
Data Min Knowl Disc
DOI 10.1007/s10618-011-0242-x

A single pass algorithm for clustering evolving data
streams based on swarm intelligence

Agostino Forestiero · Clara Pizzuti ·
Giandomenico Spezzano

Received: 24 May 2010 / Accepted: 19 October 2011
© The Author(s) 2011

Abstract Existing density-based data stream clustering algorithms use a two-phase
scheme approach consisting of an online phase, in which raw data is processed to
gather summary statistics, and an offline phase that generates the clusters by using
the summary data. In this article we propose a data stream clustering method based
on a multi-agent system that uses a decentralized bottom-up self-organizing strategy
to group similar data points. Data points are associated with agents and deployed
onto a 2D space, to work simultaneously by applying a heuristic strategy based on a
bio-inspired model, known as flocking model. Agents move onto the space for a fixed
time and, when they encounter other agents into a predefined visibility range, they can
decide to form a flock if they are similar. Flocks can join to form swarms of similar
groups. This strategy allows to merge the two phases of density-based approaches and
thus to avoid the computing demanding offline cluster computation, since a swarm
represents a cluster. Experimental results show that the bio-inspired approach can
obtain very good results on real and synthetic data sets.

Keywords Data streams · Density-based clustering · Bio-inspired flocking model

Responsible editor: Charu Aggarwal.

A. Forestiero · C. Pizzuti (B) · G. Spezzano
National Research Council of Italy–CNR, Via P. Bucci 41C, Rende (CS), 87036, Italy
e-mail: pizzuti@icar.cnr.it

A. Forestiero
e-mail: forestiero@icar.cnr.it

G. Spezzano
e-mail: spezzano@icar.cnr.it

123

A. Forestiero et al.

1 Introduction

In recent years, many organizations are collecting tremendous amount of data, often
generated continuously as a sequence of events and coming from different locations.
Credit card transactional flows, telephone records, sensor network data, network event
logs are just some examples of data streams. The design and development of fast, effi-
cient, and accurate techniques, able to extract knowledge from these huge data sets,
too large to fit into the main memory of computers, pose significant challenges. First
of all, data can be examined only once, as it arrives. Second, using an entire data
stream of a long period could mislead the analysis results due to the weight of out-
dated data, considered in the same way as more recent data. Since data streams are
continuous sequences of information, the underlying clusters could change with time,
thus giving different results with respect to the time horizon over which they are
computed.

Traditional clustering approaches are not sufficiently flexible to deal with data
that continuously evolves with time, thus, in the last few years, many proposals to
data stream clustering have been presented (Aggarwal et al. 2003, 2006; Babock et al.
2003; Barbará 2002; Cao et al. 2006; Chen and Li 2007; Guha et al. 2000; O’Callaghan
et al. 2002; Guha et al. 2003; Nasraoui et al. 2003; Nasraoui and Coronel 2006; Zhou
et al. 2007). Aggarwal et al. (2003) have been the first to address the problem of the
impossibility to revise a data stream during the computation, and the evolving charac-
teristics of stream data. They suggested that a stream clustering algorithm should be
separated in an online micro-clustering component, that gathers appropriate summary
statistics on the data stream, and an offline macro-clustering component that makes
use of the information stored to provide the clustering results. However, their algo-
rithm, CluStream, being based on the k-means approach, finds only spherical clusters
and needs to know in advance the number of clusters. Since density-based clustering
(Ester et al. 1996) overcomes these limitations, the density-based framework has been
recently extended to the two-phase scheme described above (Cao et al. 2006; Chen
and Li 2007; Li and Chen 2009; Li et al. 2009). All these methods use the fading data
model to deal with the evolving cluster distribution and discover changes in stream
data.

As pointed out in Li et al. (2009), the offline component of the two-phase scheme
is a computing demanding step because it actually has to apply a clustering algorithm
on the synopsis to produce the result. Another problem is that to discover changes
in cluster distribution, the offline phase must be executed frequently. A proposal to
detect cluster evolution in constant time has been suggested by Li et al. (2009).

In this article we present a bio-inspired and density-based clustering method for
data streams that merges the online and offline phases of the above described scheme,
by making always available the current clustering result on demand without any fur-
ther computation. The algorithm, named FlockStream, analogously to the mentioned
density-based methods, uses the damped window model to deal with cluster evolu-
tion, and transposes the concepts of potential and outlier micro-cluster introduced in
Cao et al. (2006) into the bio-inspired framework. FlockStream, in fact, employs a
multi-agent system that uses a decentralized bottom-up self-organizing strategy to
group similar data points. Each data point is associated with an agent. Agents are

123

A single pass algorithm for clustering

deployed onto a 2D space, called the virtual space, and work simultaneously by
applying a heuristic strategy based on a bio-inspired model known as flocking model
(Eberhart et al. 2001). Agents move onto the space for a fixed time and, when they
encounter other agents into a predefined visibility radius, they can decide to form a
flock (i.e. a micro-cluster) if they are similar.

The movement of the agents in the 2D space, thus, is not random, but it is guided
by the similarity function that aggregates the agents to their closer neighbors. As sev-
eral similar micro-clusters can be created, by applying the flocking rules, they are
aggregated to form swarms of close micro-clusters.

The main contributions of FlockStream can be summarized as follows.

– FlockStream replaces the exhaustive search of the nearest neighbor of a point, nec-
essary to assign it to the appropriate micro-cluster, with a local stochastic multi-
agent search that works in parallel. The method is completely decentralized as
each agent acts independently from each other and communicates only with its
immediate neighbors in an asynchronous way. Locality and asynchronism implies
that the algorithm is scalable to very large data sets.

– Since each agent interacts only with the other agents present in its visibility range,
it does not compare itself with all the other agents. Thus a reduced number of dis-
tance computations is performed. Such a number depends on how many agents it
encounters during its movement in the virtual space. This implies that the algorithm
is very efficient and achieves a linear speed-up with respect to the input size.

– Flocks of agents can join together into swarms of similar groups. The two-phase
scheme of data stream clustering methods mentioned above is thus replaced by
a unique online phase, in which the clustering results are always available. This
means that the clustering generation on demand by the user can be satisfied at any
time by simply delivering all the swarms computed so far.

– The evolving nature of clusters can be tracked by displaying the movement of
agents onto the virtual space. This enables a user to visually detect changes in
cluster distribution and gives him insights when to ask for clustering results.

– FlockStream allows the user to obtain an approximate but faster result by reducing
the time agents can move onto the virtual space.

– The method is robust to noise. In fact, in the experimental results we show that
FlockStream obtains clusters of high quality also when noise is present.

This article is organized as follows. The next Section reviews the main proposals
on clustering data streams. Section 3 describes the algorithm of Cao et al. (2006), that
inspired our method. Section 4 introduces the Flocking model. Section 5 describes our
approach. In Sect. 6 the results of the method on synthetic and real life data sets are
presented and compared with those obtained by Cao et al. (2006). Section 7, finally,
discusses the advantages of the approach and concludes this article.

