
458 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

Training Distributed GP Ensemble With a Selective
Algorithm Based on Clustering and Pruning for

Pattern Classification
Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano

Abstract—A boosting algorithm based on cellular genetic pro-
gramming (GP) to build an ensemble of predictors is proposed. The
method evolves a population of trees for a fixed number of rounds
and, after each round, it chooses the predictors to include in the en-
semble by applying a clustering algorithm to the population of clas-
sifiers. Clustering the population allows the selection of the most
diverse and fittest trees that best contribute to improve classifica-
tion accuracy. The method proposed runs on a distributed hybrid
environment that combines the island and cellular models of par-
allel GP. The combination of the two models provides an efficient
implementation of distributed GP, and, at the same time, the gen-
eration of low sized and accurate decision trees. The large amount
of memory required to store the ensemble affects the performance
of the method. This paper shows that, by applying suitable pruning
strategies, it is possible to select a subset of the classifiers without
increasing misclassification errors; indeed for some data sets, for
up to 30% of pruning, ensemble accuracy increases. Experimental
results show that the combination of clustering and pruning en-
hances classification accuracy of the ensemble approach.

Index Terms—Boosting, classification, clustering, data mining,
ensemble, genetic programming (GP).

I. INTRODUCTION

E NSEMBLE LEARNING algorithms are an important
topic of interest in the research community because of

their capability of improving the classification accuracy of
any single classifier. An ensemble of classifiers is constituted
by a set of predictors that, instead of yielding their individual
decisions to classify new examples, combine them together by
adopting a strategy [4]–[6], [12], [19]. It has been pointed out
that the boost in accuracy is tightly related to the diversity of the
classifiers [12], [22]. Two classifiers are defined diverse if they
make different incorrect predictions on new data points. Several
approaches for building ensembles satisfying the diversity
demand have been proposed. The AdaBoost algorithm intro-
duced by Freund and Schapire [19] proved to be efficacious
at generating different classifiers. It enables the underlying
learning algorithm to focus on harder examples by adaptively

Manuscript received June 1, 2006; revised December 1, 2006, and June 5,
2007. First published February 2, 2008; last published July 30, 2008 (projected).
This work was supported in part by Regione Calabria (Programma Operativo
Regionale—POR, Misura 3.16.B2 under Research Projects MIUR-legge 297/
1999 and LOGICA Project.

The authors are with the Institute of High Performance Computing and Net-
working (ICAR), Italian National Research Council (CNR), University della
Calabria, 87036 Rende, Italy (e-mail: folino@icar.cnr.it; pizzuti@icar.cnr.it;
spezzano@icar.cnr.it).

Digital Object Identifier 10.1109/TEVC.2007.906658

changing the distributions of the training set on the base of the
performance of previous classifiers.

The combination of genetic programming (GP) [21] and en-
semble techniques has been receiving a lot of attention because
of the improvements that GP obtains when enriched with these
methods [10], [17], [20], [23], [25], [26], [30].

It is worth pointing out that an advantage of using GP, not yet
exploited, is that a population of predictors could be considered
as an ensemble of predictors. This assumption would provide
at the same time many diverse classifiers. However, the size of
a population generally is not small. Another problem could be
the accuracy of some of the trees contained in the population.
Taking all the individuals of a population at each generation is
not a practical approach because of the resulting high number of
predictors, possibly of low quality. A plausible proposal would
be to use a clustering algorithm [13] to group individuals in the
population that are similar with respect to a similarity measure,
and then take the representatives of these clusters.

In this paper, a distributed boosting cellular GP classifier to
build the ensemble of predictors is proposed. The algorithm,
named (Clustering Boost Cellular Genetic Programming Classi-
fier) ClustBoostCGPC, runs on a distributed environment based
on a hybrid model [2] that combines the island model with the
cellular model. The island model enables an efficient implemen-
tation of distributed GP. On the other hand, the cellular model
allows the generation of classifiers with better accuracy and re-
duced tree size. Each node of the network is considered as an
island that contains a learning algorithm, based on cellular GP,
whose aim is to generate decision-tree predictors trained on the
local data stored in the node. Every genetic program, however,
though isolated, cooperates with the neighboring nodes by col-
laborating with the other learning components located on the
network, and takes advantage of the cellular model by asynchro-
nously exchanging the outermost individuals of the population.

ClustBoostCGPC constructs an ensemble of accurate and di-
verse classifiers by employing a clustering strategy to each sub-
population located on the nodes of the network. The strategy, at
each boosting round, finds groups of individuals similar, with
respect to a similarity measure, and then takes the individual
of each cluster having the best fitness. This allows the selection,
from each subpopulation, of the most dissimilar and fittest trees.

The main drawback of the approach proposed is that the size
of the ensemble increases as the number of clusters and the
nodes of the network increases. Thus, we could ask if it is pos-
sible to discard some of these predictors and still obtain com-
parable accuracy. This paper shows that, by applying suitable

1089-778X/$25.00 © 2008 IEEE

FOLINO et al.: TRAINING DISTRIBUTED GP ENSEMBLE WITH A SELECTIVE ALGORITHM 459

pruning strategies, it is possible to select a subset of the clas-
sifiers without augmenting misclassification errors; indeed, for
up to 30% of pruning, ensemble accuracy increases. The main
contributions of the paper can be summarized as follows.

ClustBoostCGPC is a distributed ensemble method that
mixes a supervised classification method with an unsupervised
clustering method to build an ensemble of predictors.

Clustering the population of classifiers revealed a successful
approach. In fact, the misclassification error rate of the ensemble
sensibly diminishes when the ensemble is constituted by the best
individuals in the clustered populations.

The method is enriched with pruning strategies that allow the
reduction of the size of the ensemble, and, more notably, to im-
prove classification accuracy. This result agrees with the logical
principle of Occam’s razor that one should not make more as-
sumptions than the minimum needed and choose, from a set of
equivalent models, the simplest one.

