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Abstract. A prediction model that exploits the past medical patient
history to determine the risk of individuals to develop future diseases is
proposed. The model is generated by using the set of frequent diseases
that contemporarily appear in the same patient. The illnesses a patient
could likely be affected in the future are obtained by considering the
items induced by high confidence rules generated by the frequent dis-
eases. Furthermore, a phenotypic comorbidity network is built and its
structural properties are studied in order to better understand the con-
nections between illnesses. Experimental results show that the proposed
approach is a promising way for assessing disease risk.

1 Introduction

Health care is one of the most important research activity because of its im-
plications in every day life of individuals. An emerging perspective in the last
few years aims at identifying individuals most at risk for developing diseases
plaguing present age. In fact, prevention or intervention at the disease’s earli-
est onsets allow advantages for both the patient, in terms of life quality, and
the medicare system, in terms of costs. However, recognizing the origin of an
illness is not an easy task because it can be generated by multiple causes. Hos-
pitals and physicians collect thousands of patient clinical histories containing
important information regarding illness correlations and development. This phe-
notypic information can be exploited to build a model that predicts disease risk
by studying the comorbidity relationships between diseases whenever they con-
temporarily appear in the same individual. Advanced risk assessment tools are
currently at disposal, mainly based on statistical techniques. Another approach
for addressing the problem, which is gaining increasing interest, is the use of
methodologies coming from the fields of knowledge discovery [5] and network
analysis [6]. Some recent proposals in these contexts are those of [2–4].

In this paper we apply network and association analysis on a data set of
patient medical records. Our aim is twofold: (i) study the relationships of co-
morbidity appearing in the data set, and (ii) generate a predictive model that
uses the past patient medical history to determine the risk of individuals to



develop future diseases. Analogously to [3] and [4], we construct a phenotypic
comorbidity network and analyze its structural properties to better understand
the connections between diseases. Then, differently from these approaches, we
propose the utilization of association analysis [5] to generate a disease risk pre-
dictive model. The model is built by using the set of frequent diseases that
contemporarily appear in the same patient. The diseases the patient could likely
be affected in the future are obtained by considering the items induced by high
confidence rules generated by recurring disease patterns. The medical record of
a patient is then compared with the patterns discovered by the model, and a set
of illnesses is predicted. Experimental results show that approach is a promis-
ing method to predict individual risk disease by taking into account only the
illnesses a patient had in the past.

The paper is organized as follows. The next section describes the data set
used. Section 3 builds two phenotypic disease networks and analyzes its struc-
tural properties. In section 4 the predictive model is described. Finally, section 5
reports the evaluation of the proposed predictive approach on the patient data
records.

2 Data description

The data set consists of medical records of 1462 patients of a small town in the
south of Italy. Each record contains a unique patient identifiers, date of birth,
the gender, and the list of disease codes with the date of the visit in which that
disease has been diagnosed. The age distribution for the study population is
reported in Figure 1(a). The disease codes are those defined by the International
Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).
Every health condition is associated with a unique category and given a code,
up to five digits long. The first three digits constitute the principal diagnosis,
while the other two identify secondary diagnoses.

(a) (b)

Fig. 1. Age distribution for the study population (a), degree distribution of the disease
network computed using 3-digit codes (b).

The data is completely anonymized, thus there is no way to identify the pa-
tients. In our database the number of diagnoses are 8768 spanning from 1990



to 2009. From an analysis of the patient records, we found that the raw data
contained some uninteresting information. These patients have been discarded
because not useful for the phenotypic network construction. After this prepro-
cessing phase, the database reduced to 1105 patients and the number of diseases
was 972. However, the number of diseases was still too high. As described above,
the first three digits of a code denote the general diagnosis. Even if some details
can be missed, these three digits are sufficiently informative to study the dis-
ease correlations. In order to obtain a more manageable network, the five digits
ICD-9-CM codes have been collapsed to these first three digits, so the number
of diseases was reduced to 330.

3 Phenotypic Disease Network

The patient medical records contain important enlightenment regarding the co-
occurrences of diseases affecting the same individual. A comorbidity relationship
between two illnesses exists whenever they appear simultaneously in a patient
more than chance alone [3]. Our first goal was to make discernible the correla-
tions among the diseases contained in our data set by building a network whose
nodes are the diseases and a link between two nodes occurs when a comorbidity
relation appears, i. e. when the couple of diseases affects at least one patient. The
edges were labelled with the number of patients showing both the illnesses. An
important property to study about networks is the degree distribution [1]. Fig-
ure 1(b) reports the degree distribution of our disease network. The figure points
out that the network is a scale-free network, i.e. the degree distribution follows
a power-law pk ≈ k−α, where α ≈ 0.59. Furthermore the clustering coefficient is
0.69 and the diameter is 4.

