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Abstract. Protein-Protein Interaction (PPI) networks contain valuable informa-
tion for the isolation of groups of proteins that participate in the same biological
function. Many proteins play different roles in the cell by taking part in several
processes, but isolating the different processes in which a protein is involved is
often a difficult task. In this paper we present a method based on a greedy lo-
cal search technique to detect functional modules in PPI graphs. The approach is
conceived as a generalization of the algorithm PINCoC to generate overlapping
clusters of the interaction graph in input. Due to this peculiarity, multi-facets
proteins are allowed to belong to different groups corresponding to different bio-
logical processes. A comparison of the results obtained by our method with those
of other well known clustering algorithms shows the capability of our approach
to detect different and meaningful functional modules.

1 Introduction

Proteins are the building blocks of all organisms and play a fundamental role in execut-
ing and regulating most biological processes. Recently, it has been noted that, to fully
understand cell activity, proteins cannot be analyzed independently from the other pro-
teins because they seldom act in isolation to perform their tasks [25]. Advances in tech-
nology have allowed researches to derive, through experimental and in-silico methods,
the collection of all interactions between proteins of an organism. The availability of
protein-protein interaction (PPI) networks has thus stimulated the search for automated
and accurate tools to analyze pair-wise protein interactions with the aim of extracting
relevant functional modules. A functional module is a group of proteins participating
to the same biological function. Their detection provides important knowledge to better
understand the behavior of organisms.

PPI networks are naturally modelled as graphs where nodes represent proteins and
edges represent pairwise interactions. Dense regions of a given PPI network correspond
to highly interacting proteins that could be involved in common biological processes.
One of the main difficulty in analyzing PPI graphs is their scale-free topology. A scale-
free graph is characterized by the property that the degreesk of vertices are distributed
according to a power law function, asP (k) ∝ k−α, whereα > 0. This implies that
most proteins interact with only a few other proteins, while a small number of proteins,
known ashubs, have many interactions. Hubs proteins have been investigated [13] and
recognized to have an important role for the life of organisms. Typically, because of



their characteristic of being connected to a high number of proteins, they participate in
multiple biological processes. Traditional clustering methods, however, assign a protein
to only one group, which is unlikely for biological systems. In such a way these methods
hamper the possibility of proteins to be clustered in several groups, on the basis of
the different functions they have in the cell. This represents a significant inability of
these approaches to describe the complexity of biological systems. To overcome such a
problem, recent proposals have suggested different strategies [19, 24, 3].

In this paper, we present a partitioning technique of protein-protein interaction net-
works to produce overlapping clustering of the interaction graph. The algorithm, named
Multi-Functional PINCoC (MF-PINCoC), is an extension of the methodPINCoC, a
PPI network Co-Clusteringbased algorithm, presented in [20], suitably modified to
allow the participation of proteins to multiple functional groups. Co-clustering methods
[16], differently from clustering approaches, aim at simultaneously grouping both the
dimensions of a data set.

The PPI network is represented through the binary adjacency matrixA of the asso-
ciated graph, where rows and columns correspond to proteins and a 1 entry at the posi-
tion (i,j) means that the proteinsi andj interact. The algorithm searches for, eventually
overlapping, dense sub-matrices containing the maximum number of ones by using a
greedy local search technique. It starts with an initial random solution constituted by a
single protein and finds a locally optimal solution by adding/removing connected pro-
teins that best contribute to improve aquality function. In order to enable participation
of a protein to more groups, its degreek, i.e. the number of other proteins with which it
is connected, is computed. A protein can be added to the current cluster if the number
of clusters to which it has already been assigned is less than its degree. The method is
enriched with one step of backtracking, to limit the effects of the initial random choice
of a protein to build a cluster, and a remove strategy of proteins, to escape poor local
optima. When the algorithm cannot improve any more the solution found so far, the
computed cluster is returned. At this point a new random protein is chosen, and the
process is repeated until all the proteins are assigned to a group.