2 Related work

In the last few years special attentions has been paid towards searching efficient and
efficacious methods for clustering data streams (Aggarwal 2007). The first approaches

123

A. Forestiero et al.

adopted the single pass paradigm (Charikar et al. 2003; Guha et al. 2000; O’Callaghan
et al. 2002; Guha et al. 2003) to deal with the data stream requirement that data can
be examined only once. According to this paradigm, as data is scanned, summa-
ries of past data are stored to leave enough memory for processing new incoming
data. These algorithms apply a divide-and-conquer technique that partitions the data
stream in disjoint pieces and clusters each piece by extending the k-Median algorithm.
A theoretical study of the approximation error obtained in using the extended schema
is also provided in Guha et al. (2003). The main drawbacks of these approaches are
that the number of clusters must be given as input parameter, and they are not able
to capture changes in the data stream since outdated and recent data have the same
weight.

In order to take into account the evolution of data streams, Aggarwal et al. (2003,
2006) proposed a new model based on a two-phase schema: an online micro-clus-
tering component, that gathers appropriate summary statistics on the data stream,
and an offline macro-clustering component that makes use of the information stored
to provide the clustering results. The summary information is defined by two struc-
tures: the micro-clusters and the pyramidal time frame. The micro-clusters maintain
statistical information about the data locality. Furthermore, the micro-clusters are
stored at snapshots in time which follow a pyramidal pattern. This pattern provides
a trade-off between the storage requirements and the ability to recall summary sta-
tistics from different time horizons. The proposed algorithm CluStream uses the
micro-cluster structure to cluster streaming data. The micro-clusters are built online
by exploiting ideas from the k-means and nearest neighbor algorithms. At any moment,
q micro-clusters are assumed to be present. Generally q is a significantly larger value
of the natural number of clusters. At the beginning q micro-clusters are built by using
the k-means algorithm. Whenever a new point X is arrived, the distances from X to the
micro-clusters centers are computed, and X is assigned to the nearest micro-cluster if
it lies within its maximum boundary. Otherwise a new micro-cluster is created con-
taining the data point X. In this case, since the number of micro-clusters must maintain
constant, either a micro-cluster must be deleted or two micro-clusters must be joined.
The CluStream algorithm has two main limitations. It is unable to discover clusters
of arbitrary shapes, and the number k of clusters must be fixed a-priori.

The two-phase paradigm of CluStream has been inspiring many data stream clus-
tering algorithms both to improve it (Wang et al. 2004) and to allow the clustering of
multiple data streams (Dai et al. 2006), parallel (Beringher and Hullermeier 2006) and
distributed data streams (Sanghamitra et al. 2006).

More recently, extensions of density-based clustering (Ester et al. 1996) to deal with
streams of data have been proposed. Density-based methods overcome the drawbacks
of CluStream since they are able to find clusters of any shape and do not require
prior knowledge about the number of clusters. The main proposals in this context are
the DenStream algorithm of Cao et al. (2006), the D-Stream method of Li and Chen
(2009), and the MR-Stream algorithm of Li et al. (2009).

DenStream, described in details in the next section, extends the concept of core
point introduced in DBSC AN (Ester et al. 1996) and employs the notion of micro-
cluster to store an approximate representation of the data points in a damped window
model.

123

A single pass algorithm for clustering

D-Stream uses a different approach based on partitioning the data space into dis-
cretized grids where new data points are mapped. A decay factor is associated with the
density of each data point to give less importance to historical information and more
weight to recent data. The relation between time horizon, decay factor, and data den-
sity is studied to guarantee the generation of high quality clusters. High dimensional
data could rapidly increase the number of grids. The authors found that, in practice,
many grids are sparse or empty, thus they developed an efficient technique to manage
them. The experiments reported have a maximum dimensionality of 40. However,
as the number of dimensions augments, the number of grid cells increases exponen-
tially. Thus, even though the empty grid cells do not need to be explicitly stored, there
could be many cells containing only one point. This means that D-Stream could not
be able to deal with very high dimensional data, analogously to grid-based clustering
approaches, that have poor performance on high-dimensional data (Tan et al. 2006).
The DenStream algorithm, on the contrary, does not suffer of this problem. A com-
parison with CluStream shows the better performance of D-Stream with respect to
CluStream. At present no comparison exists between DenStream and D-Stream.

MR-Stream, analogously to D-Stream, partitions the search space in cells. Each
time a dimension is divided in two, a cell can be further partitioned in 2d subcells,
where d is the data set dimensionality. A user-defined parameter, however, limits the
maximum of divisions that can be done and a quadtree structure is used to store the
space partitioning. The tree structure allows the data clustering at different resolution
levels. During the online phase, at each time stamp, MR-Stream assigns new incoming
data to the appropriate cell and updates the synopsis information. The offline com-
ponent obtains a portion of the tree at a fixed hight h and performs clustering at the
resolution level determined by h. In order to discover changes in the data, the authors
provide a time gap value, denoted tp, for checking the change of a cell from dense
to sparse. They prove that evolving cluster information can be obtained by sampling
the memory cost, and thus the number of nodes in the tree, every tp intervals. This
gives an insight when to execute the offline phase. A comparison of MR-Stream with
D-Stream shows the better performance of the former method.

Many approaches to clustering based on the bio-inspired paradigm have been pro-
posed (Azzag et al. 2003; Folino et al. 2009; Hamdi et al. 2008; Handl and Meyer
2007; Liu et al. 2004). None of them has been designed to cope with data streams.
There is only one proposal from Cui and Potok (2006b) that uses the flocking model to
cluster streams of documents. Analogously to our approach, each agent contains the
feature vector of data point it represents. In this case a data point is a document. The
stream of documents is simulated by periodically changing the feature vector of each
agent. Thus they neither summarize nor take into account the past information since,
after a prefixed time unit, old documents are just discarded, and the new documents
are re-elaborated from scratch to generate new clusters.

In the next section a detailed description of DenStream is given. Our approach, in
fact, adopts the concepts introduced by DenStream adapting them for the flocking
model.

123

A. Forestiero et al.

3 The DenStream algorithm

DenStream (Cao et al. 2006) is a density-based clustering algorithm for evolving data
streams that uses summary statistics to capture synopsis information about the nature
of the data stream. These statistics are exploited to generate clusters with arbitrary
shape. The algorithm assumes the damped window model to cluster data streams. In
this model the weight of each data point decreases exponentially with time t via a
fading function f (t) = 2−λt , where λ > 0. The weight of the data stream is a constant
W = v

1−2−λ , where v is the speed of the stream, i.e. the number of points arrived in one
time unit. Historical data diminishes its importance when λ assumes higher values.

The authors extend the concept of core point introduced in DBSC AN (Ester et al.
1996) and employ the notion of micro-cluster to store an approximate representation
of the data points. A core point is an object in whose ε neighborhood the overall weight
of the points is at least an integer μ. A clustering is a set of core objects having cluster
labels. Three definitions of micro-clusters are then introduced: the core-micro-cluster,
the potential core-micro-cluster, and the outlier micro-cluster.

