e., the maximal percentage of elements assigned to that mined clus-
ter and coming from one input “true” cluster). Instead, Figures 3.(b) and 3.(c) depict
the capability of the approach to correctly recognize anomalous traces, by reporting the
rates of False Negatives (FN), i.e., outliers deemed as normal, and False Positives (FP),
i.e., normal traces deemed as outliers, resp.—in a sense, the outlier detection problem is
regarded here as a classification problem with two classes of objects: outliers and nor-

Fig. 4. Scalability Results.

mal individuals. These quality measures worsen when increasing the overall percentage
of outliers, still getting quasi-optimal values when this latter is under 9%.

In order to evaluate the sensitivity of the algorithm to its parameters, we generated
a log with pout=0.05 and pout

C =0.09, and the same value as in the previous test for any
other data parameter. Figure 3.(d) reports three standard accuracy measures (namely,
precision, recall, and F-measure), computed again for the binary classification problem
outliers vs. normal individuals, obtained when varying σ, and for α=0.8, γ=4, β=0.5
and pattSize=8. The figure evidences a trade-off between precision and recall, thereby
suggesting that parameters must be chosen depending on the application needs, possibly
with the help of self-tuning heuristics (as in [11]).

Scalability. In another series of experiments, we assessed the scalability of the approach
w.r.t. the size of the input data, by building a number of datasets with increasingly larger
number of traces and activities in the schema, while fixing pout=0.02, NA=125, and
NC=4. Fixed values were taken as well for all TraceOutlierMining’s parameters:
α=0.2, β=0.5, γ=4 and σ=0.15, and pattSize=10. As shown in Figure 4.(a), the total
computation time linearly scales both with the number of log traces NT and with the
size of the process schema WP used to generate the log itself (cf. SP).

Finally, Figure 4.(b) reports the total computation time spent by the algorithm over
the log for Figures 3.(a), 3.(b), and 3.(c), when keeping fixed all the parameters but σ
and γ (actually, we set again α=0.8, γ=4, β=0.5 and pattSize=8). Note that σ and γ
do impact on computation time: the lower their value the higher the time. However, a
notable increase only occurs when σ passes from 0.1 to 0.05. This effect is emphasized
when γ too is kept low, and any σ-frequent pattern is also (σ, γ)-maximal.

5 Discussion and Conclusion

Even though singling out anomalies in process executions can help in recognizing crit-
ical points in the process, current process mining approaches adopt very simple and
pragmatical solutions in its facing. Indeed, the general idea (e.g., [10]) is to exploit
user-defined thresholds to define the minimum frequency for activities below which
an execution is considered noisy. Only very recently, [11] embarked on a systematic
investigation of noisy environments, by focusing on the mining of conversation logs

and by proposing automatic techniques for identifying the right threshold value. In this
paper, we have expanded this research line, by devising an outlier detection approach
specifically tailored for process models and logs, which, differently from [11], takes
account for concurrency constructs. Moreover, due to our focus on outlier detection
rather than on noise filtering, anomalies are defined not only w.r.t. statistical global fea-
tures, but also w.r.t. major behavioral clusters. In fact, clustering-based outlier detection
techniques have already been used in different contexts (see, e.g., [8, 13, 9]). Here, this
methodology has been applied to process models and specialized to deal with categor-
ical data (cf. the various behavioral patterns), by sharing the perspective of [7] where
outliers are characterized in terms of infrequent patterns.

The proposed approach paves the way for further elaborations. For example, an av-
enue of research is to integrate it with the self-tuning techniques in [11], as to reduce as
much as possible human intervention in the mining process. Also, it would be relevant
to investigate on the definition of explanation techniques, i.e., on methods that, given a
set of outliers, abductively formulate hypotheses for recognizing critical points in the
process that can yield invalid or inappropriate behavior.

References

1. A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of unusual words.
Journal of Computational Biology, 7(1/2):71–94, January 2000.

2. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc. 9th
ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD03), 89–98, 2003.

3. S. Dustdar, T. Hoffmann, and W. M. P. van der Aalst. Mining of ad-hoc business processes
with teamlog. Data and Knowledge Engineering, 55(2):129–158, 2005.

4. A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Res, 30(7):1575–1584, April 2002.

5. T. E. Fawcett and F. Provost. Fraud detection. In Handbook of data mining and knowledge
discovery, pp. 726–731. Oxford University Press, 2002.

6. G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Discovering expressive process models by
clustering log traces. IEEE Trans. on Knowledge and Data Engin., 18(8):1010–1027, 2006.

7. Z. He, Z. Xu, J.Z. Huang, and S. Deng. Fp-outlier: Frequent pattern based outlier detection.
In Proc. of CIS’05, pp. 735–740, 2005.

8. M. F. Jaing, S. S. Tseng, and C. M. Su. Two-phase clustering process for outliers detection.
Pattern Recogn. Lett., 22(6-7):691–700, 2001.

9. S. Jiang, X. Song, H. Wang, J.-J. Han, and Q.-H. Li. A clustering-based method for unsuper-
vised intrusion detections. Pattern Recogn. Lett., 27(7):802–810, 2006.

10. L. Maruster, A.J.M.M. Weijters, W. M. P. van der Aalst, and A. van den Bosch. A rule-based
approach for process discovery: Dealing with noise and imbalance in process logs. Data
Mining and Knowledge Discovery, 13(1):67–87, 2006.

11. H.R. Motahari Nezhad, R. Saint-Paul, B. Benatallah, and F. Casati. Protocol discovery from
imperfect service interaction logs. In Proc. of ICDE’07, pp. 1405–1409, 2007.

12. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A. Weijters.
Workflow mining: a survey of issues and approaches. Data & Know. Engin., 47(2):237–267,
2003.

13. D. Yu, G. Sheikholeslami, and A. Zhang. Findout: finding outliers in very large datasets.
Knowledge Information Systems, 4(4):387–412, 2002.