MF-PINCoC has two fundamental advantages with respect to other approaches pre-
sented in the literature. The first, inherited fromPINCoC, is that the number of clusters
is automatically determined by the algorithm. The second, which is its main charac-
teristic, is that for each protein interacting with other proteins, MF-PINCoC is able to
identify the different groups in which the protein is involved, each group being distin-
guished by a different biological property. Note that, differently from other techniques
[24], MF-PINCoC allows the participation to different clusters not only to the highly
connected proteins recognized as hubs3, but also to all the other proteins. Such a pecu-
liarity is automatically incorporated in the approach without any lack in efficiency, and
it avoids leaving possible candidates to be multi-facets proteins out from the analysis.

In the experimental result section we show that MF-PINCoC is able(i) to efficiently
isolate groups of proteins corresponding to the most compact sets of interactions, and
(ii) to assign proteins to more than one cluster, each characterized by a different biolog-

3 In [24] the authors recognized ashubs those proteins involved in a number of interactions
between40 and283.



ical function. A comparison with other well known protein clustering methods points
out the very good results of our approach with respect to them.

The paper is organized as follows. The next section describes the MF-PINCoC al-
gorithm and the variations introduced w.r.t.PINCoC to allow overlapping clusterings.
Section 3 reports the related work on protein clustering. Section 4 illustrates the exper-
iments carried out on the Saccaromyces cerevisiae protein data set and compares the
obtained results with those of [4, 14, 24]. Finally, in Section 5 we draw our conclusions.

2 Approach description

In this section we recall the notation adopted by both the MF-PINCoC andPINCoC al-
gorithms, and describe the extensions realized to allow for multiple group participation
of proteins.

A PPI networkP is modelled as an undirected graphG = (V, E) where the nodes
V correspond to the proteins and the edgesE correspond to the pairwise interactions.
If the network is constituted byN proteins, the associated graph can be represented
with its N × N adjacency matrixA, where the entry at position(i, j) is 1 if there is
an edge between nodesi andj, 0 otherwise. The problem of finding dense regions of
a PPI networkP can be transformed in that of finding dense subgraphs of the graph
G associated withP, and consequently, dense sub-matrices of the adjacency matrix
A corresponding toG. Searching for dense sub-matrices of such a matrixA can be
viewed as a special case of co-clustering a binary data matrix where the set of rows
and the set of columns represent the same concept. In order to better explain the idea,
first a definition of co-clustering is given, and then the formalization of the problem of
clustering proteins as a co-clustering problem is provided. Co-clustering [16, 7], also
known as bi-clustering, differently from clustering, tries to simultaneously group both
the dimensions of a data set. Aco-clusterof a matrix A is defined as a sub-matrix
B = (I, J) of A, whereI is a subset of the rowsX = {I1, . . . , IN} of A, andJ is a
subset of the columnsY = {J1, . . . , JM} of A.

Then, the problem of co-clustering may be formulated as follows: given a data ma-
trix A, find row and column maximal groups which divide the matrix into regions that
satisfy some homogeneity characteristics. The kind of homogeneity a co-cluster has to
fulfil depends on the application domain. In our case we would like to find as many
proteins as possible having the highest number of interactions. This corresponds to
identify highly dense squared sub-matrices, i.e., containing as many values equal to1
as possible. Higher the number of ones, more likely those proteins are to be functionally
related.

Let aiJ denote themean valueof theith row of the co-clusterB = (I, J), andaIj

the mean of thejth column ofB. More formally,

aiJ = 1
|J|

∑
j∈J aij , andaIj = 1

|I|
∑

i∈I aij

ThevolumevB of a co-clusterB = (I, J) is the number of1 entriesaij such that
i ∈ I andj ∈ J , that isvB =

∑
i∈I,j∈J aij .