The number of edges computed between the nodes was 5736, a too high value
to be visualized in a comprehensible manner. Since many edges had weight 1,
we adopted the same statistical approaches proposed by Hidalgo et al. [3] to
measure the strength of comorbidity relationships, and thus to discard those
edges deemed less meaningful. The measures employed to quantify the strength
between two sicknesses are the Relative Risk (RR) and the φ-correlation. The
RR of observing a pair of diseases i and j appearing in the same patient is given
by RRij = CCij(N−CCij)

PiPj
, where CCij is the number of patients affected by both

diseases, N is the total number patients in the data sets, and Pi, Pj are the
numbers of patients affected by diseases i and j, respectively. The φ-correlation
is defined as φij = CCij(N−CCij)−PiPj√

(PiPj(N−Pi)(N−Pj))
.

The distribution of RR values for our data set is shown in Figure 2(a), and
that of φ-correlation in Figure 2(b). As pointed out in [3], the Relative Risk over-
estimates relations involving rare diseases and underestimates relationships be-
tween very common sicknesses. On the other hand, φ-correlation underestimates
comorbidity between rare and frequent diseases, and accurately discriminates
associations between illnesses of similar appearances. Thus, we built a network
by selecting only the statistically significant edges having RR > 20, and an-
other network by discarding all the edges having φ ≤ 0.06. The two networks
are depicted in Figure 3. The network on the left contains 618 edges, the other
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Fig. 2. Distribution of the Relative Risk between all disease pairs (a), and distribution
of the φ-correlation between all disease pairs (b).

one has 2515 connections. The figure confirms the observation that the Rela-
tive Risk underestimates very common diseases. In fact, for example, illnesses
like hypertension (code 401), diabetes mellitus (code 250), osteoarthrosis (code
715), or general sysmptons (780), do not appear in Figure 3 (left) because a high
percentage of the population is affected by these problems. They are instead de-
picted in the figure on the right, together with all the others excluded. To better
distinguish them, their size is bigger than those already present in the figure on
the left.

4 Disease Risk Prediction

A general predictive model to assess disease risk can be realized by studying
the patterns of co-occurrences across the medical patient records. Each patient
can be associated with the list of diseases he has been affected during his life.
Groups of illnesses occurring frequently in many patient records can be exploited
to capture comorbidity relations and generate predictions about the diseases
a patient can incur, given the past history of his health conditions. To this
end, a valuable help can come from association analysis. Association analysis
[5] is an important data mining methodology for discovering interesting hidden
relationships in large data sets. It relies on the concept of frequent itemset to
extract strong correlations among the items constituting the data set to study.

Let DS be the set of medical patient records, D = {d1, . . . , dn} the set of
illnesses appearing in DS, and T = {t1, . . . , tm} a set of m patient transactions,
where each ti is a subset of D, i.e. a set of diseases. Groups of diseases occurring
frequently together in many transactions are referred to as frequent itemsets.
The concept of frequency is formalized through the concept of support. Given a
set I = {I1, . . . , Ik} of frequent itemsets on T , the support of an itemset Ii ∈ I,
σ(Ii), is defined as σ(Ii) = |{t∈T |ti⊆t}|

|T | , where | . | denotes the number of elements
in a set. The support, thus, determines how often a group of diseases appears
together. It is a very important measure since very low support discriminates
those groups of items occurring only by chance. Thus a frequent itemset, in
order to be considered interesting, must have a support greater than a fixed
threshold value, minsup. An association rule is an implication expression of



Fig. 3. Disease network with Relative Risk above 20 (top). Disease network with φ-
correlation above 0.06 (bottom). Different colors denote the ICD-9-CM categories ap-
pearing in the dataset. Codes labeling bigger points are those that do not appear in
the RR network.

the form X ⇒ Y , where X and Y are disjoint itemsets. The importance of an
association rule is measured by its support and confidence. The support of a
rule is computed as the support of X∪Y and tells how often a rule is applicable.
The confidence is defined as σ(X∪Y )

σ(X) , and determines how frequently items in Y
appear in transactions that contain X.

Frequent itemsets having a support value above a minimum threshold are
used to extract high confidence rules, and can be exploited to build a risk pre-
diction model by matching the medical record of a patient against the patterns
discovered by the model. In this scenario, the support determines how often a
group of diseases appears together, while a rule like X ⇒ {d}, where X ⊆ D
is a subset of diseases and d is a single disease, having a high confidence allows
to reliably infer that d will appear together with the items contained in X. The
idea we pursue in this paper thus consists in using frequent itemsets of diseases
for predicting a set of diseases a patient could likely be affected in the future,
given the patient clinical history.

We use a sliding window of fixed size w over the medical records for capturing
the patient’s history depth used for the prediction. A sliding window of size w
means that only the last (in time order) w diseases appearing in the record
influence the prediction of possible forthcoming illnesses. Given a fixed window
size w, we consider only the frequent itemsets of size w + 1 that contain the
w items appearing in the current medical patient record ti. The prediction of
the next disease is based on the confidence of the corresponding association rule



whose consequent is exactly the disease to be predicted. Thus, if the rule has a
confidence value greater than a fixed threshold, the disease on the right of the
arrow is added to the set of predicted illnesses.