The algorithm runs on a distributed environment. The dis-
tributed architecture gives significant advantages in flexibility,
extensibility, and efficiency since each node of the network
works with its local data, and communicates the local model
computed with the other nodes to obtain the results.

To assess the effectiveness of the method, experiments on sev-
eral data sets are presented and compared with other approaches
when different sizes of the ensemble are used.

Three pruning strategies are presented and compared to an-
alyze their influence on the ensemble accuracy. The combina-
tion of these strategies is then investigated with the aim of de-
creasing ensemble size and improving classification accuracy.
Experimental results pointed out that the proposed approach is
particularly effective since it reduces the misclassification error
rate of the algorithm.

This paper is organized as follows. The next section reviews
ensemble techniques. In Section III, the ClustBoostCGPC algo-
rithm and the software architecture used to run it are described.
Section IV describes the pruning strategies adopted to reduce
the size of the ensemble. In Section V, the results of the method
on some standard problems are presented. Section VII, finally,
concludes this paper by giving a discussion of the approach and
some final considerations.

II. ENSEMBLE TECHNIQUES

Let be a training set, where
called example or tuple or instance, is an attribute vector

with attributes and is the class label associated with .
Let denote the set of tuples and the set of class labels.
Each attribute can be either discrete or continuous. A predictor
(classifier), given a new example, has the task to predict the class
label for it.

Ensemble techniques [4], [5], [12], [28] build a number of
predictors, each on a different training set, then combine them
together to classify the test set. Boosting was introduced by
Schapire [28] and Freund [29] for boosting the performance of
any “weak” learning algorithm, i.e., an algorithm that “gener-
ates classifiers which need only be a little bit better than random
guessing” [29].

The boosting algorithm, called AdaBoost, adaptively changes
the distribution of the training set depending on how difficult

each example is to classify. Given the number of trials
(rounds) to execute, weighted training sets
are sequentially generated and classifiers are
built to compute a weak hypothesis . Let
denote the weight of the example at trial . At the beginning,

for each . At each round , a weak
learner , whose error is bounded to a value strictly less
than 1/2, is built and the weights of the next trial are obtained
by multiplying the weight of the correctly classified examples
by and renormalizing the weights so that

. Thus, “easy” examples get a lower weight,
while “hard” examples, that tend to be misclassified, get higher
weights. This induces AdaBoost to focus on examples that are
hardest to classify. The boosted classifier gives the class label
that maximizes the sum of the weights of the weak hypotheses
predicting that label, where the weight is defined as .

Freund and Schapire [29] showed theoretically that
AdaBoost can decrease the error of any weak learning algo-
rithm and introduced two versions of the method AdaBoost.M1
and AdaBoost.M2. AdaBoost.M1, when the number of classes is
two, requires that the prediction be slightly better than random
guessing. However, when the number of classes is more than 2,
a more sophisticated error measure called pseudoloss is intro-
duced. In this paper, we use the AdaBoost.M1 version.

Proposals to combine GP and ensemble techniques can be
found in [10], [17], [20], [23], [25], [26], and [30].

In particular, the Boost Cellular Genetic Programming Clas-
sifier (BoostCGPC) [17] implements the AdaBoost.M1 boosting
algorithm of Freund and Shapire [19] on a parallel computer
by using the algorithm Cellular Genetic Programming for Data
Classification (CGPC) [15] as base classifier. Given a training
set of size and the number of processors used to run
the algorithm, BoostCGPC partitions the population of classi-
fiers in subpopulations, creates subsets of tuples of size

by uniformly sampling instances from with replace-
ment, and builds an ensemble of classification trees by choosing
from each subpopulation the individual having the best fitness.
In the next section, the algorithm ClustBoostCGPC is presented
and the main differences with BoostCGPC are outlined.

III. CLUSTBOOSTCGPC

In this section, the description of the algorithm ClustBoost-
CGPC is given. The method builds an ensemble of classifiers
by using, analogously to BoostCGPC, at each round of the
boosting procedure, the algorithm CGPC [15] to create a pop-
ulation of predictors. However, instead of applying the Boost
CGPC strategy of choosing from each subpopulation the indi-
vidual having the best fitness, it finds groups of individuals
similar with respect to a similarity measure by employing the
clustering algorithm -means, and then takes the individual of
each cluster having the best fitness. Before giving a detailed
outline of the approach proposed, a brief review of the CGPC
and -means methods is provided.

A. The CGPC Algorithm

GP can be used to inductively generate a GP classifier as a
decision tree for the task of data classification [21]. Decision
trees, in fact, can be interpreted as composition of functions

460 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

Fig. 1. An example of the decision tree with terminal set � � ���� � and
function set � � �� �� � � � � �� � �� � � �� � �� � � �� � �� � � ��.

where the function set is the set of attribute tests and the
terminal set are the classes. The function set can be obtained
by converting each attribute into an attribute-test function. For
each attribute , if are the possible values can
assume, the corresponding attribute-test function has arity
and if the value of is , then . When a
tuple has to be evaluated, the function at the root of the tree tests
the corresponding attribute, and then executes the argument that
results from the test. If the argument is a terminal, then the class
name for that tuple is returned, otherwise, the new function is
executed. Suppose a data set with two class labels and , and
attribute set ,
where is the set of pos-
sible values , respectively, can assume. Then,
the terminal set is and the function set

.
Fig. 1 shows a simple decision tree to decide if a tuple belongs
to either the class or . For example, if a tuple has the value
of the attribute equal to and that of equal to , then it
is classified as . Note that the nodes are labeled directly with
the name of the attributes instead of the name of the associated
function, for simplicity reasons. To evaluate the accuracy of the
decision tree, the fraction of tuples classified into the correct
class is computed. The fitness function [21] is defined as the
number of training examples classified into the correct class.
The CGPC algorithm used for data classification is described
in Fig. 2.