A core-micro-cluster (abbreviated c-micro-cluster) at time t for a group of close
points pi1 , . . . , pin with time stamps Ti1 , . . . , Tin is defined as C MC(w, c, r), where
w is the weight, c is the center, and r is the radius of the c-micro-cluster. The weight
w = ∑n

j=1 f (t − Ti j) must be such that w ≥ μ. The center is defined as

c =
∑n

j=1 f (t − Ti j)pi j

w
(1)

and the radius

r =
∑n

j=1 f (t − Ti j)dist (pi j , c)

w
(2)

is such that r ≤ ε. dist (pi j , c) is the Euclidean distance between the point pi j and the
center c. Note that the weight of a micro-cluster must be above a predefined thresh-
old μ in order to be considered core. The authors assume that clusters with arbitrary
shape in a data stream can be described by a set of c-micro-clusters. However, since
as data flows it can change, structures apt to incremental computation, similar to those
proposed by Aggarwal et al. (2006) are introduced.

A potential c-micro-cluster, abbreviated p-micro-cluster, at time t for a group of
close points pi1 , . . . , pin with time stamps Ti1 , . . . , Tin is defined as {C F1, C F2, w},
where the weight w, as defined above, must be such that w ≥ βμ. β, 0 < β ≤ 1 is a
parameter defining the outlierness threshold relative to c-micro-clusters.

C F1 =
n∑

j=1

f (t − Ti j)pi j (3)

123

A single pass algorithm for clustering

is the weighted linear sum of the points,

C F2 =
n∑

j=1

f (t − Ti j)p2
i j

(4)

is the weighed square sum of the points. The center of a p-micro-cluster is

c = C F1

w
(5)

and the radius r ≤ ε is

r =
√
√
√
√C F2

w
−

(
C F1

w

)2

(6)

A p-micro-cluster is a set of points that could become a micro-cluster.
An outlier micro-cluster, abbreviated o-micro-cluster, at time t for a group of close

points pi1 , . . . , pin with time stamps Ti1, . . . , Tin is defined as {C F1, C F2, w, t0}.
The definition of w, C F1, C F2, center and radius are the same of the p-micro-cluster.
t0 = Ti1 denotes the creation of the o-micro-cluster. In an outlier micro-cluster the
weight w must be below the fixed threshold, thus w < βμ. However it could grow into
a potential micro-cluster when, adding new points, its weight exceeds the threshold.

The algorithms consists of two phases: the online phase in which the micro-clusters
are maintained and updated as new points arrive online; the off-line phase in which the
final clusters are generated, on demand, by the user. During the online phase, when a
new point p arrives, DenStream tries to merge p into its nearest p-micro-cluster cp.
This is done only if the radius rp of cp does not augment above ε, i.e. rp ≤ ε. If this
constraint is not satisfied, the algorithm tries to merge p into its nearest o-micro-cluster
co, provided that the new radius ro ≤ ε. The weight w is then checked if w ≥ βμ.
In such a case co is promoted to p-micro-cluster. Otherwise a new o-micro-cluster is
generated by p. Note that for an existing p-micro-cluster cp, if no new points are added
to it, its weight will decay gradually. When it is below βμ, cp becomes an outlier.

The off-line part of the algorithm uses a variant of the DBSCAN algorithm in which
the potential micro-clusters are considered as virtual points. The concepts of density-
connectivity and density reachable, adopted in DBSCAN, are used by DenStream to
generate the final result. DenStream cannot be used to handle huge amounts of data
available in large-scale networks of autonomous data sources since it needs to find
the closest micro-cluster for each newly arrived data point and it assumes that all data
is located at the same site where it is processed. In the next section a computational
model that overcomes these disadvantages is described.

123

A. Forestiero et al.

4 The flocking model

The flocking model (Eberhart et al. 2001) is a biologically inspired computational
model for simulating the animation of a flock of entities. In this model each individual
makes movement decisions without any communication with others. Instead, it acts
according to a small number of simple rules, depending only upon neighboring mem-
bers in the flock and environmental obstacles. These simple rules generate a complex
global behavior of the entire flock.

Flocking in biology is an example of self-organizing complex system that reflects
the idea at the base of distributed and self-organized systems asserting that a popu-
lation of autonomous and independent agents interacting only locally may generate
intelligent behavior. A main characteristic of this intelligent behavior is the emer-
gence of new patterns, structures, and properties observable at a macro-level, though
generated at a micro-level, due to the agents interactions.

The basic flocking model was first proposed by Reynolds (1987), in which he
referred to each individual as a boid. This model consists of three simple steering
rules that a boid needs to execute at each instance over time: separation (steering to
avoid collision with neighbors); alignment (steering toward the average heading and
matching the velocity of neighbors); cohesion (steering toward the average position
of neighbors). These rules describe how a boid reacts to other boids movement in its
local neighborhood. The degree of locality is determined by the visibility range of
the boid’s sensor. The boid does not react to the flockmates outside its sensor range.
A minimal distance must also be maintained among them to avoid collisions.

A Multiple Species Flocking (MSF) model has been developed by Cui and Potok
(2006a) to more accurately simulate flocking behavior among an heterogeneous pop-
ulation of entities. This model includes a feature similarity rule that allows each boid
to discriminate among its neighbors and to group only with those similar to itself.
The addition of this rule enables the flock to organize groups of heterogeneous multi-
species into homogeneous subgroups consisting only of individuals of the same spe-
cies. Cui and Potok use the concept of velocity vector of the flock to describe the
alignment, cohesion, separation, and feature (dis)similarity rules, and show how the
nearby boids bias the boid’s velocity. In our approach we adopt the Multiple Species
Flocking model, but we do not introduce the similarity and dissimilarity rules pro-
posed by Cui and Potok. Our MFS model modifies the basic flocking rules to take into
account the (dis)similarity of an agent with its neighbors.

Let Rd denote the d-dimensional feature space of the data stream points and R2
v

the two dimensional Cartesian space representing the virtual space where agents are
deployed and move according to the flocking rules. The virtual space is assumed to be
discrete and not continuous, and it is implemented as a two dimensional toroidal grid
of fixed size, where each cell of the grid can contain only one agent and determines
the position P = (x, y) of the agent. Each data point p = {x1, . . . , xd} in Rd is
associated with a boid A in the virtual space R2

v . An agent A = (P,−→v) is represented
through its position P = (x, y) in the virtual space and a velocity vector −→v = (m, θ)

with magnitude m and direction determined by the angle θ formed between −→v and
the positive x axis. We assume that the magnitude is constant for all the boids and it
is equal to 1. This means that in the virtual space a boid moves one cell at a time.

123

A single pass algorithm for clustering

Fig. 1 Alignment rule: a initial direction of the current agent Ac , b direction after the alignment with the
nearby boids

Let R1 and R2, with R1 > R2, be the radius indicating the visibility range of
the boids and the minimum distance that must be maintained among them, respec-
tively. Let pc be a data point in the feature space, and Ac the associated agent in
the virtual space. Suppose that Ac has F1, . . . , Fn boids in its visibility range R1,
i.e. dv(Fi , Ac)≤ R1, i = 1, . . . , n, where dv denotes the Euclidean distance, com-
puted in R2

v , between the points PFi = (xFi , yFi) and PAc = (xAc , yAc) representing
the positions of the boids Fi and Ac respectively, and that p1, . . . , pn are the data
points corresponding to the agents F1, . . . , Fn . dist (pi , pc), i = 1, . . . , n, denotes
the Euclidean distance in Rd between pc and the pi points.