In order to explain the way our prediction approach works, let the transac-
tions reported in the top table of Figure 4 be a set of some patient’s medical
records. By fixing the minimum support threshold σ to 0.8 (i.e., an itemset is
frequent if it is present at least 4 times in the transaction set), the algorithm
finds the patterns in the bottom table.

t1 {401, 722, 723, 715}
t2 {401, 722, 715, 462, 723}
t3 {401, 722, 715, 462}
t4 {722, 715, 401, 462}
t5 {723, 401, 722, 715, 462}

Length 1 Length 2 Length 3 Length 4
{401} (5) {401, 722} (4) {401, 722, 462} (4) {401, 722, 462, 715} (4)
{722} (5) {401, 462} (4) {401, 722, 715} (5)
{462} (4) {401, 715} (5) {401, 462, 715} (4)
{715} (5) {722, 462} (4) {722, 462, 715} (4)

{722, 715} (5)
{462, 715} (4)

Fig. 4. Example of transactions involving some common diseases (a). Frequent itemsets
mined by the algorithm(b).

Now, let t = {722, 715, 401, 733} be a new medical record. If the window size
w is set to 2, this means that only the two first diseases are used to generate
the predictions, i.e., {722, 715}. By matching {722, 715} against the 3-frequent
itemsets, the items with code 401 and 462 are proposed as likely, next diseases.
The scores of predicted illness 401 and 462 are 1 and 0.8. As previously described,
these scores correspond to the confidences of the association rules {722, 715} ⇒
{401} and {722, 715} ⇒ {462}, respectively.

5 Experimental Results

In this section we first define the measures used to test the effectiveness of
our approach. Next, we present the results and evaluate them on the base of
the introduced metrics. As discussed in Section 2, the dataset we used for the
experiments consists of 1105 transactions involving 330 distinct diseases. In order
to perform a fair evaluation we applied the well-known k-fold cross validation
method [5], with k = 10.

We tested our approach in the following way. Each transaction t in the eval-
uation set is divided in two groups of diseases. The first group of diseases, called
headt, are used for generating predictions, while the remaining, referred as tailt,
are used to evaluate the predictions generated. The length of headt is tightly
related to the maximum window size allowable for the experiments. In our case,
since the mining phase of frequent patterns produced itemsets of size at most
5, the length of headt has been fixed to 4. Thus, given a window size w ≤| t |,
we select the first w diseases for generating the predictions and the remaining
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Fig. 5. Impact of w on precision and recall measures when σ = 0.01.

|t|−w for testing their prediction. Fixed headt and a confidence threshold τ , we
produce the prediction set P (headt, τ) containing all the predictions whose score
is greater than τ . Then the set P (headt, τ) is compared with tailt. The compar-
ison of these sets is done by using two different metrics, namely precision and
recall. Precision and recall are two widely used statistical measures in the data
mining field. In particular, precision is seen as a measure of exactness, whereas
recall is a measure of completeness. In order to obtain an overall evaluation score
for each measure (fixed a confidence threshold τ) we computed the mean over
all transactions in the test set. In the experiment presented we measured both
precision and recall by varying τ from 0.1 to 1. Moreover, in order to evaluate
the impact of window size w on the quality of predictions, we ranged w from 2
to 4.
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Fig. 6. Impact of σ on precision and recall measures when w = 2.

Figure 5 shows the impact of w on precision and recall of the predictions. We
obtained these results by fixing the overall support for the mining of frequent
patterns to 0.01. As expected, the results in Figure 5(a) clearly reveal that
the precision increases as a larger portions of patient’s medical history, i.e. an
increasing number of diseases, are used to compute predictions. Conversely, the



recall is negatively biased by larger window sizes, but this effect slightly fades
for higher values of τ (see Figure 5(b)).

Figure 6 displays the behavior of precision and recall metrics when the sup-
port threshold varies. We used w = 2 since it is the maximum allowable window
size when the support reaches the value 0.1. Increasing the support threshold
has two main positive effects: (i) improving the precision of predictions, and (ii)
ensuring the scalability of the association rule mining algorithm, since a lower
number of frequent itemsets are computed. However, as a side effect, a higher
support results in a potential loss of some important, yet infrequent, diseases
in the prediction set. In the medical context, this kind of illnesses could be
particularly important and more informative for producing a correct diagnosis.
Figure 6(a) clearly points out better performances of precision when the support
threshold increases. Indeed, it is easy to notice that, for w = 2 and τ = 0.4, we
obtain a precision of 0.5635 if σ = 0.01, whereas the precision reaches the value
0.7608 and 0.8593 for σ = 0.05 and σ = 0.1, respectively. An inverse trend can
be noted in Figure 6(b) for the recall which, even for w = 2 and τ = 4, progres-
sively decreases from the value 0.4903, when σ = 0.01, to 0.2985, when σ = 0.1,
respectively.

6 Conclusions
We constructed a phenotypic comorbidity network and studied its structural
properties to better understand the connections between diseases. Then we pre-
sented a methodology based on associative rules to generate a predictive model
that uses the past medical history of patients to determine the risk of individ-
uals to develop future diseases. Experimental results showed that the technique
can be a viable approach to disease prediction. Future works aims to compare
our method with other proposals in literature, in particular with a collaborative
filtering technique based on the k-nearest-neighbor, like that employed by [4].
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