Given a co-clusterB = (I, J), thepower mean ofB of orderr, denoted byMr(B)
is defined as



Mr(B) =

∑
i∈I(aiJ)r +

∑
j∈J (aIj)r

|I|+ |J |
A measure based on volume and row/column mean, that allows the detection of

maximal and dense sub-matrices, can be defined as follows.
Given a co-clusterB = (I, J), let Mr(B) be the power mean ofB of orderr. The

quality of B is defined as
Q(B) = Mr(B)× vB

The problem of protein clustering can be formulated as follows: given a data matrix
A, find row and column maximal groups that partition the matrix into sub-matrices
{B1, . . . Bh}, each having maximalQ(Bi) values.

It is worth to note that high values of the exponentr bias thequality function to-
wards matrices containing a low number of zeroes. In fact, it amplifies the weight of
the densely interconnected nodes, while reducing those of less connected in the com-
putation of thequality function. In the following the terms co-cluster, cluster, and
sub-matrix are used to express the same concept.

MF-PINCoC starts with an initial random clusterB = (Ii, Ji) constituted by a
single row and a single column such thatI = {l} andJ = {l}, where1 ≤ l ≤ N is
a random row/column index. Then it evolves the initial cluster by successive transfor-
mations ofBi, until thequality function is improved. The transformations consist in
the change of membership (calledflip or move) of the row/column that leads to the
largest increase of thequality function. If a bit is set from0 to 1 it means that the corre-
sponding protein, which was not included in the clusterBi, is added toBi. Vice versa,
if a bit is set from1 to 0 it means that the corresponding protein is removed from the
cluster. During its execution, in order to avoid getting trapped into poor local maxima,
instead of performing the flip maximizing thequality, with a user-provided probabil-
ity p the algorithm selects the row/column ofBi scoring the minimum decrease of the
quality function, and removes it fromBi. This kind of flip is called REMOVE-MIN.
The flips are repeated until either a preset of maximum number of flips is reached, or
the solution cannot ulteriorly be improved (get trapped into a local maximum). Until
the number of flips is below a fixed maximum value and the quality function increases,
MF-PINCoC executes a REMOVE-MIN move with probabilityp, and a greedy move
with probability (1−p); otherwise, the clusterBi = (Ii, Ji) is returned. At this point the
algorithm performs one step of backtracking, i.e., for eachh ∈ Ii it temporary removes
h from Ii and tries to find a nodel such thatIi − {h} ∪ {l} improves thequality of
Bi. In such a caseh is removed andl is added. If more than onel node exists, the one
generating the better improvement ofQ(Bi) is chosen. Finally,Bi is added toB, its
rows/columns are removed fromA, a new random cluster is generated, and the process
is repeated until all the rows/columns have been assigned.

As previously pointed out, many proteins may be involved in several biological
functions by interacting with different groups of proteins. In order to allow these multi-
facets proteins to be assigned to more than one cluster, we relax the constraint adopted
in PINCoC to exclude a protein to be considered for inclusion in another cluster, once
it has already been put into a group. To this end, for each protein we compute its degree
k, i.e. the number of other proteins with which it is connected. When building a new



cluster, a protein can be added to the current cluster if the number of clusters to which
it has already been assigned is less than its degree. In such a way each protein, not
only hubs, can belong to multiple clusters, provided that its contribution to thequality
function is effective, i.e. it is the choice that produces the best improvement. In the
next section we report the main proposals to protein clustering recently presented in the
literature.

3 Related Work

Clustering approaches to PPI networks can be broadly categorized as distance-based
and graph-based [15] ones. Distance-based clustering approaches apply traditional clus-
tering techniques by employing the concept of distance between two proteins [2, 18].
Graph-based clustering approaches consider the network topology and partition the
graph trying to optimize a cost function [12, 5, 10, 4, 23, 22, 14, 19, 24]. In the following
some of the main proposals are described.