We say that two agents Ac and Fi are similar if dist (pi , pc) ≤ ε, where ε is the
maximum threshold value that the radius of a micro-cluster can assume, as described
in Sect. 3, formulas (1) and (2). Thus ε determines the neighborhood of pc in the
feature space.

The basic behavior rules of a single entity of our MSF model are illustrated in
Figs. 1, 2, and 3. The alignment rule means that a boid tends to move in the same
direction of the nearby and similar boids, i.e. it tries to align its velocity vector with
the average velocity vector of the flocks in its local neighborhood. This rule is depicted
in Fig. 1 and it is formally described as

f or i ∈ {i, . . . , n}, i f dist (pi , pc) ≤ ε ∧ dv(Fi , Ac) ≤ R1 ∧ dv(Fi , Ac) ≥ R2 ⇒

−→v ar = 1

n

n∑

i=1

−→v i

where ε is the neighborhood of pc. Thus the alignment rule computes the velocity
vector −→v ar of the current boid Ac as the mean velocity of all those boids contained
in its visibility range such that the corresponding data points in the feature space are
contained in the ε neighborhood of pc.

123

A. Forestiero et al.

Fig. 2 Cohesion rule: a a boid distant from the flockmates, b its position after the cohesion

The cohesion rule moves a boid towards other nearby and similar boids (unless
another boid is too close) by orienting the velocity vector of the boid in the direction
of the centroid of the local flock. Let Pc and Pi , i = 1, . . . , n, be the positions of the
current boid Ac and its neighbor boids Fi , respectively. The centroid C = 1

n

∑n
i=1 Pi

is the average position of P1, . . . , Pn . The cohesion velocity −→v cr is computed as
follows:

f or i ∈ {i, . . . , n}, i f dist (pi , pc) ≤ ε ∧ dv(Fi , Ac) ≤ R1 ∧ dv(Fi , Ac) ≥ R2 ⇒

−→v cr = −−−→
Cnb Pc

where Cnb is the centroid of those boids present in the visibility range of Ac, such that
the corresponding data points in the feature space are contained in the ε neighborhood
of pc, and

−−−→
Cnb Pc denotes the direction of the line joining the position Pc of the current

agent with the position of Cnb. Figure 2 depicts the cohesion rule.
The separation rule avoids that a boid moves towards its neighboring boids if either

it is too close to another boid, or it is not similar to them. The separation velocity −→v sr

is computed as follows:

f or i ∈ {i, . . . , n} i f dist (pi , pc) > ε ∨ dv(Fi , Ac) ≤ R2 ⇒

−→v sr = −−−→
Cdb Pc

where Cdb is the centroid of those boids contained in the visibility range of Ac, such
that the corresponding data points in the feature space are not contained in the ε neigh-
borhood of pc, and

−−−→
Cdb Pc denotes the direction of the line joining the position Pc of

the current agent with the position of Cdb. The separation velocity moves the current

123

A single pass algorithm for clustering

Fig. 3 Separation rule: a position of the agent Ac with respect to its flockmates, b position of Ac after the
separation

boid Ac along the line joining Pc and the centroid Cdb but in the opposite sense. This
rule is shown in Fig. 3.

When two boids are too close, the separation rule overrides the other two, which
are deactivated until the minimum separation is achieved. The flocking behavior of
each agent Ac can be expressed by linearly combining the velocities calculated by all
the rules described above, i.e. −→v A = −→v ar + −→v cr + −→v sr .

The advantage of the flocking algorithm is the heuristic principle of the flock’s
searching mechanism. The heuristic searching mechanism helps boids to quickly form
a flock. Since the boids continuously fly in the virtual space and join the flock consti-
tuted by boids similar to them, new results can be quickly regenerated when adding
entities boids or deleting part of boids at run time. This characteristic allows the flock-
ing algorithm to be applied to clustering to dynamically analyze changing stream
information.

5 The FlockStream algorithm

FlockStream is a heuristic density-based data stream clustering algorithm built on the
Multiple Species Flocking model described in the previous section. The algorithm uses
agents (i.e. boids) with distinct simple functionalities to mimic the flocking behavior.
As said above, each multi-dimensional data item is associated with an agent. Agents
are arranged on the virtual space constituted by a two-dimensional grid of fixed size.
Every cell in the grid contains an agent. In our approach, in addition to the standard
action rules of the flocking model, an extension to the flocking model is introduced
by considering the type of an agent. The agents can be of three types: basic (repre-
senting a new point arriving in one time unit), p-representative and o-representative
(corresponding to p- or o- micro-clusters). FlockStream distinguishes between the
initialization phase, in which the virtual space is populated of only basic agents, and
the micro-cluster maintenance and clustering, in which all the three types of agents
are present.

123

A. Forestiero et al.

Initialization. At the beginning a set of basic agents, corresponding to the set of ini-
tial data points, is deployed onto the virtual space. The position P of each agent
A = (P,−→v) on the grid is generated at random. Its velocity vector −→v = (m, θ) is
initialized such that m = 1 and the angle θ assumes a random value in the interval
[0, 360]. The basic agents work in parallel for a predefined number of iterations and
move according to the MSF heuristic. Analogously to birds in the real world, agents
that share similar object vector features in the feature space Rd , will group together
and become a flock, while dissimilar agents will be moved away from the flock. As
already described in the previous section, two agents are considered similar if the dis-
tance of the corresponding data points in the feature space is less than ε, the maximum
threshold value that the radius of a micro-cluster can assume.

It is worth to note that, though the agents are clustered in the virtual space, their
similarity and the summary statistics described in Sect. 3 are computed in the feature
space. While iterating, the behavior (velocity) of each agent A with position PA is
influenced by all the agents F with position PF in its visibility radius. The agent’s
velocity is computed by applying the rules described in the previous section. These
rules induce an adaptive behavior to the algorithm since an agent can leave the group
it participates for another group on the basis of the agents F it encounters during its
motion. Thus, during this predefined number of iterations, the points join and leave
the groups forming different flocks. At the end of the iterations, for each created
group, the summary statistics described in Sect. 3 are computed and the stream of
data is discarded. As result of this initial phase we have two new types of agents: a

p-representative agent, corresponding to a p-micro-cluster cp = {CF1, CF2, w} and an

o-representative agent that corresponds to an o-micro-cluster co = {C F1, C F2, w, to},
as defined in Sect. 3.

Representative maintenance and clustering. When a new data stream bulk of agents
is inserted into the virtual space, at a fixed stream speed, the maintenance of the
p- and o- representative agents and online clustering are performed for a fixed maxi-
mum number of iterations. The agent maintenance algorithm of FlockStream is sum-
marized in Fig. 4. Analogously to DenStream, different cases can occur:

– A basic agent A, corresponding to a data point pA ∈ Rd , meets another basic
agent B corresponding to a data point pB ∈ Rd . The similarity between the two
agents is calculated and, if dist (pA, pB) ≤ ε, A is joined with B to form an
o-representative.

– A basic agent A meets either a p-representative B, corresponding to a p-micro-
cluster cB

p , or an o-representative B, corresponding to an o-micro-cluster cB
o , in its

visibility range. A is merged with B if the new radius rp of cB
p (ro of cB

o respec-
tively) is below or equal to ε. Note that at this stage FlockStream does not update
the summary statistics because the aggregation of the basic agent A to the micro-
cluster could be dropped if A, during its movement on the virtual space, encounters
another agent similar to it.

