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Abstract

A multiobjective genetic algorithm to uncover commu-
nity structure in complex network is proposed. The al-
gorithm optimizes two objective functions able to identify
densely connected groups of nodes having sparse inter-
connections. The method generates a set of network divi-
sions at different hierarchical levels in which solutions at
deeper levels, consisting of a higher number of modules,
are contained in solutions having a lower number of com-
munities. The number of modules is automatically deter-
mined by the better tradeoff values of the objective func-
tions. Experiments on synthetic and real life networks show
the capability of the method to successfully detect the net-
work structure.

1 Introduction

Complex networks constitute an efficacious formalism to
represent the relationships among objects composing many
real world systems. Collaboration networks, the Internet,
the world-wide-web, biological networks, communication
and transport networks, social networks are just some exam-
ples. Networks are modelled as graphs, where nodes repre-
sent the objects and edges represent the interactions among
these objects. One of the main problems in the study of
complex networks is the detection of community structure,
i.e. the division of a network into groups of nodes hav-
ing dense intra-connections, and sparse inter-connections.
This intuitive definition of community can be formalized in
different ways, depending on the criteria adopted to decide
when a group of nodes is dense. However, in general, the
detection of community structure in a network can be con-
sidered as a problem of clustering and, as such, it can be
formally defined as an optimization problem [7]. This im-
plies the choice of an appropriate objective function that,
when optimized, determines the clustering that best fits the
concept of density. In the last few years many different ap-

proaches have been proposed to uncover community struc-
ture in networks [1, 2, 11, 14, 15, 17, 19, 20, 22] (a recent
review can be found in [8]). All these approaches define the
concept of criterion function and try to find the clustering
that optimizes this function. In particular, Girvan and New-
man [9] used the concept of modularity (see the following
for a formal definition) as criterion to stop the division of a
network in sub-networks in their divisive hierarchical clus-
tering algorithm, one of the most known community detec-
tion methods.

Community structure detection, however, is a problem
that can naturally be formulated with two different objec-
tives. The first is the maximization of internal links, the sec-
ond is the minimization of external links. There is a tradeoff
between these two objectives because when the clustering
is constituted by the overall network the number of exter-
nal links is null, thus it is minimized, however the cluster
density in not high.

In this paper we propose a multiobjective approach,
named MOGA-Net, to discover communities in networks by
employing genetic algorithms. The method optimizes two
objective functions introduced in [19] and [12] that revealed
both efficacious in detecting modules in complex networks.
The first objective function employs the concept of commu-
nity score to measure the quality of the division in commu-
nities of a network. The higher the community score, the
more dense the clustering obtained. The second defines the
concept of fitness of the nodes belonging to a module and
iteratively finds modules having the highest sum of node fit-
ness, in the following referred as community fitness. When
this sum reaches its maximum value, the number of exter-
nal links in minimized. Both the objective functions have
a positive real-valued parameter controlling the size of the
communities. The higher the value of the parameter, the
smaller the size of the communities found. MOGA-Net ex-
ploits the benefits of these two functions and obtains the
communities present in the network by selectively explor-
ing the search space, without the need to know in advance
the exact number of groups. This number is automatically



determined by the optimal compromise values of the objec-
tives. An interesting result of the multiobjective approach
is that it returns not a single partitioning of the network,
but a set of solutions. Each of these solutions corresponds
to a different tradeoff between the two objectives and thus
to diverse partitioning of the network consisting of various
number of clusters. This gives a great chance to analyze
several clusterings at different hierarchical levels. Experi-
ments on synthetic and real life networks show the capabil-
ity of the multiobjective genetic approach to correctly detect
communities with results comparable to the state-of-the-art
approaches.

The paper is organized as follows. In the next section
the concept of community is defined and the community
detection problem is formalized. Section 3 formulates the
community detection problem as a multiobjective optimiza-
tion problem. Section 4 describes the method, the genetic
representation adopted and the variation operators used. In
section 5, finally, the results of the method on synthetic and
real life networks are presented.