Molecular complex detection (MCODE) [4] detects dense and connected regions
by weighting nodes on the basis of their local neighborhood density. To this end, the
k-core concept is applied. A k-core is a graph in which each vertex has degree at least
k. The highest k-core of a graph is the most densely connected subgraph. The core-
clustering coefficient of a node, i.e. the density of the highest k-core of the vertices
directly connected to it, is then used to give a weight to each vertex. MCODE performs
three steps: vertex weighting, complex prediction, and optional postprocessing to add
or remove proteins. In the first step nodes are weighted according to the density of
the highest k-core. In the second step the vertex with the highest weight is selected as
seed cluster, and new nodes are included in the cluster if their weight is above a fixed
threshold. This process is repeated for the next-highest unexamined node. In such a
way the densest regions of the graph are identified. Postprocessing is finally optionally
executed to filter proteins according to certain connectivity criteria.

The Restricted Neighborhood Search Clustering (RNSC), proposed by King et al.
[14], is a cost-based local search algorithm that explores the solution space of all the
possible clusterings to minimize a cost function that reflects the number of inter-cluster
and intra-cluster edges. The idea resembles our approach, however, RNSC uses two
cost functions. The first, called the naive cost function, for each nodev, computes the
number of bad connections incident withv, i.e. one that exists betweenv and a node
not belonging to the same cluster ofv, or one that does not exist betweenv and another
node in the same cluster asv. The second one, called the scaled cost function, measures
the size of the area thatv effects in the clustering. The algorithm begins with a random
clustering, and attempts to find a clustering with low naive cost by moving a vertex
from a cluster to another one. Then it tries to improve the solution by searching for a
clustering with low scaled cost. Differently from the approach presented here, neither
MCODE nor RNSC allow the participation of a protein to multiple clusters.

Pereira et al. [19] transform the interaction graph into the corresponding line graph,
in which edges represent nodes and nodes represent edges. Then they apply the graph
clustering algorithm TribeMCL of [10] to group the interaction network corresponding
to the line graph, and transform back the obtained clusters. The approach of clustering



the line graph produces an overlapping graph partitioning of the original protein-protein
interaction graph, thus allowing proteins to be present in multiple functional modules.

In [1] CFinder, a program for detecting and visualizing densely interconnected and
overlapped groups of nodes, is presented. CFinder uses the Clique Percolation Method
[9] to find k-clique percolation clusters, i.e. groups of nodes that can be reached via
chains of k-cliques and the link in these cliques. The parameterk has to be provided
in input. Approaches such as [1] may be viewed as general approaches to study the
structure of networks, suitably represented as graphs (e.g., genetic or social networks
and microarray data), rather than a specialized technique to cluster PPI networks.

In [8] Cho et al. propose a flow-based modularization approach to identify over-
lapping functional modules in a PPI network. The modularization process consists of
three phases: informative protein selection, flow simulation to detect preliminary mod-
ules and a post-process to merge similar preliminary modules. Differently from such
an approach, MF-PINCoC does not need any post-processing step to produce the final
overlapping clusterings.

Ucar et al. [24] propose an approach to reduce the scale-free topology of PPI net-
works by duplicating the hub nodes. After this refinement, the resulting graph is clus-
tered by using three known graph partitioning methods. Because of the duplication
process, hub proteins can be placed in multiple groups. Of course this multiple partici-
pation, differently by our approach, is not possible for the other proteins.

A different method, based on an ensemble framework, is described in [3]. The au-
thors use three traditional graph partitioning algorithms with two metrics to obtain six
basis clusterings. Then apply different consensus methods to decide each protein to
which cluster should belong. A soft consensus clustering variant has also been devel-
oped to allow proteins having high propensity towards multiple memberships, to be
assigned to different clusters. Though amenability to multiple membership is computed
for all the nodes, the authors note that hub proteins have the highest probability to par-
ticipate in more than one cluster. Both these last two methods need as input parameter
the number of clusters to find. Our approach, on the contrary, searches for all the possi-
ble clusters it can find in the network.

In the next section we report the results obtained by our approach and compare
them with those obtained by MCODE and RNSC, two of the most known methods in
the literature [6]. Such a comparison further confirms the importance of allowing for
multiple-cluster participation; in fact, constraining each protein to belong to only one
module causes clusterings that are often less significant. Moreover, a discussion regard-
ing the participation of proteins to multiple clusters, with respect to the hub proteins
identified in [24], will be reported in the last sub-section.