– a p-representative A, corresponding to a p-micro-cluster cA
p , or an o-representative

A, corresponding to an o-micro-cluster cA
o , encounters another representative agent

123

A single pass algorithm for clustering

Fig. 4 The pseudo-code of the FlockStream algorithm

B in its visibility range. If the distance between the corresponding micro-clusters
is below ε then they join to form a swarm (i.e. a cluster) of similar representatives.

– a p-representative or an o-representative A encounters a basic agent B in its vis-
ibility range. In such a case B is joined with A, provided that the corresponding
data point pB is similar to the micro-cluster associated with A.

Note that, when an agent in the virtual space is a p-representative or an o-represen-
tative, it corresponds to a p-micro-cluster or an o-micro-cluster in the feature space.
In such a case the distance between a data point and a micro-cluster can be computed
by considering the summary C F1 as the feature vector of the micro-cluster.

At this point the agent computes its new velocity vector by applying the MSF rules
described in the previous section and moves onto the virtual space according to it.
At the end of the maximum number of iterations allowed, for each swarm, the sum-
mary statistics (formulas (3), (4), (5), (6) of Sect. 3) of the representative agents it
contains are updated and, if the weight w of a p-representative diminishes below βμ,
it is degraded to become an o-representative. On the contrary, if the weight w of an
o-representative becomes above βμ, a new p-representative is created.

Note that the swarms of representative agents avoid the offline phase of DenStream
that applies a clustering algorithm to get the final result. In fact, a swarm represents
a cluster, thus the clustering generation on demand by the user can be satisfied at any
time by simply showing all the swarms computed so far. Figure 5 illustrates the virtual
space at different steps of the algorithm execution. The initialization step starts by
deploying a bulk of agents randomly on the virtual space, as showed in Fig. 5a. After a

123

A. Forestiero et al.

number of iterations, agents begin to aggregate with other similar agents (Fig. 5b). As
the agents continue to move, Fig. 5c depicts groups of boids, enclosed in ellipses, that
will become p-representatives (black triangles) or o-representatives (white triangles)
and single agents (small black triangles), not yet joined to any group. Figure 5d shows
the virtual space after the max number of iterations has been executed and a new
bulk of boids is deployed onto the virtual space. The figure points out the presence
of swarms of agents, as well as the presence of isolated agents. These agents include
some agents remained from the previous step not aggregated with other similar agents,
and the new ones. In the next section we show that our approach successfully detects
clusters in evolving data streams.

6 Experimental results

In this section we study the effectiveness of FlockStream on both synthetic and real-
life data sets, and compare it with DenStream. Both FlockStream and DenStream1

algorithms have been implemented in Java and all the experiments have been per-
formed on an Intel(R) Core(TM)2 6600 having 2GB of memory. The parameters used
for FlockStream and DenStream are the same, that is initial number of points/agents
Na = 1000, stream speed v = 1000, decay factor λ = 0.25, maximum micro-cluster
radius ε = 16, minimum number of points/agents necessary to create a p-micro-clus-
ter μ = 10, outlier threshold β = 0.2. The number of iterations Max I terations for
FlockStream has been fixed to 1000. In the following by horizon (or window) we mean
how many time steps from the current time we consider when running the clustering
algorithms. Thus, for example, if the horizon is 10, it means that the last 10 blocks of
data are clustered.

The synthetic datasets used, named DS1, DS2 and DS3, are showed in Fig. 6a.
Each of them contains 10,000 points and they are similar to those employed by Cao
et al. (2006) to evaluate DenStream. For a fair comparison, the evolving data stream,
denoted EDS, has been created by adopting the same strategy of Cao et al. Each dataset
has been randomly chosen 10 times, thus generating an evolving data stream of total
length 100,000.

The two real data sets are the KDD Cup 1999 Data set2 and the Forest Cover-
type data set.3 The former data set comes from the 1998 DARPA Intrusion Detection
Evaluation Data and contains training data consisting of 7 weeks of network-based
intrusions inserted in the normal data, and 2 weeks of network-based intrusions and
normal data for a total of 4,999,000 connection records described by 41 characteristics.
The main categories of intrusions are four: DoS (Denial Of Service), R2L (unautho-
rized access from a remote machine), U2R (unauthorized access to a local super-user
privileges by a local un-privileged user), PROBING (surveillance and probing).

The Forest Covertype data set is the prevision forest cover type from cartographic
variables only (no remotely sensed data), made available from the Remote Sensing

1 We implemented the DenStream algorithm since its code is not available from the authors.
2 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
3 http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/.

123

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/

A single pass algorithm for clustering

Fig. 5 Visualization of swarms of agents and isolated agents on the virtual space at different iterations.
a First step of initialization: a bulk of data deployed onto the virtual space, b agents begin to aggregate,
c groups of boids, enclosed in ellipses, that will become p-representatives (black triangles) or o-represen-
tatives (white triangles) and single agents (small black triangles), d virtual space after the max number of
iterations executed and the deploying of a new bulk of boids

and GIS Program Department of Forest Sciences College of Natural Resources,
Colorado State University Fort Collins. The area includes four wilderness areas located
in the Roosevelt National Forest of northern Colorado. The data set is composed by
581,012 instances (observations) represented by 54 geological and geographical attri-
butes describing the environment in which trees were observed. Both data sets have
been transformed into data streams by taking the input order as the streaming order.

123

A. Forestiero et al.

DS1 DS2 DS3

(a)

DS1 DS2 DS3

(b)

DS1 DS2 DS2 DS3 DS3 DS1

(c)

Fig. 6 a Synthetic data sets. b Clustering performed by FlockStream on the synthetic data sets. c Clustering
performed by FlockStream on the evolving data stream EDS

6.1 Evaluation metrics

Since for all the data sets used in the experiments the true class labels are known, the
quality of the clustering obtained has been evaluated by considering two well known
external criteria: the average purity of the clusters and the normalized mutual infor-
mation. Cluster purity measures the purity of the clusters obtained with respect to
the true clusters by assigning each cluster to the most frequent class appearing in the
cluster. More formally, the average purity of a clustering is defined as:

123

A single pass algorithm for clustering

puri ty =
∑K

i=1
|Cd

i |
|Ci |

K
× 100%

where K indicates the number of clusters, |Cd
i | denotes the number of points with the

dominant class label in cluster i, and |Ci | denotes the number of points in cluster i.
The purity is calculated only for the points arriving in a predefined window, since the
weight of points diminishes continuously.

The normalized mutual information (NMI) is a well known information theoretic
measure that assesses how similar two clusterings are. Given the true clustering A =
{A1, . . . , Ak} and the grouping B = {B1, . . . , Bh} obtained by a clustering method, let
C be the confusion matrix whose element Ci j is the number of records of cluster i of
A that are also in the cluster j of B. The normalized mutual information N M I (A, B)

is defined as:

N M I (A, B) = −2
∑cA

i=1

∑cB
j=1 Ci j log(Ci j N/Ci.C. j)

∑cA
i=1 Ci.log(Ci./N) + ∑cB

j=1 C. j log(C. j/N)

where cA (cB) is the number of groups in the partition A (B), Ci. (C. j) is the sum
of the elements of C in row i (column j), and N is the number of points. If A =
B, N M I (A, B) = 1. If A and B are completely different, N M I (A, B) = 0.

