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Abstract. A Genetic Programming based boosting ensemble method
for the classification of distributed streaming data is proposed. The ap-
proach handles flows of data coming from multiple locations by building
a global model obtained by the aggregation of the local models coming
from each node. A main characteristics of the algorithm presented is its
adaptability in presence of concept drift. Changes in data can cause seri-
ous deterioration of the ensemble performance. Our approach is able to
discover changes by adopting a strategy based on self-similarity of the
ensemble behavior, measured by its fractal dimension, and to revise itself
by promptly restoring classification accuracy. Experimental results on a
synthetic data set show the validity of the approach in maintaining an
accurate and up-to-date GP ensemble.

1 Introduction

Ensemble learning algorithms [1,5,2,8] based on Genetic Programming (GP)
[11,16,12,3,7] have been gathering an increasing interest in the research commu-
nity because of the improvements that GP obtains when enriched with these
methods. These approaches have been applied to many real world problems
and assume that all training data is available at once. However, in the last
few years, many organizations are collecting a tremendous amount of data that
arrives in the form of continuous stream. Credit card transactional flows, tele-
phone records, sensor network data, network event logs are just some examples
of streaming data. Processing these kind of data poses two main challenges to
existing data mining methods. The first is relative to the performance and the
second to adaptability.

Many data stream algorithms have been developed over the last decade for
processing and mining data streams that arrive at a single location or at multiple
locations. Some of these algorithms, known as centralized data stream mining
(CDSM) algorithms, require that the data be sent to one single location before
processing. These algorithms, however, are not applicable in cases where the
data, computation, and other resources are distributed and cannot or should
not be centralized for a variety of reasons e.g. low bandwidth, security, privacy
issues, and load balancing. In many cases the cost of centralizing the data can
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be prohibitive and the owners may have privacy constraints. Unlike the tradi-
tional centralized systems, the distributed data mining (DDM) systems offer a
fundamental distributed solution to analyze data without necessarily demanding
collection of the data to a single central site. Typically DDM algorithms involve
local data analysis to extract knowledge structures represented in models and
patterns and the generation of a global model through the aggregation of the
local results.

The ensemble paradigm is particularly suitable to support the DDM model.
However, to extract knowledge from streaming information the ensemble must
adapt its behavior to changes that occur into the data over time.

Incremental or online methods [9,18] are an approach able to support adaptive
ensembles on evolving data streams. These methods build a single model that
represents the entire data stream and continuously refine their model as data
flows. However, maintaining a unique up-to-date model might preclude valuable
information to be used since previously trained classifiers have been discarded.
Furthermore, incremental methods are not able to capture new trends in the
stream. In fact, traditional algorithms assume that data is static, i.e. a concept,
represented by a set of features, does not change because of modifications of the
external environment. In the above mentioned applications, instead, a concept
may drift due to several motivations, for example sensor failures, increases of
telephone or network traffic. Concept drift can cause serious deterioration of the
ensemble performance and thus its detection allows to design an ensemble that
is able to revise itself and promptly restore its classification accuracy.

Another approach to mine evolving data streams is to capture changes in data
by measuring online accuracy deviation over time and deciding to recompute the
ensemble if the deviation has exceeded a pre-specified threshold. These methods
are more effective and allow to handle the concept drift problem in order to
capture time-evolving trends and patterns in the stream.

In this paper we a propose a distributed data stream mining approach based
on the adoption of an ensemble learning method to aggregate models trained
on distributed nodes, and enriched with a change detection strategy to reveal
changes in evolving data streams. We present an adaptive GP boosting ensemble
algorithm for classifying data streams that maintains an accurate and up-to-
date ensemble of classifiers for continuous flows of data with concept drifts.
The algorithm uses a DDM approach where not only data is distributed, but
also the data is non-stationary and arriving in the form of multiple streams.
The method is efficient since each node of the network works with its local
data, and communicate the local model computed with the other peer-nodes
to obtain the results. A main characteristics of the algorithm is its ability to
discover changes by adopting a strategy based on self-similarity of the ensemble
behavior, measured by its fractal dimension, and to revise itself by promptly
restoring classification accuracy. Experimental results on a synthetic data set
show the validity of the approach in maintaining an accurate and up-to-date GP
ensemble.
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The paper is organized as follows. The next section recall the ensemble tech-
nique. Section 3 presents the adaptive GP ensemble method, and the technique
proposed for change detection. In section 4, finally, the results of the method on
a synthetic data set are presented.