4 Experimental Validation

In this section we present the results obtained by runningMF -PINCoC on the PPI
network of budding yeastSaccaromyces cerevisiae. The data set has been extracted
from the DIP database [21] (http://dip.doe-mbi.ucla.edu/). At the time of download
(May 2007) it consisted of 5,027 proteins and 22,223 interactions.



4.1 Validation Metrics

Before presenting the experiments, we describe the validation metrics used to asses the
quality of the results. We used two metrics, a topological measure (clustering coeffi-
cient) and a domain based measure (p-value).

Clustering Coefficient:the concept of clustering coefficient has been defined by Watt
in [26] and takes into account only the nodes of a network and how they are linked
together. Given a nodei, let ni be the number of links connecting theki neighbors ofi
to each other. The clustering coefficient ofi is defined asCi = 2ni/ki(ki−1). Note that
ni represents the number of triangles passing throughi, andki(ki − 1)/2 the number
of possible triangles that could pass through nodei. The clustering coefficientCBj of
a clusterBj is the average of the clustering coefficients of the proteins belonging to
B. Analogously, the clustering coefficientCB of a clusteringB = {B1, . . . , Bh} is
CB =

∑
CBj /h.

p-value: in the PPI networks it is important to verify if the clusters obtained corre-
spond to a function meaningful from a biological point of view. This validation can be
done by using the known biological associations from theGene Ontology Consortium
Online DataBase[11] . The Gene Ontology database provides three vocabularies of
known associations: Molecular Function, Cellular Component, and Biological Process.
We used the process vocabulary for validation by querying the GO Term-Finder tool
(http://db.yeastgenome.org/cgi-bin/GO/goTermFinder) and the p-values returned to ob-
tain a statistical and biological meaningfulness of a group of proteins. The p-value is a
commonly used measure of the functional homogeneity of a cluster. It gives the prob-
ability that a given set of proteins occurs by chance. In particular, given a cluster of
sizen with m proteins sharing a particular biological annotation, then the probability
of observingm or more proteins that are annotated with the same GO term out of those
n proteins, according to the Hypergeometric Distribution, is:

p− value =
n∑

i=m

(M
i )(N−M

n−i )
(N
n )

whereN is the number of proteins in the database withM of them known to have that
same annotation. Thus, the closer the p-value to zero, the more significant the associated
GO term. The biological significance of a group is settled by using a cut-off value to
distinguish significant from insignificant groups. If a cluster has a p-value below the
cut-off, it is considered insignificant. In our experiments we used a cut-off of 0.05.
As observed in [24], it is interesting to have a global measure of an obtained clustering,
instead of the p-value of a single group. The p-value score of a clustering is then defined
as

clustering score = 1−
∑nS

i min(pi) + (nI × cutoff)
(nI + nS)× cutoff

wheremin(pi) is the smallest p-value of the partitioni, nS is the number of significant
partitions, andnI is the number of insignificant partitions.



(a) (b)

Fig. 1. Comparison among the three methods, showing:(a) Clustering Score; (b) Clustering Co-
efficient.

4.2 Comparison of MF-PINCoC, MCODE, and RNSC

In this section we compare the results obtained by running MF-PINCoC, MCODE, and
RNSC on the S. Cerevisiae network. In particular, such a comparison has been carried
out not only to investigate the ability of our method to discover significant functional
modules w.r.t. other well consolidated techniques, but also to analyze how allowing
proteins to participate in different clusterings may be useful to obtain more significant
groups.