CGPC adopts a cellular model of GP [27]. In the cellular
model, each individual has a spatial location, a small neighbor-
hood, and interacts only within its neighborhood. The main dif-
ference in a cellular GP, with respect to a panmictic algorithm,
is its decentralized selection mechanism and the genetic opera-
tors (crossover, mutation) adopted. Cellular models of GP have
been used to solve complex problems more accurately and with
a minor number of iterations. Although fundamental theory is
still an open research line, it has been empirically reported as
being useful in maintaining diversity, and promoting slow diffu-
sion of solutions through the grid. Part of their behavior is due
to a lower selection pressure compared with that of panmictic
GP.

CGPC generates a classifier as follows. At the beginning, for
each cell, a random individual is generated (step 3) and its fitness

Fig. 2. The CGPC algorithm.

is evaluated (step 4). The fitness is the number of training ex-
amples classified in the correct class. Then, at each generation,
every tree undergoes one of the genetic operators (reproduction
(step 19), crossover (steps 9–13), mutation (steps 15–17) de-
pending on the probability test. If crossover is applied, the mate
of the current individual is selected as the neighbor having the
best fitness, and the offspring is generated. The current tree is
then replaced by the best of the two offsprings if the fitness of
the latter is better than that of the former. After the execution
of the number of generations defined by the user, the individual
with the best fitness represents the classifier.

B. The -Means Algorithm for Clustering Classification Trees

The algorithm -means [13] is a well-known clustering
method that partitions a set of objects into groups so that the
intracluster similarity is high but the intercluster similarity is
low. Cluster similarity is measured with respect to the mean
value of the objects in a cluster, which can be considered as the
cluster’s center. The algorithm first randomly selects objects,
and assigns the remaining objects to the most similar cluster,
where similarity is computed as the distance between the object
and the center of the cluster. After that, the new mean values
of the clusters are computed and this process is repeated until
the criterion function converges. Typically, the squared-error
criterion is used, defined as ,
where is the sum of square error for all the objects, is
a distance measure, generally the Euclidean distance, is an
object, and is the mean of cluster . Both and are
multidimensional objects.

In order to apply the -means algorithm to a population of
trees, it is necessary to specify the concept of distance between
two individuals. To this end, we represent each classification
tree by a couple , where is its fitness value and is its
distance from the empty tree , considered as the origin tree.
This representation allows us to take into account both the the
concepts of phenotypic (i.e., based on fitness) and genotypic

FOLINO et al.: TRAINING DISTRIBUTED GP ENSEMBLE WITH A SELECTIVE ALGORITHM 461

Fig. 3. (a) and (b) Two example trees and (c) the overlapped tree to compute their distance.

(i.e., based on the syntactical structure of individuals) diversity
of the tree population [8]. The metric adopted to measure the
structural distance between two genetic trees is that introduced
by Ekárt and Németh [14].

The distance between two trees and is calculated in
three steps: 1) and are overlapped at the root node and
the process is applied recursively starting from the leftmost sub-
trees. 2) For each pair of nodes at matching positions, the differ-
ence of their codes (possibly raised to an exponent) is computed.
3) The differences computed in the previous step are combined
in a weighted sum.

Formally, the distance of two trees and with roots
and is defined as

where is a coding function
that assigns a numeric code to each node

of the tree, is the th of the possible children of
a generic node , if , or the empty tree, otherwise. The
constant is used to give different weights to nodes belonging
to different levels and is a constant such that .

For the example data set of the previous section, an encoding
could be

.
Fig. 3 shows two trees [Fig. 3(a)] and [Fig. 3(b)]

with the weighted coding of each node, and their overlapping
[Fig. 3(c)]. Corresponding nodes are enclosed in the rectan-

gular boxes. The distance between and , fixed and
, is computed as follows:

When computing the distance between a tree and the empty
tree gives simply a weighted sum of the codes
associated with the attributes appearing in the tree.

Once for each tree, the couple has been computed, since
both and are numbers, the -means algorithm employs the
Euclidean distance to the tree population by using this two di-
mensional representation.

C. The Distributed ClustBoostCGPC Algorithm to Build GP
Ensemble

ClustBoostCGPC is a new ensemble learning algorithm for
constructing GP ensembles. The idea is to incorporate different
GP classifiers, each trained on different parts or aspects of the
training set, so that the ensemble can learn from the whole
training data. ClustBoostCGPC applies the boosting technique
in a distributed hybrid model of parallel GP and uses a clus-
tering-based selective algorithm to maintain the diversity of
the ensemble by choosing in each population the most accurate
predictors of each group.

Our approach aims to emphasize the cooperation among the
individuals of the population (classifiers) using a hybrid model
of parallel GP. It combines the island and cellular models of GP
to enhance accuracy and to reduce performance fluctuation of

462 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

the programs produced by GP. We used a hybrid model essen-
tially for two reasons. First, the island model represents the best
distributed implementation of GP that makes use of the domain
decomposition technique. Second, the cellular model in each is-
land allows the generation of classifiers with better accuracy and
reduced tree size.

The island model is based on subpopulations created by di-
viding the original population into disjunctive subsets of in-
dividuals, usually of the same size. Each subpopulation is as-
signed to an island and a standard (panmictic) GP algorithm
is executed on it. Occasionally, the migration process between
subpopulations is carried out after a fixed number of genera-
tions. The hybrid model modifies the island model by substi-
tuting the standard GP algorithm with a cellular GP algorithm
[16]. The introduction of the cellular approach improves the ex-
ploration capabilities of the algorithm because of a lower selec-
tion pressure that promotes a slow diffusion of solutions through
the grid. In our model, we use the CGPC algorithm in each is-
land. Each island operates in parallel on a subset of the tuples of
the training set. The training and combination of the individual
classifiers are carried together in the same learning process by
a cooperative approach. Our model is based on the coevolu-
tion of different subpopulations of classifiers and a migration
process that transfers asynchronously individuals among sub-
populations.