Another evaluation criterion we report in the experiments is the number of dis-
tance computations executed by FlockStream and DenStream. In fact, one of the
main differences between FlockStream and DenStream is the computation of the
nearest micro-cluster of a point. When a new data point is elaborated, in order to
determine whether it should be merged into an existing micro-cluster or consider it as
the seed for a new group, DenStream needs to do a comparison with all the micro-
clusters generated so far. Thus DenStream finds the true nearest micro-cluster of a
data point. FlockStream, instead, computes the distance between the current agent and
the other agents encountered during its movement on the virtual space. This means
that FlockStream returns an approximate nearest neighbor distance. In the following
we show that the number of distance computations executed by FlockStream is much
lower than that done by DenStream, and, despite the approximation returned, the
cluster quality is higher.

6.2 Synthetic data sets

We first evaluate the quality of the clusters obtained by the FlockStream algorithm to
check the ability of the method to get the shape of each cluster. The results on the non-
evolving datasets DS1, DS2 and DS3 are reported in Fig. 6b. In this figure the circles
indicate the micro-clusters detected by the algorithm. We can see that FlockStream
exactly recovers the cluster shape.

The results obtained by FlockStream on the evolving data stream EDS, at different
times, are shown in Fig. 6c. In the figure, points indicate the raw data while circles
denote the micro-clusters. It can been seen that also in this case FlockStream captures
the shape of each cluster as the data streams evolve.

123

A. Forestiero et al.

Table 1 Cluster purity of FlockStream and DenStream on the EDS data set without noise for horizon = 2,
stream speed = 2000 and horizon = 10, stream speed = 1000

tu EDS data set

Speed = 2000, horizon = 2 Speed = 1000, horizon = 10

FlockStream (%) DenStream (%) FlockStream (%) DenStream (%)

10 98.15 98.17 97.66 97.75

20 97.41 98.19 97.28 97.96

30 98.31 98.22 97.78 97.35

40 97.55 97.94 97.85 98.07

50 98.15 97.63 97.55 97.94

60 97.21 96.84 98.38 97.37

70 98.12 97.05 97.89 97.35

80 98.19 98.01 97.49 97.09

90 98.57 97.61 97.41 97.25

100 97.74 97.66 98.19 97.33

Fig. 7 Normalised mutual information for evolving data stream EDS with horizon = 2 and stream
speed = 2000 (left), horizon = 10 and stream speed = 1000 (right)

The purity results of FlockStream compared to DenStream on the EDS data stream
without noise are showed in Table 1. The results are computed at time units (tu)
10, 20, . . . , 100, for 10 times, with (i) horizon set to 2 and stream speed 2000 points
per time unit, and (ii) horizon 10 with stream speed 1000. We can note the very good
clustering quality of both FlockStream and DenStream when no noise is present in
the data set, in fact purity values are always higher than 97% and comparable. The
table points out that both methods are insensitive to the horizon length.

Figure 7 shows the normalized mutual information of both methods for the same set-
tings. Also in this experiment the results obtained by the two methods are comparable.
However, if we consider Fig. 8, we can observe that the number of distances com-
puted by FlockStream and DenStream is noteworthy. In fact, while DenStream at
each step must find the nearest neighbor micro-cluster of each data point, FlockStream
compares each agent (point) only with the other agents encountered during its move-
ment and falling in its visibility radius. This drastic reduction of distance computations
allows a fast convergence of the method.

For the same horizon and speed values, the experiments have been repeated with 1%
and 5% noise. Table 2 reports the purity values obtained by both the methods. When

123

A single pass algorithm for clustering

Fig. 8 Mean number of comparisons for evolving data stream EDS with horizon = 2 and stream speed = 2000
(left), horizon = 10 and stream speed = 1000 (right)

Table 2 Cluster purity of FlockStream and DenStream on the EDS data set with noise set to 1 and 5%,
for horizon = 2, stream speed = 2000 and horizon = 10, stream speed = 1000

tu EDS data set with noise

Speed = 2000, horizon = 2, noise = 1% Speed = 1000, horizon = 10, noise = 5%

FlockStream (%) DenStream (%) FlockStream (%) DenStream (%)

10 98.77 97.78 97.72 94.23

20 98.49 98.11 97.19 95.25

30 98.94 97.40 97.88 95.06

40 98.00 97.06 97.12 95.24

50 98.59 97.55 97.78 94.46

60 98.07 97.51 97.02 93.94

70 98.42 97.45 97.61 93.55

80 98.02 97.16 96.62 94.17

90 98.33 98.02 97.03 93.61

100 97.82 97.79 97.10 93.81

the data set with 1% noise is considered, FlockStream still obtains high purity values,
which are better than those obtained by DenStream. For all the time units, except the
last, purity increases to 98%. The difference between FlockStream and DenStream
is more remarkable when data streams with 5% of noise are considered. In such a
case DenStream does not exceeds 94% of purity, while FlockStream achieves values
above 97% for all the time units, except time unit = 80. The high quality of the results
obtained by FlockStream show its capability of dealing with noisy environments.

The same behavior can be observed as regards the normalized mutual information.
In fact, Fig. 9 on the left shows that the NMI values obtained by the two methods
are comparable when the noise percentage is low (1%). However, as noise increases,
FlockStream still obtains very high values of normalized mutual information (above
90%), showing its ability to unveil the cluster shape, even when noise is present (Fig.9
on the right). Figure 10 shows that, also for this experiment, the mean number of
distance computation performed by FlockStream is sensibly lower than that calculated
by DenStream.

123

A. Forestiero et al.

Fig. 9 Normalised mutual information for evolving data stream EDS with horizon = 2 and stream
speed = 2000 and with 1% noise (left), horizon = 10, stream speed = 1000 and with 5% noise (right)

Fig. 10 Mean number of comparisons for evolving data stream EDS with horizon = 2, stream speed = 2000
and with 1% noise (left), horizon = 10, stream speed = 1000 and with 5% noise (right)

Fig. 11 Normalised mutual information for Network Intrusion data set with horizon = 1 and stream
speed = 1000 (left), horizon = 5 and stream speed = 1000 (right)

6.3 Real-life data sets

The comparison between FlockStream and DenStream on the Network Intrusion
data set are shown in Table 3 and Figs. 11 and 12. The results have been computed
by setting the horizon to 1 and 5, whereas the stream speed is 1000. We can clearly
see the very high clustering quality achieved by FlockStream on this data set. For all
the time units cluster purity is above 98%, and reaches 100% at time units 40, 60, 100
when the horizon is set to 1. Analogous results are obtained when an horizon equal to
5 is used. In this case purity above 99% is attained for all the horizons. On this data
set FlockStream always ouperforms DenStream, which obtains a maximum value of
purity of 91% for both the horizons.