2 Community definition

A network N can be modelled as a graph G = (V,E)
where V is a set of objects, called nodes or vertices, and
E is a set of links, called edges, that connect two elements
of V . A community (also called cluster or module) in a
network is a group of vertices (i.e. a sub-graph) having
a high density of edges within them, and a lower density
of edges between groups. This definition of community is
rather vague and there is no general agreement on the con-
cept of density. A more formal definition has been intro-
duced in [20] by considering the degree ki of a generic node
i, defined as ki =

∑
j Aij , where A is the adjacency matrix

of G. A is such that an entry at position (i, j) is 1 if there
is an edge from node i to node j, 0 otherwise. Let S ⊂ G
the subgraph where node i belongs to, the degree of i with
respect to S can be split as ki(S) = kini (S) + kouti (S),
where kini (S) =

∑
j∈S Aij is the number of edges con-

necting i to the other nodes in S, and kouti (S) =
∑
j /∈S Aij

is the number of edges connecting i to the rest of the net-
work. A subgraph S is a community in a strong sense if
kini (S) > kouti (S), ∀i ∈ S. A subgraph S is a community
in a weak sense if

∑
i∈S k

in
i (S) >

∑
i∈S k

out
i (S)

Thus, in a strong community, each node has more con-
nections within the community than with the rest of the
graph. In a weak community the sum of the degrees within
the subgraph is larger than the sum of degrees towards the
rest of the network.

A quality measure of a community S that maximizes the
in-degree of the nodes belonging to S has been introduced
in [19]. On the other hand, in [12], a criterion that mini-
mizes the out-degree of a community is defined by adopt-
ing the definition of weak community described above. We

now first recall the definitions of these measures, and then
we show how they can be exploited in a multiobjective ap-
proach to find communities. In the following, without loss
of generality, the graph modelling a network is assumed to
be undirected.

Let µi denote the fraction of edges connecting node i to
the other nodes in S. More formally µi = 1

|S|k
in
i (S) where

| S | is the cardinality of S.
The power mean of S of order r, denoted as M(S) is

defined as M(S) =
P

i∈S(µi)
r

|S| .
Notice that, in the computation of M(S), since 0 ≤ µ ≤ 1,
the exponent r increases the weight of nodes having many
connections with other nodes belonging to the same mod-
ule, and diminishes the weight of those nodes having few
connections inside S.

The volume vS of a community S is defined as the num-
ber of edges connecting vertices inside S, i.e the number of
1 entries in the adjacency sub-matrix of A corresponding to
S, vS =

∑
i,j∈S Aij .

The score of S is defined as score(S) = M(S) × vS .
Thus the score takes into account both the fraction of inter-
connections among the nodes (through the power mean) and
the number of interconnections contained in the module S
(through the volume). The community score of a clustering
{S1, . . . Sk} of a network is defined as

CS =
k∑
i=1

score(Si)

The community score gives a global measure of the network
division in communities by summing up the local score of
each module found. The problem of community identifica-
tion has been formulated in [19] as the problem of maxi-
mizing CS .

In [12] the concept of community fitness of a module S
is defined as

P(S) =
∑
i∈S

kini (S)
(kini (S) + kouti (S))α

where kini (S) and kouti (S) are the internal and external
degrees of the nodes belonging to the community S, and
α is a positive real-valued parameter controlling the size of
the communities. When kouti (S) = 0 ∀i, P(S) reaches its
maximum value for a fixed α. The community fitness has
been used by [12] to find communities one at a time. The
authors introduced the concept of node fitness with respect
to a community S as the variation of the community fitness
of S with and without the node i, i. e.

Pi(S) = P(S ∪ {i})− P(S − {i})

The method starts by picking a node at random, and con-
sidering it as a community S. Then a loop over all the neigh-
bor nodes of S not included in S is performed in order to
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choose the neighbor node to be added to S. The choice
is done by computing the node fitness for each node, and
augmenting S with the node having the highest value of fit-
ness. At this point the fitness of each node is recomputed,
and if a node turns out to have a negative fitness value it is
removed from S. The process stops when all the not yet in-
cluded neighboring nodes of the nodes in S have a negative
fitness. Once a community has been obtained, a new node is
picked and the process restarts until all the nodes have been
assigned to at least one group.

In the next section we propose a multiobjective commu-
nity detection approach that optimizes both these two ob-
jectives.