In order to improve the prediction accuracy achieved by an
ensemble, we need to ensure accuracy of classifiers and diver-
sity among them. Although GP does not require any change in
a training data to generate individuals of different behaviors, in
[17], it is shown that GP enhanced with a boosting technique
improves both the prediction accuracy and the running time
with respect to the standard GP. ClustBoostCGPC combines the
boosting method and the distributed hybrid model of GP to iter-
atively build an ensemble of classification trees through a fixed
number of rounds.

The selection at each round of classifiers satisfying both high
diversity and accuracy requirements is a difficult optimization
task. To this end, in ClustBoostCGPC, we applied a method that
gradually achieves diversity and accuracy. First, we employ the

-means clustering algorithm to divide all individuals of each
subpopulation into groups (clusters) according to similarity of
the classifiers. Then, the most accurate individual in each group,
i.e., that having the best fitness value is selected.

A more formal description of the algorithm in pseudocode
is shown in Fig 4. Let a network of nodes be given, each
having a training set of size . At the beginning, for every
node , a subpopulation is initialized with
random individuals and the weights of the training instances
are set to (steps 1–4). Each subpopulation is evolved
for a fixed number of generations (step 7) and trained on its
local training set by running a copy of the CGPC algorithm
(Fig. 2). After that, the evolved population of trees is clustered
by using the -means algorithm [13] and groups of individuals
are determined (step 8). For each group, the tree having the best
fitness is chosen as representative of the cluster and output as the
hypothesis computed. Then, the individuals of each subpopu-
lation are exchanged among the nodes (step 9) and constitute
the ensemble of predictors used to determine the weights of the

Fig. 4. The ClustBoostCGPC algorithm.

Fig. 5. Software architecture of ClustBoostCGPC.

examples for the next round. The error is computed by sum-
ming the weights of the misclassified tuples (steps 10–12). The
weights for the next trial (step 15) are obtained by multiplying
the weight of the correctly classified examples by , that
is the mean of the values (steps 13–14) of the

weak hypotheses. Since is less than 1, “easy” exam-
ples (i.e., already correctly classified) get a lower weight, while
“hard” examples that tend to be misclassified get higher weights.
The boosted classifier gives the class label that maximizes the
sum of the weights of the weak hypotheses predicting that label,
where the weight is defined as (step 20). Note that the
higher the weight of a weak hypothesis, the lower the misclas-
sification error rate of the corresponding classifier.

We implemented ClustBoostCGPC using a distributed infra-
structure and a distributed framework to run GP. The software
architecture of ClustBoostCGPC is illustrated in Fig. 5.

We used dCAGE (distributed cellular GP system) a dis-
tributed environment to run genetic programs by an island
model, which is an extension of [16]. dCage has been modified
to support the hybrid variation of the classic island model.

FOLINO et al.: TRAINING DISTRIBUTED GP ENSEMBLE WITH A SELECTIVE ALGORITHM 463

In the new implementation, to take advantage of the cellular
model of GP, the islands are evolved independently using
the CGPC algorithm, and the outermost individuals are asyn-
chronously exchanged. The training sets
assigned to each of the islands can be thought of as por-
tions of the overall data set. The size of each subpopulation

present on a node, must be greater than
a threshold determined from the granularity supported by
the processor. Each node, using a training set and a sub-
population , implements a classifier process as a
learning algorithm and generates a population of classifiers.
dCAGE distributes the evolutionary processes (islands) that
implement the classification models over the network nodes
using a configuration file that contains the configuration of the
distributed system. dCAGE implements the hybrid model as a
collection of cooperative autonomous islands running on the
various hosts within an heterogeneous network that works as
a peer-to-peer system. The Message Passed Interface (MPI)
library is used to allow cooperation among the islands. Each
island employed as a peer is identical to each other. At each
round, a collector process collects the GP classifiers from the
other nodes, handling the fusion of the results on behalf of
the other peers, and redistributes the GP ensemble for future
predictions to all the network nodes.

The configuration of the structure of the processors is based
on a ring topology and a classifier process is assigned to each.
During the boosting rounds, each classifier process maintains
the local vector of the weights that directly reflect the prediction
accuracy on that site. At every boosting round, the hypotheses
generated by each of these classifiers (in Fig. 5) are
clustered by employing the standard -means algorithm. Then,
the most accurate classifier in each group is selected to be in-
cluded in the ensemble of predictors.

Next, the ensemble built so far is broadcasted to each classi-
fier process to locally recalculate the new vector of the weights
and a copy of the ensemble is stored in a repository. After the
execution of the fixed number of boosting rounds, the classi-
fiers stored in the repository are used to evaluate the accuracy
of the classification algorithm.

It is worth pointing out that though ClustBoostCGPC and
BoostCGPC build an ensemble of classifiers for the task of data
classification, there are some main differences between the two
approaches. ClustBoostCGPC is a distributed algorithm that
runs the boosting technique on a hybrid model of parallel GP
by combining the island and cellular models. Thus, it assumes
that each node has its own population and its own data set and
that the classification algorithm CGPC be trained on the local
data there contained.

On the other hand, BoostCGPC implements the boosting
technique on a parallel computer by adopting the parallel cel-
lular model of GP. In this case, if the number of processors at
disposal to run the algorithm is , the population is partitioned
in subpopulations, one for each processor, and subsets of
tuples are created by uniformly sampling instances from the
overall training set with replacement.

Another main difference regards the individuals selected
for participating to the ensemble. After a number of genera-
tions, BoostCGPC chooses the predictor with the best fitness.

ClustBoostCGPC, instead, applies the clustering algorithm
to the population of trees and picks the individual of each
cluster having the best fitness. Though this policy proves to
be beneficial for the accuracy of the method, as experimental
results show, it introduces a memory overhead. The next section
suggests the use of pruning strategies that partially overcome
this problem.