The normalized mutual information reported in Fig. 11 shows that FlockStream
overcomes DenStream and obtains almost always the true class division of the data
set. In fact its value approaches 1 for both the horizons. Figure 12 reveals that the
number of distance computations performed by FlockStream is almost the half of that

123

A single pass algorithm for clustering

Fig. 12 Mean number of comparisons for Network Intrusion data set with horizon = 1 and stream
speed = 1000 (left), horizon = 5 and stream speed = 1000 (right)

Table 3 Cluster purity of FlockStream and DenStream on the Network Intrusion data set for stream
speed = 1000 and horizon = 1 and 5

tu Network Intrusion data set

Speed = 1000, horizon = 1 Speed = 1000, horizon = 5

FlockStream (%) DenStream (%) FlockStream (%) DenStream (%)

10 98.14 90.25 99.89 91.30

20 98.32 91.38 99.98 88.32

30 98.74 90.01 99.93 89.21

40 100.00 90.17 99.93 90.28

50 99.21 88.11 99.92 89.73

60 100.00 89.10 99.71 89.06

70 99.85 89.01 99.96 90.48

80 99.31 89.50 99.94 91.18

90 99.16 88.66 99.94 88.94

100 100.00 89.01 99.73 89.21

needed by DenStream to find the clusters. It is worth to note that, despite the lower
number of comparisons needed by FlockStream to assign a point to the right group
(meaning that an approximate nearest neighbor of a point could have been computed),
the accuracy obtained is much higher than that obtained by DenStream.

Table 4 and Figs. 13 and 14 reports the same experiments executed on the Cover-
type data set. Also for this data set FlockStream outperforms DenStream with respect
to the cluster purity, the normalized mutual information, and the number of distance
computations performed.

6.4 Scalability results

The execution time of FlockStream is influenced by two main factors. The first is the
number of data points processed at each time unit, i.e. the stream speed. The second
is the number of iterations allowed to each agent to move onto the virtual space, every
time unit. The first factor determines the dimension of the virtual space. In fact, the
higher the number of agents, the higher the dimension of the 2-D grid, since the agents

123

A. Forestiero et al.

Table 4 Cluster purity of FlockStream and DenStream on the Forest Covertype data set for stream
speed = 1000 and horizon = 1 and 5

tu Forest Covertype data set

Speed = 1000, horizon = 1 Speed = 1000, horizon = 5

FlockStream (%) DenStream (%) FlockStream (%) DenStream (%)

10 99.96 98.81 99.88 98.71

20 99.93 99.86 99.67 97.35

30 99.85 98.80 99.79 96.73

40 99.85 99.61 99.93 98.85

50 99.93 99.03 99.63 96.69

60 99.93 98.30 99.64 97.78

70 99.88 99.51 99.70 96.88

80 99.76 98.81 99.50 96.47

90 99.89 99.18 99.84 97.85

100 99.82 99.83 99.71 96.60

Fig. 13 Normalised mutual information for Forest Covertype data set with horizon = 1 and stream
speed = 1000 (left), horizon = 5 and stream speed = 1000 (right)

Fig. 14 Mean number of comparisons for Forest Covertype data set with horizon = 1 and stream
speed = 1000 (left), horizon = 5 and stream speed = 1000 (right)

must have sufficient free cells to perform their movement. We experimented that, if
the stream speed value is v, then the number of cells must be at least 4 × v, and thus
the virtual space must be a d × d grid such that d × d ≥ 4 × v. Figure 15 shows the
execution time in seconds on the DS1 data set for both FlockStream and DenStream,
when the stream speed augments from 2000 to 1,6000 data items and the virtual space
is a 2000 × 2000 grid. The figure points out that the execution time of both the meth-
ods increases linearly with respect to the stream speed. However, as pointed out, the

123

A single pass algorithm for clustering

Fig. 15 Execution time for increasing stream length on the DS1 data set

execution time of FlockStream depends on the above mentioned factors, thus it could
need more or less computation time on the base of the fixed iteration number.

Regarding the other aspect related to the maximum number of iterations an agent
can perform, it is worth to note that every time a new bulk of data is deployed onto
the virtual space, the agents must have an adequate time interval necessary to meet
each other and to decide to join together. A low number of iterations, in fact, forbids
cluster formation. Figure 16 shows this behavior for the DS1 data set. FlockStream
has been executed on all the 10,000 data items for 1000 iterations. The figure reports
the clusters obtained after 100, 300, 500, 700, 900, and 1000 iterations. The points
depicted with different gray scale denote the swarms formed at the current iteration.
In each of the four clusters the points of prevalent color are the approximate clusters
constituted until the fixed iteration. The other points are swarms of agents not yet
aggregated with the true clusters. Notice that, as the number of iterations augments,
the swarms join together and the clustering result improves. This behavior is clearly
discernible also from Table 5, where the number of clusters found is reported each 100
iterations. Note the decrease of such a number as time evolves. Thus, if we reduce the
number of iterations the execution time diminishes, but the cluster quality is lower.
Asking for a faster answer generates an approximate result that, in some application
contexts, could be satisfying for the final user.

7 Discussion and conclusions

A heuristic density-based data stream clustering algorithm, built on the Multiple
Species Flocking model, has been presented. The method employs a local stochastic
multi-agent search strategy that allows agents to act independently from each other
and to communicate only with immediate neighbors in an asynchronous way. Decen-
tralization and asynchronism makes the algorithm scalable to very large data sets.

It is worth noting that designing a multi-agent system to efficiently perform a
dynamic simulation using the flocking model is a complex task. Many models of
flocking behavior describe the behavior of each individual in relation to the position
and velocity of the neighboring animals. However, only when certain parameters in

123

A. Forestiero et al.

(c)(b)(a)

(f)(e)(d)

Fig. 16 Clustering result after 100 (a), 300 (b), 500 (c), 700 (d), 900 (e), and 1000 (f) iterations of
FlockStream on the 10,000 point synthetic data set DS1

Table 5 Cluster number at
different iterations

Iterations Number of clusters

100 102

200 98

300 91

400 89

500 56

600 28

700 12

800 7

900 6

1000 4

the model are properly tuned, collective motion emerges spontaneously. In order to
simplify the tuning phase, we adopt a model of flocking behavior that uses agents
moving at a constant velocity in a two-dimensional, discrete and toroidal world. The
world is composed of cells, and one cell can be occupied by only one agent at a time.
Each agent is identified by its coordinates and direction at time t . At each timestep
the agent looks at all the other agents within a fixed distance and updates its direction
of motion to coincide with that of the other agents. The motion of a group of mobile
agents is obtained by using local control laws. The strategy adopted is inspired by the

123

A single pass algorithm for clustering

early flocking model proposed by Reynolds. The control laws presented ensure that all
agent headings and speeds converge asymptotically to the same value and collisions
between the agents are avoided. The model directs the agents to adjust their velocities
repeatedly by averaging them with their neighbors within a fixed radius. The model
is deterministic, but it can tolerate a reasonable amount of noise due to the mistakes
made by an agent when evaluating each neighbors position and direction.

A naive implementation of the Multiple Species Flocking model would require
O(n2) time, where n is the number of agents deployed onto the virtual space. In fact,
each boid should compare with all the other boids in order to compute the similarity
and decide to join or leave a group. However, each boid has a spatial position and a
visibility range, thus it has a quick access to the flockmates by visiting the nearby cells
of the toroidal grid. Though it is not possible a priori to evaluate the number of flock-
mates encountered, since it depends on the motion of each agent, which is dynamic
and unpredictable, experimental results showed that the number of comparisons is low
for both synthetic and real life data sets.