3 Multiobjective community detection

Many problems in different fields are naturally formu-
lated with multiple objectives. In particular the division
of a network in subgroups of nodes having dense intra-
connections and sparse interconnections has two compet-
ing objectives. The first is to maximize the links among
the nodes belonging to the same module, the second is to
minimize the number of connections between the commu-
nities. Thus the problem of community detection can not
adequately be represented as a single objective augmented
with constraints to try to implicitly satisfy the others. A
more suitable approach is to formalize this problem as a
multiobjective clustering problem.
A multiobjective optimization problem (Ω,F1,F2, . . . ,Ft)
is defined as

min Fi(S), i = 1, . . . , t subject to S ∈ Ω

where Ω = {S1, . . . ,Sk} is the set of feasible clusterings
of a network, and F = {F1,F2, . . . ,Ft} is a set of t single
criterion functions. Each Fi : Ω → R is a different objec-
tive function that determines the feasibility of the clustering
obtained. Since F is a vector of competing objectives that
must be simultaneously optimized, there is not one unique
solution to the problem, but a set of solutions are found
through the use of Pareto optimality theory [6]. Given two
solutions S1 and S2 ∈ Ω, solution S1 is said to dominate
solution S2, denoted as S1 ≺ S2, if and only if

∀i : Fi(S1) ≤ Fi(S2) ∧ ∃ i s.t. Fi(S1) < Fi(S2)

A dominated solution is is not interesting because an im-
provement can be attained in all the objectives. Instead, a
nondominated solution is one in which an improvement in
one objective requires a degradation of another. Multiob-
jective optimization aims to the generation and selection of
nondominated solutions, these solutions are called Pareto-
optimal. The goal is therefore to construct the Pareto op-
tima. More formally, the set of Pareto-optimal solutions Π

is defined as

Π = {S ∈ Ω : 6 ∃S′ ∈ Ω with S′ ≺ S}

The vector F maps the solution space into the objective
function space. When the nondominated solutions are plot-
ted in the objective space, they are called the Pareto front.
Thus the Pareto front represents the better compromise so-
lutions satisfying all the objectives as best as possible. It
worth to note that the Pareto-optimal solutions, as outlined
in [10], always include the optimal solutions of the clus-
tering problems with a single objective to optimize. In the
next section a description of our multiobjective algorithm is
given.

4 Algorithm Description

In this section we give a description of the multiobjective
algorithm MOGA-Net, the representation adopted for parti-
tioning the network, and the variation operators used. In the
last few years many efforts have been devoted to the appli-
cation of evolutionary computation to the development of
multiobjective optimization algorithms. Evolutionary algo-
rithms, in fact, proved very successful to solve multiobjec-
tive optimization problems because of the population-based
nature of the approach that allows the generation of several
elements of the Pareto set in a single run [5, 3].

The Multiobjective Genetic Algorithm (MOGA) we used
is the Nondominated Sorting Genetic Algorithm (NSGA-II)
proposed by Srinivas and Deb in [21] and implemented in
the Genetic Algorithm and Direct Search Toolbox of MAT-
LAB. NSGA-II builds a population of competing individ-
uals and ranks them on the basis of nondominance (for a
detailed description of the approach see [5]). In order to
employ NSGA-II, MOGA-Net has been adapted with a cus-
tomized population type that suitably represents a partition-
ing of a network and endowed with two complementary ob-
jectives. In the following the objective functions selected,
the genetic encoding adopted and the modified variation op-
erators used to work with this encoding are described.

Objective Functions: As described above, we are in-
terested in identifying a partitioning {S1, . . . Sk} that max-
imizes the number of connections inside each community
and minimizes the number of links between the modules.
The first objective is fulfilled by the community score. The
first objective function is thus CS =

∑k
i=1 score(Si). The

second objective is carried out by the community fitness by
summing up the fitnesses of all the Si modules. The pa-
rameter α, that tunes the size of the communities, has been
set to 1 because, as the authors observed, in most cases the
partitioning found for this value are relevant. The second
objective is thus

∑k
i=1 P(Si).

Genetic representation: Our clustering algorithm uses
the locus-based adjacency representation proposed in [18]
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and employed by [10] for multiobjective clustering. In this
graph-based representation an individual of the population
consists of N genes g1, . . . , gN and each gene can assume
allele value j in the range {1, . . . , N}. Genes and alleles
represent nodes of the graph G = (V,E) modelling a net-
workN , and a value j assigned to the ith gene is interpreted
as a link between the nodes i and j of V . This means that
in the clustering solution found i and j will be in the same
cluster. A decoding step, however, is necessary to iden-
tify all the components of the corresponding graph. The
nodes participating to the same component are assigned to
one cluster. As observed in [10], the decoding step can be
done in linear time. A main advantage of this representation
is that the number k of clusters is automatically determined
by the number of components contained in an individual
and determined by the decoding step. Figure 1 shows a net-
work partition and the corresponding encoded genotype.