2 Ensemble for Streaming Data

An ensemble of classifiers is constituted by a set of predictors that, instead of
yielding their individual decisions to classify new examples, combine them to-
gether by adopting some strategy [2,8,5,1]. Boosting is an ensemble technique in-
troduced by Schapire and Freund [8] for boosting the performance of any “weak”
learning algorithm, i.e. an algorithm that “generates classifiers which need only
be a little bit better than random guessing”. The boosting algorithm, called
AdaBoost, adaptively changes the distribution of the training set depending on
how difficult each example is to classify. Given the number T of trials (rounds) to
execute, T weighted training sets S1, S2, . . . , ST are sequentially generated and T
classifiers C1, . . . , CT are built to compute a weak hypothesis ht. Let wt

i denote
the weight of the example xi at trial t. At the beginning w1

i = 1/n for each xi.
At each round t = 1, . . . , T , a weak learner Ct, whose error εt is bounded to a
value strictly less than 1/2, is built and the weights of the next trial are obtained
by multiplying the weight of the correctly classified examples by βt = εt/(1− εt)
and renormalizing the weights so that Σiw

t+1
i = 1. Thus “easy” examples get

a lower weight, while “hard” examples, that tend to be misclassified, get higher
weights.

In the last few years many approaches to processing data streams through
classifier ensembles have been proposed. Street and Kim [17] build individual
classifiers from chunks of data read sequentially in blocks. They are then com-
bined into an ensemble of fixed size. When the ensemble is full, new classifiers
are added only if they improve the ensemble’s performance. Concept drift is
treated by relying on the replacement policy of the method. Wang et al. [19]
propose a framework for mining concept drifting data streams using weighted
ensemble classifiers. The classifiers are weighted by estimating the expected pre-
diction error on the test set. The size K of the ensemble is maintained constant
by considering after each block of data the first top K weighted classifiers. Chu
and Zaniolo [4] present a boosting algorithm modified to classify data streams
able to handle concept drift via change detection. The boosting algorithm trains
a new classifier on a data block whose instances are weighted by the ensemble
built so far. Changes are discovered by modelling the ensemble accuracy as a
random variable and performing a statistical test. When a change is detected the
weights of the classifiers are reset to 1 and the boosting algorithm restarts. The
ensemble is updated by substituting the oldest predictor with the last created.

As regards Genetic Programming, to the best of our knowledge, there is not
any approach in the literature that cope with the extension of GP ensemble
learning techniques to deal with streaming data. In the next section our adaptive
GP boosting ensemble method is described.



Mining Distributed Evolving Data Streams 163

3 Adaptive GP Boosting Ensemble

In this section the description of the algorithm StreamGP is given. The method
builds an ensemble of classifiers by using, at every round of the boosting proce-
dure, the algorithm CGPC [6] on each node to create a population of predictors.
The ensemble is then used to predict the class membership of new streams of data
and updated only when concept drift is detected. This behavior has a twofold
advantage. The first is that it saves a lot of computation because the boosting
algorithm is executed only if there is a significant deterioration of the ensem-
ble performance. The second is that the ensemble is able to promptly adapt
to changes and restore ensemble accuracy. Change identification is handled at
every block. This means that each data block is scanned at most twice. The
first time the ensemble predicts the class label of the examples contained in that
block. The second scan is executed only if the ensemble accuracy on that block
is below the value obtained so far. In such a case, in fact, the boosting algorithm
is executed to obtain a new set of classifiers to update the ensemble.