A main novelty of our approach is that the two-phase scheme of density-based data
stream clustering methods is replaced by a unique online phase, in which the cluster-
ing results are always available. This means that the clustering generation on demand
by the user can be satisfied at any time by simply showing all the swarms computed
so far. Experimental results on real and synthetic data sets confirm the validity of
the approach proposed. Future work aims at extending the method to a distributed
framework, more apt to real life applications.

References

Aggarwal CC (ed) (2007) Data streams—models and algorithms. Springer, Boston
Aggarwal CC, Han J, Wang J, Yu P (2003) A framework for clustering evolving data streams. In Proceed-

ings of 29th international conference on very large data bases (VLDB’03). Morgan Kaufmann, San
Francisco, pp 81–92

Aggarwal CC, Han J, Wang J, Yu P (2006) On clustering massive data streams: a summarization paradigm.
In: Aggarwal CC (ed) Data streams—models and algorithms. Springer, Boston pp 11–38

Azzag H, Monmarché N, Slimane M, Guinot C, Venturini G (2003) AntTree: a new model for clustering
with artificial ants. In: Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler J (eds) Advances in
artificial life—Proceedings of the 7th European conference on artificial life (ECAL). Lecture notes in
artificial intelligence, vol 2801. Springer, Berlin, pp 564–571

Babock B, Datar M, Motwani R, O’Callaghan L (2003) Maintaining variance and k-medians over data
stream windows. In: Proceedings of the 22nd ACM symposium on principles of data base systems
(PODS 2003), San Diego, pp 234–243

Barbará D (2002) Requirements for clustering data streams. SIGKDD Explor Newslett 3(2):23–27
Beringher J, Hullermeier E (2006) Online clustering of parallel data streams. Data Knowl Eng 58(2):180–

204
Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over evolving data stream with noise.

In: Proceedings of the sixth SIAM international conference on data mining (SIAM’06), Bethesda, pp
326–337

Charikar M, O’Callaghan L, Panigrahy R (2003) Better streaming algorithms for clustering problems. In:
Proceedings of the 35th annual ACM symposium on theory of computing (STOC’03), San Diego, pp
30–39

Chen Y, Li T (2007) Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM
SIGKDD international conference on knowledge discovery and data mining (KDD’07), ACM, New
York, pp 133–142

123

A. Forestiero et al.

Cui X, Potok TE (2006a) A distributed agent implementation of multiple species flocking model for docu-
ment partitioning clustering. In: Cooperative information agents, Edinburgh, pp 124–137

Cui X, Potok TE (2006b) A distributed flocking approach for information stream clustering analysis. In:
Proceedings of the ACIS international conference on software engineering, artificial intelligence,
networking, and parallel/distributed computing (SNPD’06), Las Vegas, pp 97–102

Dai B, Huang J, Yeh M, Chen M (2006) Adaptive clustering for multiple evolving streams. IEEE Trans
Knowl Data Eng 18(9):1166–1180

Eberhart RC, Yuhui S, James K (2001) Swarm intelligence (the Morgan Kaufmann series in artificial intel-
ligence). Morgan Kaufmann, San Francisco,

Ester M, Kriegel H-P, Jrg S, Xu X (1996) A density-based algorithm for discovering clusters in large spa-
tial databases with noise. In: Proceedings of the second ACM SIGKDD international conference on
knowledge discovery and data mining (KDD’96), Portland, pp 373–382

Folino G, Forestiero A, Spezzano G (2009) An adaptive flocking algorithm for performing approximate
clustering. Inform Sci 179(18):3059–3078

Guha S, Mishra N, Motwani R, O’Callaghan L (2000) Clustering data streams. In: Proceedings of the annual
IEEE symposium on foundations of computer science, Redondo Beach, pp 359–366

Guha S, Meyerson A, Mishra N, Motwani R, O’Callaghan L (2003) Clustering data streams: theory and
practise. IEEE Trans Knowl Data Eng 15(3):515–528

Hamdi A, Monmarché N, Alimi A, Slimane M (2008) SwarmClass: a novel data clustering approach by a
hybridization of an ant colony with flying insects. In: Dorigo M, Birattari M, Blum C, Clerc M, Stützle
T, Winfield A (eds) Ant colony optimization and swarm intelligence—6th international conference,
ANTS 2008. Lecture notes in computer science, vol 5217, September 22–24 2008. Springer, Berlin,
pp 411–412

Handl J, Meyer B (2007) Ant-based and swarm-based clustering. Swarm Intell 1(2):95–113
Li Tu, Chen Y (2009) Stream data clustering based on grid density and attractions. ACM Trans Knowl

Discov Data 3(3):12:1–12:27
Li W, Ng WK, Yu PS, Zhang K (2009) Density-based clustering of data streams at multiple resolutions.

ACM Trans Knowl Discov Data 3(3):14:1–14:28
Liu S, Dou Z-T, Li F, Huang Y-L (2004) A new ant colony clustering algorithm based on DBSCAN. In:

3rd international conference on machine learning and cybernetics, Shanghai, pp 1491–1496
Nasraoui O, Coronel CR (2006) Tecno-streams: tracking evolving clusters in noisy data streams with a

scalable immune system learning model. In: Proceedings of the 6th SIAM international conference
on data mining (SDM’06), Bethesda, pp 618–622

Nasraoui O, Uribe CC, Coronel CR, González FA (2003) Tecno-streams: tracking evolving clusters in
noisy data streams with a scalable immune system learning model. In: Proceedings of the 3rd IEEE
international conference on data mining (ICDM’03), Melbourne, pp 235–242

O’Callaghan L, Mishra N, Mishra N, Guha S (2002) Streaming-data algorithms for high quality clustering.
In: Proceedings of the 18th international conference on data engineering (ICDE’01), San Jose, pp
685–694

Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH ’87: Pro-
ceedings of the 14th annual conference on computer graphics and interactive techniques. ACM, New
York, pp 25–34

Sanghamitra B, Giannella C, Maulik U, Kargupta H, Liu K, Datta S (2006) Clustering distributed data
streams in peer-to-peer environments. Inform Sci 176(214):1952–1985

Tan P-N, Steinbach M, Kumar V (eds) (2006) Introduction to data mining. Perason International Edition,
Boston

Wang Z, Wang B, Zhou C, Xu X (2004) Clustering data streams on the two-tier structure. In: Advanced
Web technologies and applications, Springer, New York, pp 416–425

Zhou A, Cao F, Qian W, Jin C (2007) Tracking clusters in evolving data streams over sliding windows.
Knowl Inform Syst 15(2):181–214

123

	A single pass algorithm for clustering evolving data streams based on swarm intelligence
	Abstract
	1 Introduction
	2 Related work
	3 The DenStream algorithm
	4 The flocking model
	5 The FlockStream algorithm
	6 Experimental results
	6.1 Evaluation metrics
	6.2 Synthetic data sets
	6.3 Real-life data sets
	6.4 Scalability results

	7 Discussion and conclusions
	References