Initialization: Our initialization process takes in ac-
count the effective connections of the nodes in the network.
A random individual is generated. However, if in the ith po-
sition there is an allele value j, but the edge (i, j) does not
exist, the individual is repaired, i.e j is substituted with
one of the neighbors of i. Repaired individuals are called
safe because they avoid uninteresting divisions containing
unconnected nodes. Safe individuals improve the conver-
gence of the method because the space of the possible solu-
tions is restricted.

Uniform Crossover: We used uniform crossover be-
cause it guarantees the maintenance of the effective con-
nections of the nodes in the network in the child individual.
In fact, because of the biased initialization, each individual
in the population is safe, that is it has the property, that if a
gene i contains a value j, then the edge (i, j) exists. Thus,
given two safe parents, a random binary vector is created.
Uniform crossover then selects the genes where the vector
is a 1 from the first parent, and the genes where the vector
is a 0 from the second parent, and combines the genes to
form the child. The child at each position i contains a value
j coming from one of the two parents. Thus the edge (i, j)
exists. This implies that from two safe parents a safe child
is generated.

Mutation: The mutation operator that randomly change
the value j of a i-th gene causes a useless exploration of
the search space, because of the same above observations
on node connections. Thus the possible values an allele
can assume are restricted to the neighbors of gene i. This
repaired mutation guarantees the generation of a safe mu-
tated child in which each node is linked only with one of its
neighbors.

Given a network N and the graph G modelling it,
MOGA-Net starts with a population initialized at random
and repaired to produce safe individuals. Every individ-
ual generates a graph structure in which each component is

Figure 1. A network of 7 nodes partitioned in
two communities {1, 2, 3, 4} and {5, 6, 7}, and
the corresponding locus-based representa-
tion.

a connected subgraph of G. For a fixed number of genera-
tions the multiobjective genetic algorithm evaluates the ob-
jective values, assigns a rank to each individual according
to Pareto dominance and sorts them. Then a new popula-
tion is generated by applying the specialized variation oper-
ators described above. At the end of the procedure, MOGA-
Net returns a set of solutions, i.e. all those contained in
the Pareto front. Each of these solutions corresponds to a
different tradeoff between the two objectives and thus to di-
verse partitioning of the network consisting of various num-
ber of clusters. This gives a great chance to analyze several
clusterings at different hierarchical levels. In fact, as ex-
perimental results will show, the Pareto optimal solutions
exhibit a hierarchical structure in which solutions with a
higher number of communities are contained in solutions
having a lower number of modules. However a criterion
should be established to automatically select one solution
with respect to another. To this end, in the next section, we
suggest to adopt the concept of modularity, introduced by
Girvan and Newman[17] to assess the quality of the parti-
tioning obtained and to select, among the solutions found,
that having the highest value of modularity.

5 Experimental Results

In this section we study the effectiveness of our ap-
proach on a synthetic data set. Then we compare the
results obtained by MOGA-Net with the Girvan and New-
man’s algorithm (http://cs.unm.edu/˜aaron/
research/fastmodularity.htm), in the following
referred as GN, on some real-worlds networks for which
the partitioning in communities is known. In both cases we
show that our multiobjective genetic algorithm successfully
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detects the network structure and is competitive with that
of Girvan and Newman. The MOGA-Net algorithm has
been written in MATLAB, using the Genetic Algorithms
and Direct Search Toolbox 2. The experiments have been
performed on a Pentium 4 machine, 1800MHz, 1GB
RAM. We employed standard parameters for the genetic
algorithm, crossover rate 0.8, mutation rate 0.2, elite
reproduction 10% of the population size, roulette selection
function. The population size was 300, the number of
generations 30.

Evaluation metrics. The quality of the partitioning ob-
tained can be evaluated by using validity indices. The valid-
ity indices can be internal, i.e. they rely on the connections
and separation between the groups, or external, through the
use of additional data to assess the clustering outcomes. We
adopted an external measure, the Normalized Mutual Infor-
mation, to estimate the similarity between the true partitions
and the detected ones, and an internal one, the modularity
introduced by Girvan and Newman. The Normalized Mu-
tual Information is a similarity measure proved to be reli-
able by Danon et al. [4]. Given two partitions A and B of
a network in communities, let C be the confusion matrix
whose element Cij is the number of nodes of community i
of the partition A that are also in the community j of the
partition B. The normalized mutual information I(A,B) is
defined as :

I(A,B) =
−2

∑cA

i=1

∑cB

j=1 Cij log(CijN/Ci.C.j)∑cA

i=1 Ci.log(Ci./N) +
∑cB

j=1 C.j log(C.j/N)

where cA (cB) is the number of groups in the parti-
tion A (B), Ci. (C.j) is the sum of the elements of C
in row i (column j), and N is the number of nodes. If
A = B, I(A,B) = 1. If A and B are completely different,
I(A,B) = 0.