MF-PINCoC needs as input parameters the probabilityp of a REMOVE-MIN
move, the number of maximum moves allowed, and the orderr of the quality func-
tion. We set the former to 0.1, the second to 1,000, and the latter to 3. It is worth to note
that (i) a low value of probabilityp is preferable to avoid the disruption of the greedy
steps;(ii) the number of maximum flips has never been reached, in fact on average not
more than 50 flips were executed before reaching a local optimum;(iii) the order value
used is a compromise between the compactness of clusters and their size. As regards
MCODE and RNSC, we run the two methods with the default parameters set by the au-
thors. MF-PINCoC returned 6,108 clusters, 5,189 were couples of proteins, 145 cliques
constituted by triples, 588 of size between 4 and 6, the remaining 186 with a number
of proteins between 7 and 40. MCODE obtained only 57 clusters, 17 of which were
triples. The cluster size is between 3 and 59. The clusters covered only 789 proteins out
of the 5,027 present. RNSC obtained 2,524 clusters, 1,017 were singletons, 972 couples
of proteins, 375 triples, 134 clusters of size between 4 and 7, and the remaining 26 of
size between 8 and 21. Because of the different number of clusters obtained, we chose
50 random clusters returned by each method with maximum size and queried the GO
Term-Finder tool. MF-PINCoC gave back one insignificant cluster, while MCODE and
RNSC gave 6 and 5 insignificant groups, respectively.

Figure 1 graphically illustrates the behavior of MF-PINCoC, MCODE and RNSC in
terms of both domain-based and topological measures. In particular, Figure 1 (a) shows
the clustering scores, computed on the50 chosen clusters, for the three methods. The
figure points out that the clustering score of MF-PINCoC (0.980) is greater than those
of the other two methods, which is0.879 for MCODE and0.882 for RNSC respectively.



This means that the biological meaning of the clusters obtained by MF-PINCoC is, on
average, better than the clusters generated by the other two methods. Figure 1 (b) shows
the clustering coefficients computed on all the obtained clusters. The clustering coef-
ficient of MF-PINCoC has been computed for two different values of the parameterr
(r = 3, 4). As already observed in section 2, higher values ofr bias our method towards
denser but smaller clusters. In fact, forr = 4 we obtained 6,322 clusters, 5,332 were
couples, 138 cliques constituted by triples, 724 of size between 4 and 6, the remain-
ing 128 of size between 7 and 33. Thus, with respect to the previous experiment, with
r = 3, clusters have a lower number of proteins. However, the clustering coefficient is
0.69 withr = 4 and 0.13 withr = 3. On the other hand, MCODE scored a clustering
coefficient 0.23, and RNSC 0.43. This points out that, in order to obtain a better value
also in terms of topological connectivity, the input parameterr has to be properly tuned.

Cluster p-value Associated process

MF-PINCoC PFS2,PTI1,MPE1,REF2,YTH1,FIP1,CFT1, 2.17E-26
CFT2,PTA1,YSH1,HCA4,PAP1,RNA14,GLC7

MCODE CFT1,CFT2,FIP1,GLC7,MPE1,PAP1,PFS2,PTA1,PTI1, 4.67E-27 mRNA
MPE1,PAP1,PFS2,PTA1,PTI1,REF2,RNA14,YSH1,YTH1 Polyadenylation

RNSC REF2,PCF11,GLC7,RNA14,YTH1,FIP1,PAP1,CFT1, 1.08E-28
CFT2,PTA1,YSH1,PTI1,PFS2,MPE1,HCA4,SSU72

MF-PINCoC NUP84,NUP60,CRM1,PAB1,MSN5,NUP57,NUP42,NUP49, 6.61E-26
GSP1,NUP145,SRP1,NUP2,NUP100,KAP123,KAP95,PSE1,NUP116 Nuclear Transport

MCODE MSN5, NTF2, NIC96, NUP145, NSP1, GSP1 1.66E-09
MF-PINCoC HAS1,MAK21,CIC1,SDA1,NOP6,NUG1,NOP7,CKA1,NOP2,SSF1, 1.68E-22 Ribosome