IV. REDUCING THE SIZE OF THE ENSEMBLE

A drawback of the method proposed, and of the ensemble
methods, in general, is the large amount of memory required to
maintain the classifiers. In our case, the size of the ensemble
increases as the number of clusters and the number of nodes
of the network increase. Thus, we could ask if it is possible to
discard some of the predictors generated and still obtain compa-
rable accuracy. This approach is well known in the literature and
it is called pruning [24] or thinning [3] the ensemble. Pruning
the ensemble requires a strategy to choose the classifiers to re-
move. There is a general agreement that the predictors forming
the ensemble have to be both diverse and accurate. A pruning
policy, thus, identifies the most similar classifiers and removes
them. The concept of similarity in this context plays a central
role. In the Machine Learning community, diversity means that
the predictors have to make independent classification errors,
i.e., they disagree with each other. A disagreement measure used
in [24] is, for example, the statistics [1]. In the GP commu-
nity, the concept of diversity is perceived in a different way [7],
[9]. In particular, it reflects the structural diversity of the genetic
programs in a generation [14]. In this paper, we adopt different
diversity measures to choose the trees to prune. In the experi-
mental results, we compare them and we show that the ensemble
can be quite substantially pruned without increasing misclassifi-
cation errors; indeed, up to 30% of pruning, ensemble accuracy
increases.

The first two diversity measures used are the pairwise dis-
tance between two trees (denoted pairwise), and the distance
of a tree from the empty tree (denoted origin), introduced in
Section III-B.

The third measure is the statistics, defined as follows. Given
two classifiers and , where , consider the
following contingency table . For elements ,
define to contain the number of examples in the training
set for which and .

If and give identical classifications, all nonzero counts
will appear along the diagonal. If and are very different,
then there should be a large number of counts off the diagonal.

Let

be the probability that two classifiers agree, where is the size
of the training set and is the number of different classes.
Also, let

464 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

TABLE I
DATA SETS USED IN THE EXPERIMENTS

be the probability that two classifiers agree by chance, given the
observed counts in the table. Then, the measure of disagree-
ment between classifiers and is defined as

A value of implies that and the two classifiers
are considered to be different. A value of implies that

, which means that the two classifiers agree on each
example.

Thus, a pruning strategy first computes the , origin, and pair-
wise measures, and then chooses the predictors to eliminate in
the following way.

If the origin measure is used, the predictors are ordered in
increasing order of and eliminated by starting with
that having the highest value until the pruning percentage fixed
has been reached.

If the pairwise measure is adopted, the distance
values are ordered in increasing

order. The pruning strategy eliminates the pairs of
classifiers having the lowest value of (the highest
value of), i.e., the more similar, considering them in
increasing order of dist (decreasing order of) until the pruning
percentage fixed has been reached.

V. EXPERIMENTAL RESULTS

In this section, ClustBoostCGPC and BoostCGPC are com-
pared with seven data sets. Two data sets (Census and Covtype)
are from the UCI KDD Archive,1 three (Segment, Satimage, and
Adult) are taken from the UCI Machine Learning Repository,2

one (Phoneme) is from the ELENA project,3 and one (Mam-
mography) is a research data set used in [11]. The size and class
distribution of these data sets are described in Table I.

The experiments were performed using a network composed
by 10 1.133 GHz Pentium III nodes having 2 Gb of memory,
interconnected over high-speed LAN connections.

All results were obtained by averaging over 50 runs by using
70% of the data sets for training and the remaining 30% for
testing. In order to do a fair comparison between ClustBoost-
CGPC and BoostCGPC, we used a network of ten nodes for
both algorithms. The number of rounds was 10, population
size 100 on each node, number of generations 100 (for a total
number of generations), and number of clus-
ters fixed for ClustBoostGPC 5 and 10. Thus, BoostCGPC gen-

1http://kdd.ics.uci.edu/
2http://www.ics.uci.edu/~mlearn/MLRepository.html
3ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases

TABLE II
MAIN PARAMETERS USED IN THE EXPERIMENTS

erated 100 classifiers, while ClustBoostCGPC, in one run 500
predictors, and in the other run 1000 predictors. However, the
size of the ensembles for ClustBoostCGPC is greater than that
of BoostCGPC. To analyze how the former algorithm performs
when the number of predictors in the ensemble is equal to that in
the latter, when executing BoostCGPC, we considered the first 5
and 10 fittest individuals from each subpopulation at each round.
In this way, we obtained another two ensembles of size 500 and
1000.

A main difference between ClustBoostCGPC and Boost-
CGPC regards the partitioning of the training sets on the nodes
of the network. ClustBoostCGPC runs on a distributed envi-
ronment where it is supposed that each node has its own data
set. In order to simulate this kind of situation, each data set
has been equally partitioned among the ten nodes. Thus, each
node contains 1/10 of the training set. BoostCGPC runs on a
parallel computer, thus according to the sequential
approach, it creates ten subsets of tuples of size 1/10 the overall
training set by uniformly sampling instances with replacement.
The parameters used for the experiments are shown in Table II.

The main objectives of the experiments have been to inves-
tigate the influence of the clustering approach on the accuracy
when different number of clusters are chosen, and to analyze
and compare the pruning strategies described in the previous
section.

Regarding the first objective, ClustBoostCGPC has been ex-
ecuted by fixing the number of clusters to 5 and 10, thus by
using an ensemble of 500 an 1000 predictors, and compared
with BoostCGPC that uses an ensemble of 100, 500, and 1000
predictors obtained as explained above. Table III shows the clas-
sification errors of the two algorithms. The table shows that for
all the data sets, the clustering strategy sensibly improves the ac-
curacy of the method. For example, on the Adult data set, Clust-
BoostCGPC (five clusters) obtains an error of 14.749 instead
of 17.231, 16.29, and 15.85 of BoostCGPC with ensemble size
100, 500, and 1000, respectively. The table points out that the
clustering approach is meaningful because the choice of the best
individuals in the clustered populations produces a much better
result with respect to choosing either the best, or the best five,
or the best ten classification trees. However, as the table shows,
augmenting the number of clusters is no more beneficial because
the reduction of the misclassification error rate is minimal.