The modularity of Newman and Girvan [17] is a well
known quality function to evaluate the goodness of a parti-
tion. Let k be the number of modules found inside a net-
work, the modularity is defined as

Q =
k∑
s=1

[
ls
m
− (

ds
2m

)2]

where ls is the total number of edges joining vertices in-
side the module s, and ds is the sum of the degrees of the
nodes of s. The first term of each summand of the mod-
ularity Q is the fraction of edges inside a community, the
second one is the expected value of the fraction of edges
that would be in the network if edges fall at random without
regard to the community structure. Values approaching 1
indicate strong community structure.

Synthetic data set. In order to check the ability of our
approach to successfully detect the community structure of
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Figure 2. Normalized mutual information ob-
tained by MOGA-NET on the synthetic net-
work for different values of the exponent r.

a network, we use the benchmark proposed by Lancichinetti
et al. [13], which is an extension of the classical benchmark
proposed by Girvan and Newan in [9]. The network consists
of 128 nodes divided into four communities of 32 nodes
each. Every node has an average degree of 16 and shares
a fraction γ of links with the other nodes of its community,
and 1 − γ with the other nodes of the network. γ is called
the mixing parameter. When γ < 0.5 the neighbors of a
node inside its group are more than the neighbors belong-
ing to the other three groups, thus a good algorithm should
discover them. We generated 10 different networks for val-
ues of γ ranging from 0.1 to 0.5, and used the Normalized
Mutual Information to measure the similarity between the
true partitions and the detected ones.

Figure 2 shows the normalized mutual information, av-
eraged over the 10 runs, for different values of the expo-
nent r when the mixing parameter γ increases from 0.1 to
0.5. The figure points out that, independently the value of
r, MOGA-Net is able to recover the 90% and 70% of com-
munity structure when the fuzziness modules is low (until
γ ≤ 0.2). However, when the mixing parameter increases,
higher values of r help in the retrieval of the true community
structure. Notice that for γ = 0.5, each node has half of the
links inside its community and the other half with the rest
of the network thus it is very difficult to identify the hidden
groups, being the communities very mixed each other.

Real-life data set. We now show the applica-
tion of MOGA-Net on four real-world networks, the
Zachary’s Karate Club, the Bottlenose Dolphins, the
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Figure 3. (a) Pareto front of one run. (b) Network corresponding to the exact solution (node number
(3) on the Pareto front). (c) Network corresponding to solution (6). (d) Network corresponding to
solution (8).

American College Football, and the Krebs’ books
on American politics, well studied in the litera-
ture (see http://www-personal.umich.edu
/˜mejn/netdata/), and compare our results with those
obtained by Girvan and Newman. The Zackary’s Karate
Club network was generated by Zachary, who studied the
friendship of 34 members of a karate club over a period of
two years. During this period, because of disagreements,
the club divided in two groups almost of the same size.
The network of 62 bottlenose dolphins living in Doubtful
Sound, New Zealand, was compiled by Lusseau from seven
years of dolphins behavior. A tie between two dolphins
was established by their statistically significant frequent
association. The network split naturally into two large
groups, the number of ties being 159. The American
College Football network [9] comes from the United States

college football. The network represents the schedule of
Division I games during the 2000 season. Nodes in the
graph represent teams and edges represent the regular
season games between the two teams they connect. The
teams are divided in conferences. The teams on average
played 4 inter-conference matches and 7 intra-conference
matches, thus teams tend to play between members of
the same conference. The network consists of 115 nodes
and 616 edges grouped in 12 teams. The last example
is the network of political books compiled by V. Krebs.
The nodes represent 105 books on American politics
brought from Amazon.com, and edges join pairs of books
frequently purchased by the same buyer (unpublished
http://www.orgnet.com/). Books were divided by Newman
[16] according to their political alignment (conservative or
liberal), except for a small number of books (13) having no
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Table 1. Best NMI results obtained by our method and Girvan and Newman’s algorithm for the real-life
data sets.

avg best NMI std best NMI avg Mod std Mod GN NMI
Zackary’s Karate Club 1 0 0.371 0 0.692

Bottlenose Dolphins 1 0 0.373 0 0.573
American Coll. Football 0.795 0.016 0.497 0.027 0.762

Krebs’ books 0.597 0.014 0.470 0.021 0.530

Table 2. Best modularity results obtained by our method and Girvan and Newman’s algorithm for the
real-life data sets.

avg best Mod std best Mod avg NMI std NMI GN Mod
Zackary’s Karate Club 0.415 0.07e-16 0.602 0.011e-15 0.380

Bottlenose Dolphins 0.505 0.009 0.506 0.046 0.495
American Coll. Football 0.515 0.016 0.775 0.023 0.577

Krebs’ books 0.518 0.004 0.536 0.025 0.502

clear affiliation.