3.1 StreamGP

StreamGP is an adaptive GP boosting ensemble algorithm for classifying data
streams that applies the boosting technique in a distributed hybrid multi-island
model of parallel GP. The hybrid model modifies the multi-island model by
substituting the standard GP algorithm with a cellular GP algorithm. In the
cellular model each individual has a spatial location, a small neighborhood and
interacts only within its neighborhood. In our model we use the CGPC algorithm
in each island. CGPC generates a classifier as a decision tree where the function
set is the set of attribute tests and the terminal set are the classes. When a tuple
has to be evaluated, the function at the root of the tree tests the corresponding
attribute and then executes the argument that outcomes from the test. If the
argument is a terminal, then the class name for that tuple is returned, otherwise
the new function is executed. CGPC generates a classifier as follows. At the
beginning, for each cell, the fitness of each individual is evaluated. The fitness
is the number of training examples classified in the correct class. Then, at each
generation, every tree undergoes one of the genetic operators (reproduction,
crossover, mutation) depending on the probability test. If crossover is applied,
the mate of the current individual is selected as the neighbor having the best
fitness, and the offspring is generated. The current tree is then replaced by the
best of the two offsprings if the fitness of the latter is better than that of the
former. After the execution of the number of generations defined by the user,
the individual with the best fitness represents the classifier.

The boosting schema is extended to cope with continuous flows of data and
concept drift. Let M be the fixed size of the ensemble E = {C1, . . . , CM}. Once
the ensemble has been built, by running the boosting method on a number
of blocks, the main aim of the adaptive StreamGP is to avoid to train new
classifiers as new data flows in until the performance of E does not deteriorate
very much, i.e. the ensemble accuracy maintains above an acceptable value.
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Given a network constituted by p nodes, each having a streaming data set
1. E = ∅
2. F = ∅
3. for j = 1 . . . p (each island in parallel)
4. while (more Blocks)
5. Given a new block Bk = {(x1, y1), . . . (xn, yn)}, xi ∈ X

with labels yi ∈ Y = {1, 2, . . . , d}
6. evaluate the ensemble E on Bk and let fk be the fitness value obtained
7. if | F |< H
8. F = F ∪ fk

9. else F = {F − {f1}} ∪ fk

10. compute the fractal dimension Fd of the set F
11. if (Fd(F ) < τ)
12. Initialize the subpopulation Qi with random individuals
13. Initialize the example weights wi = 1

n
for i = 1, . . . , n

14. for t = 1, 2, 3, . . . , T (for each round of boosting)
15. Train CGPC on the block Bk using a weighted fitness

according to the distribution wi

16. Learn a new classifier Cj
t

17. Exchange the p classifiers C1

t , . . . , Cp
t obtained among the p processors

18. Update the weights
19. E = E ∪ {C1

t , . . . , Cp
1
}

20. end for
21. if (| E |> M) prune the ensemble E
22. end if
23. end while
24. end parallel for

Fig. 1. The StreamGP algorithm

To this end, as data comes in, the ensemble prediction is evaluated on these
new chunks of data, and augmented misclassification errors, due to changes in
data, are detected by using the notion of fractal dimension, described in the
next section, to the set F = {f1, . . . , fH} containing the last H fitness values
obtained by evaluating the ensemble on the blocks. When an alarm of change
is revealed, the GP boosting schema generates new classifiers, thus a decision
on which classifiers must be discarded from the ensemble, because no longer
consistent with the current concepts, has to be done. A simple technique, often
adopted in many existing method, and also in our approach, is to eliminate the
older predictors and substitute them with the most recent ones.