Table IV compares ClustBoostCGPC (ensemble size 500)
with the other well-known classifications methods C4.5, SVM,
and their boosted versions. We used the implementations

FOLINO et al.: TRAINING DISTRIBUTED GP ENSEMBLE WITH A SELECTIVE ALGORITHM 465

TABLE III
COMPARISON OF THE MISCLASSIFICATION ERROR RATE OF BOOSTCGPC AND CLUSTBOOSTCGPC WITH DIFFERENT ENSEMBLE SIZES

TABLE IV
COMPARISON OF THE MISCLASSIFICATION ERROR RATE OF CLUSTBOOSTCGPC AND C4.5, SVM, AND THEIR BOOSTED VERSIONS

TABLE V
ERROR AND GAIN OF PRUNED CLUSTBOOSTCGPC WITH RESPECT TO UNPRUNED CLUSTBOOSTCGPC AND UNPRUNED BOOSTCGPC

contained in the WEKA [31] open source software available
at http://www.cs.waikato.ac.nz/ml/weka/. The table shows that
ClustBoostCGPC outperforms the other approaches on four
out of the seven data sets. Regarding Covtype, the algorithms

and boosted implemented in WEKA were not able
to give an answer because of the size of the data set.

Using an ensemble of 500 predictors instead of 100 needs
a larger amount of memory to store all the classifiers. Thus,
the improved accuracy is obtained at the cost of higher storage
requirements. In the second set of experiments, we show that
the ensemble can be substantially pruned without decreasing
performance. To this end, we considered the ensemble of 500
predictors and we applied the pruning strategies described in
the previous section.

Table V reports the results of the different pruning strategies
for all the data sets. The percentages of pruning experimented
are 10%, 20%, 50%, and 80% of the ensemble. The table re-
ports in the column named the misclassification error rate
of the ensemble pruned of the percentage showed in the corre-
sponding row. In column GainC, the relative gain in percentage
of the pruned ensemble with respect to the complete ensemble
generated by ClustBoostCGPC. In column GainB, the relative
gain in percentage of the pruned ensemble with respect to the en-
semble generated by BoostCGPC. A positive value means that
the misclassification error rate is diminished, while a negative
one that it has increased. To statistically validate the results, we
performed a two-tailed paired t-test at 95% confidence interval.
The values in bold of the columns highlight the percentage

466 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

Fig. 6. Mean performance of pruned ClustBoostCGPC relative to unpruned
ClustBoostCGPC with different pruning percentages.

of training set needed by ClustBoostCGPC to obtain a lower
error, meaningful with respect to the statistical test.

The table clearly shows that up to 50% of pruning, for all the
data sets, independently the pruning strategy used, the ensemble
can be reduced and still have an error lower than BoostCGPC
(see column GainB). For example, the error obtained with the
ensemble generated by ClustBoostCGPC on the Census data
set pruned of 50% with the pairwise measure is 4.944, while
that generated by BoostCGPC is 6.12, thus using the former ap-
proach gives a gain of 19.22%. It is worth noting that Boost-
CGPC with ensemble size 500 and 1000 obtains an error of
5.76 and 5.51, respectively, which is higher than the pruned en-
semble of 250 predictors. Furthermore, pruning improves the
performance of ClustBoostCGPC if 10% of the classifiers are
eliminated. Indeed the pairwise strategy, for almost all the data
sets, allows the pruning up to 20% of predictors and still de-
creases the misclassification error rate of ClustBoostCGPC. The
structural diversity used in GP thus gives better results than the
behavioral diversity employed in the Machine Learning com-
munity. This result could be explained by the observation that
structural diversity means that the classification trees have nodes
labelled with different attributes. As a consequence, the pruned
ensemble is able to better generalize because of the presence of
independent predictors.

Finally, Figs. 6 and 7 show the overall performances, aver-
aged for all the data sets, in terms of the relative gain. In par-
ticular, Fig. 6 displays the relative performance of each pruning
strategy computed as the difference between the corresponding
misclassification error rate and that obtained by BoostCGPC di-
vided by the gain, that is the difference in percentage points be-
tween these errors. A value of zero means that the pruned en-
semble obtains the same performance as BoostCGPC, while a
value greater than zero that the pruned ensemble performs better
than BoostCGPC. Fig. 7 shows the same performance results
compared with respect to ClustBoostCGPC. These two figures

Fig. 7. Mean performance of pruned ClustBoostCGPC relative to unpruned
BoostCGPC with different pruning percentages.

summarize the results of Table V and clearly point out that the
pairwise strategy behaves better than the two others.

As already observed, Table V points out that independently,
the pruning strategy, the deletion of 10% of trees enhance the ac-
curacy of the method, while 20% of pruning is beneficial only
for pairwise and, with regards to , for some data sets.
Thus, we wanted to verify whether the combination of the three
strategies could produce better results than a single one. To this
end, we deleted 20% of trees by choosing 10% of trees with one
strategy and 10% with another, i.e., we combined pairwise and

, pairwise and origin, and and origin. Then, we
deleted 30% of predictors by picking 10% of trees with respect
to each pruning strategy. Table VI shows the result of this ex-
periment. In the table stands for pairwise, for , and

for origin. The results are very interesting. The deletion of
20% of trees from the ensemble by picking 10% with a strategy
and another 10% with another strategy generates an error lower
than both the ensemble pruned of 20% by applying one strategy
and the unpruned ensemble. In particular, the error of the un-
pruned ensemble for the Census, Mammography, and Phoneme
data sets diminishes from 4.695, 1.309, 16.968 to 4.421, 1.275,
16.265, respectively, when the pairwise and strategies are
combined. For Adult, Covtype, Satimage, and Segment the re-
duction from 14.749, 30.850, 20.220, 12.127 to 14.726, 30.205,
20.049, 12.122, respectively, is obtained by mixing the pairwise
and origin strategies. An error decrease of the pruned ensemble
with respect to the unpruned one is attained also when 30% of
classifiers are deleted by putting together the three strategies for
the Covtype, Phoneme, and Satimage data sets. In any case, the
elimination of 30% of predictors by mixing the , pairwise,
and origin strategies is always better than using one of them at a
time. These experiments indicate that the ensemble techniques
can achieve improved accuracy when good pruning policies are
adopted.