NOP4,BUD20,RPF2,YTM1,RLP7,NOP15,MAK5,NSA2,ERB1,TIF6,NOG1
Biogenesis

RNSC URB1, NOP4, MAK21, HAS1, NOC2, BRX1, CIC1, 2.90E-15 and Assembly
NOP12, PUF6, DBP10, NOP2, SSF1, RPF2, DRS1, MAK5

MF-PINCoC NUP84,CRM1,NUP120,MSN5,NUP42,NUP145,NUP57, 2.03E-23
NUP49,SRP1,NUP2,NUP100,KAP95,PSE1,NUP116 Nuclear

mRNA splicing,
MCODE SPP381, MSL1, LEA1, SMX3 1.19E-06 via spliceosome

RNSC CDC6, ORC1, ORC2, ORC3, ORC4, ORC5, ORC6 6.16E-16

Table 1. Some significant clusters obtained by the three methods MF-PINCoC, MCODE and
RNSC.

Table 1 shows some of the clusters obtained by the three methods, for which the GO
validation returned the same associated process. The table points out the good capability
of MF -PINCoC to isolate functional modules.

4.3 Multi-functional proteins

We now show, with some examples, how MF-PINCoC is able to cluster multi-facets
proteins into different functional modules, each characterized by a particular function.
In table 2 we report the protein name, the number of proteins with which it is connected
(denoted degree), the list of proteins participating to the same cluster, and the associ-
ated biological process. We consider three proteins KAP95, LSM8, and CKA1 that have



been discussed by Ucar et al. in [24], and compare their results with ours. As reported
in [24], KAP95 is an essential protein known to take part innucleocytoplasmatic trans-
port. MF -PINCoC groups KAP95 with other 5 proteins (NTF2, GSP1, PSE1, SRP1,
NUP1) participating to this same biological process. Ucar et al. point out that one the
partitions they found (NTF2, SSA1, YRB1, RNA1, GSP1, SRM1, MTR10, KAP122,
KAP142, KAP124, NUP1, NUP2, NUP42, NUP60, NUP82, NUP145, NUP157, NUP-
170) contained 8 NUPs proteins and 3 KAPs proteins, known as nucleoporins and
karyorephins respectively, with p-value 1.07E-27. We obtained an analogous result, in
two different clusters. The former contains 9 NUPs proteins (NUP2, NUP84, NUP60,
NUP57, NUP42, NUP49, NUP145, NUP100, NUP116) and two KAPs proteins (KAP-
95 and KAP123), sharing theNuclear Transportbiological process with p-value 6.61
E-26, the second one contains 4 NUPs proteins (NUP116, NUP57, NUP60, NUP100,
NUP145) and 3 KAPs proteins (KAP95, KAP104, KAP123), sharing thecellular lo-
calizationprocess, with p-value 2.06E-09.

The hub protein LSM8 has been found by Ucar et al. with other 10 proteins (LSM2,
LSM3, LSM5, PRP3, PRP4, PRP6, PRP21, PRP31, SMB1, SPP381) with biological
processmRNA splicingand p-value 1.2E-12. We found the same protein in several
groups, in particular, as reported in the table 2, LSM8, for this same process, has been
grouped with 12 proteins (LSM3, PRP3, PRP4, PRP6, PRP8, PRP31, SMB1, SPP381,
SMD3, SMX2, SNU114, SNU66) having p-value 1.46E-23. The two sets of proteins
are almost the same, the difference is that the cluster found by MF-PINCoC does not
contain LSM2, but has four new proteins, SMD3, SMX2, SNU114, SNU66, and a p-
value much higher, thus a better biological meaning. However, LSM8 has been grouped
with other proteins forming other functional modules, like reported in the table. For
example, it is clustered with 7 proteins of the LSM family, which are known to interact
each other in themRNA metabolicprocess, with a very low p-value (3.02E-22).