The description of the algorithm in pseudo-code is shown in figure 1. Let a
network of p nodes be given, each having a streaming data set. As data continu-
ously flows in, it is broken in blocks of the same size n. Every time a new block
Bk of data is scanned, the ensemble E obtained so far is evaluated on Bk and
the fitness value obtained fk is stored in the set F (steps 5-6). F = {f1, . . . , fH}
contains the last H evaluations of E on the data blocks, that is the fitness value
set on which the fractal dimension Fd(F ) is computed (step 10). If Fd(F ) is
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below a fixed threshold value τ (step 11), then it means that a change in data
is detected, thus the ensemble must adapt to these changes by retraining on
the new data set. To this end the boosting standard method is executed for
a number T of rounds (steps 12-20). For every node Ni, i = 1, . . . , p of the
network, a subpopulation Qi is initialized with random individuals (step 12) and
the weights of the training instances are set to 1/n, where n is the data block
size (step 13). Each subpopulation Qi is evolved for T generations and trained
on its local block Bk by running a copy of the CGPC algorithm (step 15). Then
the p individuals of each subpopulation (step 16) are exchanged among the p
nodes and constitute the ensemble of predictors used to determine the weights
of the examples for the next round (steps 17-19). If the size of the ensemble is
more than the maximum fixed size M , the ensemble is pruned by retiring the
oldest T × p predictors and adding the new generated ones (step 21).

3.2 Change Detection

An important step of the above described algorithm is the detection of changes
in the data distribution that causes significant deterioration of the ensemble ac-
curacy. In this section we propose to use the notion of fractal dimension to dis-
cover concept drift in streaming data. Fractals [14] are particular structures that
present self-similarity, i. e. an invariance with respect to the scale used. The frac-
tal dimension of fractal sets can be computed by embedding the data set in a
d-dimensional grid whose cells have size r and computing the frequency pi with
which data points fall in the i-th cell. The fractal dimension D [10] is given by
the formula D = 1

q−1
log

∑
i pq

i

log r . Among the fractal dimensions, the correlation di-
mension, obtained when q = 2 measures the probability that two points chosen
at random will be within a certain distance of each other. Changes in the corre-
lation dimension mean changes in the distribution of data in the data set, thus
it can be used as an indicator of concept drift. Fast algorithms exist to compute
the fractal dimension. We applied the FD3 algorithm of [15] that implements the
box counting method [13]. In order to employ the fractal dimension concept to
our approach, we proceed as follows. Suppose we have already scanned k blocks
B1, . . . , Bk and computed the fitness values {f1, . . . , fk} of the ensemble on each
block. Let F = {f1, . . . , fH} be the fitness values computed on the most recent H
blocks, and Fd(F ) be the fractal dimension of F . When the block Bk+1 is exam-
ined, let fk+1 be the fitness value of the GP ensemble on it. If Fd(F ∪{fk+1}) < τ ,
where τ is a fixed threshold, then the fractal dimension shows a decrease. This
means that data distribution has been changed and the ensemble classification
accuracy drops down. This approach has been shown to be very effective experi-
mentally. In the next section we show that when the misclassification error of the
ensemble increases, the fractal dimension drops down.

4 Experimental Results

In this section we study the effectiveness of our approach on a synthetic data set
with two classes introduced in [4]. Geometrically the data set is a 5-dimensional



166 G. Folino, C. Pizzuti, and G. Spezzano

unit hypercube, thus an example x is a vector of 5 features xi ∈ [0, 1]. The class
boundary is a hyper-sphere of radius r and center c. If an example x is inside
the sphere then it is labelled class 1, class 0 otherwise. Furthermore, the data
set contains a noise level of 5% obtained by flipping randomly the class of the
tuples from 0 to 1 and viceversa, with probability 0.05.

The experiments were performed using a network composed by 5 1.133 Ghz
Pentium III nodes having 2 Gbytes of Memory, interconnected over high-speed
LAN connections. On each node a data set consisting of 360k tuples was gen-
erated by using as center the point (0.5, 0.5, 0.5, 0.5, 0.5) and radius 0.25. The
algorithm receives blocks of size 1k. Every 40k tuples the data set is perturbed
by moving the center of 0.15 in a randomly chosen direction. This generates the
migration of many points from class 0 to class 1 and viceversa. Thus, at blocks
40, 80, 120, 160 and so, i.e. each 40 blocks, concept drift is forced by provok-
ing a deterioration of the ensemble performance that should be restored by our
algorithm.