FOLINO et al.: TRAINING DISTRIBUTED GP ENSEMBLE WITH A SELECTIVE ALGORITHM 467

TABLE VI
ERROR OF CLUSTBOOSTCGPC WITH RESPECT TO DIFFERENT PRUNING STRATEGIES

VI. DISCUSSION

A boosting algorithm based on cellular GP to build an en-
semble of classifiers has been presented. The approach pro-
posed presents two main novelties. The first is the application
of a clustering algorithm to the subpopulations of the network
nodes to build the ensemble. The second is the utilization of
pruning strategies to discard some of the predictors but main-
taining comparable accuracy. Both the ideas proved to be suc-
cessful since the former allows the selection of the most di-
verse and fittest classification trees. The latter reduces the size
of the ensemble, improving the classification accuracy. Exper-
iments on several data sets showed that the choice of the fittest
individual in the clustered populations produces a much better
result with respect to choosing either the fittest or more than
one fittest classification trees. ClustBoostCGPC has been com-
pared with the state-of-the-art classification algorithms C4.5 and
SVM. Results showed that ClustBoostCGPC outperforms the
other approaches on four out of the seven data sets used. It is
worth pointing out that the lower accuracy of ClustBoostCGPC
with respect to the other two methods on the three multiclass
data sets is due to the fact that ClustBoostCGPC implements
the version AdaBoost.M1 of the AdaBoost algorithm. As noted
by Freund and Schapire [29], and experimented in [18], when
the number of classes is more than two, and this is the case of
Covtype, Satimage, and Segment data sets, AdaBoost needs a
more sophisticated error measure that allows the weak learner
focusing not only on the hard-to-classify examples, but also on
the incorrect labels which are the hardest to discriminate. This
error measure is implemented in the AdaBoost.M2 version.

Taking more predictors from each subpopulation contained
on the nodes of the network could give rise to criticisms because
of the greater storage requirements necessary to maintain the en-
semble. We showed that by employing suitable pruning strate-
gies it is possible to select a subset of the classifiers without aug-
menting misclassification errors; indeed, up to 30% of pruning,
ensemble accuracy increases.

VII. CONCLUSION

A distributed BoostCGPC has been presented. The method
evolves a population of trees for a fixed number of rounds and,
after each round, it chooses the predictors to include in the en-
semble by applying a clustering algorithm to the population of
classifiers. Pruning strategies to reduce ensemble size have also
been studied. The method runs on a distributed environment
based on a hybrid model that combines the island and cellular

models of parallel GP. The combination of these two models
provides an effective implementation of distributed GP, and the
generation of classifiers with better accuracy and reduced tree
size. A main advantage of the distributed architecture is that it
enables for flexibility, extensibility, and efficiency since each
node of the network works with its local data, and communi-
cate with the other nodes, to obtain the results, only the local
model computed, but not the data. Furthermore, this architecture
is particularly apt to deal with the enormous amount of data that
arrives in the form of continuous streams, generated in many ap-
plication domains, such as credit card transactional flows, tele-
phone records, sensor network data, network event logs. Future
work aims at extending the ensemble approach to process these
new kinds of data.

REFERENCES

[1] A. Agresti, Categorical Data Analysis. New York: Wiley, 1990.
[2] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”

IEEE Trans Evol. Comput., vol. 6, no. 5, pp. 443–462, Oct. 2002.
[3] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “En-

sembles diversity measures and their application to thinning,” Informa-
tion Fusion, vol. 6, pp. 49–62, 2005.

[4] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-
cation algorithms: Bagging, boosting, and variants,” Mach. Learn., vol.
36, pp. 105–139, 1999.

[5] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp.
123–140, 1996.

[6] L. Breiman, “Arcing classifiers,” Ann. Statistics, vol. 26, pp. 801–824,
1998.

[7] E. Burke, S. Gustafson, and G. Kendall, “A survey and analysis of
diversity measures in genetic programming,” in Proc. Genetic Evol.
Comput. Conf. (GECCO 2002), 2002, pp. 716–723.

[8] E. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic pro-
gramming: An analysis of measures and correlation with fitness,” IEEE
Trans. Evol. Comput., vol. 8, no. 1, pp. 47–62, 2004.

[9] E. Burke, S. Gustafson, G. Kendall, and N. Krasnogor, “Advanced
population diversity measures in genetic programming,” in In Parallel
Problem Solving from Nature—PPSN VII. Granada, Spain: Springer-
Verlag, 2002, vol. 2439, Lecture Notes in Computer Science, p. 341.

[10] E. CantúPaz and C. Kamath, “Inducing oblique decision trees with evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 1, pp.
54–68, Feb. 2003.

[11] N. Chawla, T. E. Moore, W. Bowyer K, L. O. Hall, C. Springer, and P.
Kegelmeyer, “Investigation of bagging-like effects and decision trees
versus neural nets in protein secondary structure prediction,” in Proc.
BIOKDD01: Workshop on Data Mining Bioinformatics (SIGKDD
2001), 2001, pp. 50–59.

[12] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Mach. Learn, vol. 40, pp. 139–157, 2000.

[13] R. C. Dubes and A. K. Jain, Algorithms for Clustering Data. Cam-
bridge, MA: MIT Press, 1988.

[14] A. Ekárt and S. Z. Németh, “Maintaining the diversity of genetic pro-
grams,” Lecture Notes in Computer Science (EuroGP 2002), vol. 2278,
pp. 162–171, 2002.

468 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

[15] G. Folino, C. Pizzuti, and G. Spezzano, “A cellular genetic program-
ming approach to classification,” in Proc. Genetic Evol. Comput. Conf.
(GECCO 1999), Orlando, FL, Jul. 1999, pp. 1015–1020.