CKA1 is a protein involved in several cellular events. Ucar et al. located CKA1 in
three different partitions. One is annotated with the biological processtranscription,
DNA-dependentand p-value 2.3e-19, the second one withprotein amino acid phospho-
rylation and p-value 1.2E-05, the third group is annotated withorganelle organization
and biogenesisand p-value 3.2E-12. MF-PINCoC found, among the others, a group
with p-value 1.68E-22 and annotationribosome biogenesis and assembly, another one
with p-value 9.96E-07 and processcellular component organization and biogenesis, the
third one with p-value 1.03E-07 and biological processtranscription, DNA-dependent.
Finally, figure 2 draws three clusters of proteins in which CKA1 and LSM8 are in-
volved. In particular, figures 2(a) and 2(b) show the first and third clusters reported in
table 2 relative to the CKA1 protein. Figure 2(c) displays the second cluster of table 2
relative to the LSM8 protein. The graphs have been drawn by using the PIVOT software
[17]. These results point out that the strategy of allowing proteins to belong to different
clusters seems to be effective in grouping multi-functional proteins into multiple func-
tional groups, to individuate biologically significant modules, each corresponding to a
different function in which these proteins are involved.



(a) (b)

(c)

Fig. 2. PPI networks of clusters obtained showing:(a) first cluster reported in table 2 relative to
the CKA1 protein; (b) third cluster reported in table 2 relative to the CKA1 protein; (c) second
cluster of table 2 relative to the LSM8 protein.



Hub-Protein degree Clusters p-value Associated process
KAP95,KAP123,NUP2,NUP84,NUP60, 6.61E-26 Nuclear Transport

NUP42,NUP49,NUP145,NUP100,NUP116,
SRP1,CRM1,PAB1,PSE1,GSP1

KAP95 58 MSN5,NUP57,KAP95,KAP104,KAP123, NUP116, 2.06E-09 Cellular localization
NUP57,NUP60,NUP100,GSP1,SRP1,PSE1

KAP95, NTF2,GSP1,PSE1,SRP1,NUP1 1.71E-09Nucleocytoplasmatic transport
LSM3, LSM8, PRP3, PRP31, PRP4, PRP6, PRP8, 1.46E-23 Nuclear mRNA splicing,
SMB1, SMD3, SMX2, SNU114, SNU66, SPP381 via spliceosome

LSM8 71 LSM8, LSM1, LSM2, LSM3, LSM4, LSM5, LSM6, LSM7,3.02E-22 mRNA metabolic process
DCP1,PAT1,PRP31, PRP4, PRP8, SMD3, SNU114

LSM1, LSM8,LSM2,EDC3,KEM1,DCP2, LSM4 1.44E-06 Biopolymer catabolic process
HAS1,MAK21,CIC1,SDA1,NOP6,NUG1,NOP7,CKA1,1.68E-22 Ribosome biogenesis

NOP2,SSF1,NOP4,BUD20,RPF2,YTM1, and assembly
RLP7,NOP15,MAK5,NSA2,ERB1,TIF6,NOG1

CKA1 66 RPF2,YTM1,NOG1,ERB1,MAK5,HAS1,TIF6,CKA1, 9.96E-07 Cellular component
MAK21,NOP2,NOP4,NOP6,NOP7,NOP15,CIC1,SSF1 organization and biogenesis

CKA1,CKB1,CKA2,CKB2,SPT16,CTR9,SIN3,FKH1 1.03E-07Transcription, DNA-dependent

Table 2.Some examples of hub proteins and the clusters they participate.

5 Conclusions

We proposed the algorithmMF -PINCoC, an extension of the algorithmPINCoC, aim-
ing at individuating clusters of multi-facets proteins in PPI networks. One of the main
feature of the method consists in allowing proteins to be placed in multiple clusters. This
is a distinguished advantage since it enables a more accurate representation of the com-
plexity of biological systems and the detection of different functional modules in which
proteins are involved. As proved by tests carried out on theSaccaromyces cerevisiae
proteins data set, the presented method returns partitions that are biologically relevant,
correctly clustering proteins which are known to participate in different biological pro-
cesses. A comparison with other existing approaches shows thatMF -PINCoC is com-
petitive with respect to these methods according to validation techniques commonly
adopted in the literature.
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