On each node a population of 100 predictors is evolved with a probability
of 0.1 for reproduction, 0.8 for crossover and 0.1 for mutation. The maximum
depth of the new generated subtrees is 4 for the step of population initialization,
17 for crossover and 2 for mutation. We used T=5 rounds for the boosting, each
round executing for 100 generations. Thus CGPC is trained on each block for
500 generations. At the end of the 5 rounds, each node produces 5 predictors,
one for round, thus, since we have 5 nodes, 25 new classifiers are generated every
time the fractal dimension diminishes below the threshold τ . This means that
the oldest 25 classifiers are substituted by these new ones.

The experiments aimed at evaluating the ability of the approach in discov-
ering concept drift and in restoring classification accuracy. Figure 2 reports the
fitness, i.e the classification accuracy, and the value of the fractal dimension re-
spectively when an ensemble of size 100 (on the left) and 200 (on the right) are
used. The figure points out the abrupt deterioration of classification accuracy
every 40 blocks of data (solid lines) and the corresponding decrease of the frac-
tal dimension (dotted lines), thus allowing to reveal the change and to retrain
the ensemble on the new block. Figures 2(a),(c),(e),(g) and (b),(d),(f),(h) show
the effect of different values of the threshold τ , i.e. 0.80, 0.85, 0.87, 1.0, when the
ensemble size is 100 and 200 respectively. The horizontal solid line on each figure
indicates the τ value. The figures point out that, independently the value of τ ,
a larger ensemble is able to restore classification accuracy more quickly. Fur-
thermore, higher the value of τ , faster the detection of change and more quickly
the ensemble performance fixed up. In fact, every time the fractal dimension is
below τ , the algorithm executes the boosting method, steps 12-21 in figure 1,
and updates the ensemble with the new classifiers obtained by retraining CGPC
on the new data set. If τ = 1 the retraining is executed at each block, that is it
is assumed that changes occur at each new data block. Thus a higher value of τ
implies a heavier computational load for the algorithm but a better classification
accuracy. Its choice must take into account the trade-off between these two fac-
tors. In table 1 the percentage of blocks on which the boosting phase is executed
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Fig. 2. Fitness (solid lines) and Fractal Dimension (dotted lines) with ensemble size
100, on the left, and 200 on the right, for different thresholds of Fd (a),(b): 0.80, (c),(d):
0.85, (e), (f): 0.87 and (g), (h): 1.0
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and the corresponding mean classification accuracy are reported. For example, a
0.80 value for τ permits to save about 50% of computation, maintaining a good
accuracy. An ensemble of 200 classifiers ulteriorly reduces the computational
load since the retraining is executed for nearly the 35% of blocks. It is worth to
note that the gain in accuracy when the boosting method is executed for each
new block (last row of table 1) is marginal. For example, an ensemble of 200
predictors that is retrained at each block obtains an accuracy of 84.78, while
if it is retrained on about the half of blocks, the accuracy is 84.37. This result
substantiate the validity of the approach proposed.

Table 1. Percentage of blocks used in the training phase for different values of fractal
threshold, and average classification accuracy

100 classifiers 200 classifiers
τ Blocks Accuracy Blocks Accuracy

0.80 47.21 % 83.28 % 34.90 % 83.73 %
0.85 82.72 % 84.18 % 54.84 % 84.37 %
0.87 93.69 % 84.36 % 82.11 % 84.69 %
1 100.0% 84.42% 100.0% 84.78 %

5 Conclusions

The paper presented a GP boosting ensemble method for the classification of dis-
tributed streaming data that comes from multiple locations. The method is able
to handle concept drift via change detection. Changes are discovered by adopt-
ing a strategy based on self-similarity of the ensemble behavior, measured by its
fractal dimension. This allows the ensemble to revise itself and promptly restore
classification accuracy. Experimental results on a synthetic data set showed the
validity of the approach in maintaining an accurate and up-to-date GP ensem-
ble. Future work aims at studying parameter tuning and to test the approach
on real streaming data sets.
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