[16] G. Folino, C. Pizzuti, and G. Spezzano, “A scalable cellular implemen-
tation of parallel genetic programming,” IEEE Trans. Evol. Comput.,
vol. 7, no. 1, pp. 37–53, Feb. 2003.

[17] G. Folino, C. Pizzuti, and G. Spezzano, “Boosting technique for com-
bining cellular GP classifiers,” in Proc. 7th Eur. Conf. Genetic Pro-
gram. (EuroGP 2004), M. Keijzer, U. O’Reilly, S. M. Lucas, E. Costa,
and T. Soule, Eds., Coimbra, Portugal, 2004, vol. 3003, LNCS, pp.
47–56.

[18] G. Folino, C. Pizzuti, and G. Spezzano, “GP ensembles for large-scale
data classification,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp.
604–616, Oct. 2006.

[19] Y. Freund and R. Scapire, “Experiments with a new boosting algo-
rithm,” in Proc. 13th Int. Conf. Mach. Learn., 1996, pp. 148–156.

[20] H. Iba, “Bagging, boosting, and bloating in genetic programming,” in
Proc. Genetic Evol. Comput. Conf. (GECCO’99), Orlando, FL, Jul.
1999, pp. 1053–1060.

[21] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[22] L. I. Kuncheva and C. J. Whitaker, “Diversity measures in classifier
ensembles,” Mach. Learn., vol. 51, pp. 181–207, 2003.

[23] W. B. Langdon and B. F. Buxton, “Genetic programming for com-
bining classifiers,” in Proc. Genetic Evol. Comput. Conf. (GECCO
2001), San Francisco, CA, Jul. 2001, pp. 66–73.

[24] D. D. Margineantu and T. G. Dietterich, “Pruning adaptive boosting,”
in Proc. Int. Conf. Mach. Learn., 1997, pp. 211–218.

[25] D. P. Pal and J. Das, “A novel approach to design classifiers using
genetic programming,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp.
183–196, Feb. 2004.

[26] T. K. Paul, Y. Hasegawa, and H. Iba, “Classification of gene expres-
sion data by majority voting genetic programming classifier,” in Proc.
IEEE World Congr. Comput. Intell., Vancouver, BC, Canada, 2006, pp.
8690–8697.

[27] C. C. Pettey, “Diffusion (cellular) models,” in Handbook of Evolu-
tionary Computation, D. B. F. Thomas Bäck and Z. Michalewicz,
Eds. Bristol, U.K.: Oxford Univ. Press, 1997, pp. C6.4:1–6–, In.

[28] R. E. Schapire, “The strength of weak learnability,” Mach. Learn., vol.
5, no. 2, pp. 197–227, 1990.

[29] R. E. Schapire, “Boosting a weak learning by maiority,” Inf. Comput.,
vol. 121, no. 2, pp. 256–285, 1996.

[30] T. Soule, “Voting teams: A cooperative approach to non-typical prob-
lems using genetic programming,” in Proc. Genetic Evol. Comput.
Conf. (GECCO’99), Orlando, FL, Jul. 1999, pp. 916–922.

[31] I. H. Witten and E. Frank, Data Mining: Practical Mach. Learn Tools
and Techniques, 2nd ed. San Mateo, CA: Morgan Kaufmann.

Gianluigi Folino was born in Catanzaro, Italy, on
May 27, 1972. He received the Laurea degree in engi-
neering from the University of Calabria, Rende, Italy,
in 1997.

In 1999, he joined Institute of High Performance
Computing and Networking, Italian National Re-
search Council (CNR-ICAR), supported by an
INFN fellowship. Currently, he is a Researcher at
the Institute of High Performance Computing and
Networking (ICAR) of the Italian National Research
Council (CNR) in the area of distributed and parallel

computing and is also a Contract Professor with the Department of Computer
Science, University of Calabria. He has published more than 50 papers in
international conferences and journals. His research interests include cellular
automata, genetic programming, swarm intelligence, peer-to-peer, and grid
computing.

Clara Pizzuti received the Laurea degree in mathe-
matics from the University of Calabria, Rende, Italy.

She is a Senior Researcher at the Institute of High
Performance Computing and Networking (ICAR),
Italian National Research Council (CNR). Since
1995, she has been a Contract Professor with the
Department of Computer Science, University of
Calabria. In the past, she worked in the research divi-
sion of a software company on deductive databases,
advanced logic-based systems, and abduction. She
is serving as a program committee member of

international conferences, and as a reviewer for several international journals.
She has published more than 70 papers in conference proceedings and journals.
Her research interests include knowledge discovery in databases, data mining,
bioinformatics, evolutionary computation, genetic algorithms, and genetic
programming.

Giandomenico Spezzano received the Laurea
degree in industrial technologies engineering from
the University of Calabria, Rende, Italy, in 1980.

He is a Research Director at the Institute of High
Performance Computing and Networking (ICAR),
Italian National Research Council (CNR), where
he manages the Intelligent Grid and Peer-to-Peer
Systems Group. He is also a Contract Professor with
the Department of Electronics, Computer Science
and Systems (DEIS), University of Calabria since
1994. Previously, he worked at the Consortium for

Research and Applications of Information Technology (CRAI), Italy, where
he has led various research projects in the distributed and parallel computing
area. He has published two books and about 150 papers in conference pro-
ceedings and journals such as the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the IEEE COMPUTING AND SCIENCE ENGINEERING (CSE),
Future Generation Computer Systems (FGCS), Parallel and Distributed
Computing Practices (PDCP), and Parallel Computing, Concurrency: Practice
and Experience. He is serving as a program committee member for many
international conferences. His current research interests cover models and tools
for massively parallel architecture, grid computing, peer-to-peer computing,
parallel and distributed data mining, parallel genetic programming, cellular
automata, and swarm intelligence.

Dr. Spezzano is a member of the Association for Computing Machinery
(ACM) and the IEEE Computer Society.