For each network, the algorithm was executed 10 times.
At each run, the solutions having the best value of NMI and
the best value of modularity have been selected. For each
of them the corresponding modularity and NMI values, re-
spectively, have been computed. The average values over
these 10 runs are reported in tables 1 and 2. Table 1 re-
ports the average of the best NMI (avg best NMI) and its
standard deviation (std best NMI), the average modularity
value (avg Mod) corresponding to the solutions having the
best NMI and its standard deviation (std Mod), the Normal-
ized Mutual Information value of the solution found by GN
(GN NMI). Table 2 reports the average of the best modular-
ity value (avg best Mod) and its standard deviation (std best
Mod), the average NMI value (avg NMI) corresponding to
the solutions having the best modularity and its standard
deviation (std NMI), the modularity value of the solution
found by GN (GN Mod).

The tables clearly shows the very good performance of
MOGA-Net with respect to Girvan and Newman’s approach.
In fact, on the Zackary’s Karate Club MOGA-Net found the
exact solution for all the 10 runs with a modularity value
of 0.371, while the GN method obtained an NMI value of
0.692 and a modularity of 0.380. The solution found by
Girvan and Newman splits a cluster in two and misplaces
a node of the other cluster (node 9). On the other hand
table 2 shows that the average of the best modularity val-
ues obtained by MOGA-Net is 0.415. For all the solutions
corresponding to these best modularity values, MOGA-Net
never misplaces any node, though it splits the two clusters
in smaller ones. Figure 3 displays the Pareto front in one

out of the 10 runs, and the networks (3), (6), and (8) cor-
responding to the best value of NMI (solution (3)) and the
best two values of modularity ( (6) and (8)). Note that the
solutions of the Pareto front have a hierarchical structure.
Network (8), displayed in figure 3(d), consists of four mod-
ules obtained by the split of the two main groups in two
subgroups respectively. This division has the highest value
of modularity found (0.4020). Network (6), shown in figure
3(c), contains three communities, obtained by splitting the
community on the left of the figure in two subgraphs. Net-
work (3), visualized in figure 3(b), corresponds to the true
partitioning of the Zackary’s Karate Club in two groups.
Also on the Dolphins network MOGA-Net found the exact
solution for all the 10 runs with a modularity value of 0.373.
The solution found by Girvan and Newman splits a cluster
into four clusters of size 22, 2, 15, and 23, with two nodes
misplaced. Table 2 shows that the average of the best modu-
larity values obtained by MOGA-Net is 0.505, while that of
GN is 0.495. On the American College Football network,
MOGA-Net obtained an average best normalized mutual in-
formation of 0.795 with a modularity of 0.497, while the
NMI of GN was 0.762, as reported in table 1. The best av-
erage modularity obtained by MOGA-Net was 0.515 while
GN obtained the sightly higher value of 0.577. Finally, on
the Krebs’ network MOGA-Net and GN obtained an NMI
value of 0.597 and 0.530 respectively. As regards the mod-
ularity MOGA-Net obtained 0.518, while Girvan and New-
man had a value of 0.502.

The results obtained show capability of the multiobjec-
tive genetic algorithm to effectively deal with community
identification in networks. More importantly, the non domi-
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nated solutions contained in the Pareto front are meaningful
and allow the analysis of the community structure at dif-
ferent hierarchical levels, each corresponding to a different
number of clusters. The choice of one model with respect to
another can be automatically done by taking the partition-
ing with the highest modularity value, or it can be delegated
to a domain expert.

6 Conclusions

The paper presented a multiobjective genetic algorithm
for detecting communities in complex networks. The ap-
proach has been shown to correctly detect communities and
to be competitive with state-of-the-art methods. The algo-
rithm has the advantage, with respect to the single objective
approaches, to provide a set of solution at different hierar-
chical levels by giving the opportunity to analyze the net-
work structure at different resolution levels.
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