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CORRECTION FOR CLOSENESS: ADJUSTING NORMALIZED
MUTUAL INFORMATION MEASURE FOR CLUSTERING COMPARISON
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Normalized mutual information (NMI) is a widely used measure to compare community detection methods.
Recently, however, the need of adjustment for information theory-based measures has been argued because of the
so-called selection bias problem, that is, they show the tendency in choosing clustering solutions with more commu-
nities. In this article, an experimental evaluation of these measures is performed to deeply investigate the problem,
and an adjustment that scales the values of these measures is proposed. Experiments on synthetic networks, for
which the ground-truth division is known, highlight that scaled NMI does not present the selection bias behavior.
Moreover, a comparison among some well-known community detection methods on synthetic generated networks
shows a fairer behavior of scaled NMI, especially when the network topology does not present a clear commu-
nity structure. The experimentation also on two real-world networks reveals that the corrected formula allows to
choose, among a set, the method finding a network division that better reflects the ground-truth structure.
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1. INTRODUCTION

Networks are a powerful formalism to represent many real-world systems, such as
collaboration, biological, communication and transport, technological systems. Networks
consist of a set of objects and a set of interconnections among these objects. Objects, gen-
erally, organize in densely connected groups to form a community structure. The detection
of such structure is a challenging problem that, in the last few years, has been investigated
in several research contexts because of the many potential applications it can be employed
(Fortunato 2010).

The availability of effective criteria to evaluate whether a method finds significant
groups of nodes that best fit the underlying community organization is an important issue
in community detection, because it allows to compare clustering algorithms and choose
the solution deemed more appropriate. Measures to empirically analyze the performance
of methods have long been studied for clustering objects represented as a set of features
(Halkidi et al. 2001, 2002). Among them, indices that assess the quality of a clustering by
comparing it with a known division, called reference or ground truth solution, are partic-
ularly important because they allow an objective evaluation of methods. Several measures
have been proposed, such as set matching based (van Dongen 2000; Meila and Heckerman
2001), pair counting based (Hubert and Arabie 1985; Ben-Hur et al. 2002), and information
theory-based measures (Meilă 2007; Vinh et al. 2010). The normalized mutual information
(NMI) is one of the most popular information theoretic measures for community detection
methods, after Danon et al. (2005) proposed it for comparative evaluation of community
detection methods. The authors, in fact, pointed out that the evaluation method proposed by
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Newman (2004) to measure the number of nodes correctly classified by a method does not
count some nodes which may be considered correctly clustered.

Recently, however, it has been pointed out the necessity to adjust information theo-
retic measures because they show the so-called selection bias problem, that is, the tendency
of choosing solutions with more clusters when compared with a ground truth division
(Vinh et al. 2009, 2010; Romano et al. 2014). This is mainly because these indices, as dis-
cussed by Vinh et al. (2009, 2010), do not satisfy the constant baseline property, that is, the
similarity between random partitions of a data set should be a constant, ideally a zero value.
Proposals for corrections have been carried out by Vinh et al. (2009, 2010), and Romano
et al. (2014). However, although these adjustments reduce the selection bias problem, we
experimentally found that the normalized mutual information value is rather high for clus-
terings where the ratio between the number of nodes and the number of clusters is small,
when compared with a reference one.

In this article, we deeply investigate this aspect of mutual information (MI) measures
by performing an experimental evaluation that highlights their behavior on synthetic net-
works for which the ground truth division is known. We then propose a new property that
such measures should satisfy, called reference closeness, consisting in considering pairs of
clusterings having a closer number of communities as more similar. This feature corrobo-
rates our intuitive idea of similarity between two divisions. To this end, we suggest to scale
information theoretic measures proportionally to the difference between the reference and
predicted number of clusters. Two scaling functions are proposed and studied. Experimen-
tal results show that the scaled measures are able to better exploit the range [0,1] of values
they can assume and dampen the undesirable behavior of considering a predicted clustering
very similar to the ground truth one even when the former consists of a too few or too high
number of communities with respect to the latter.

The article is organized as follows. In the next section, the notation used in the article
is first introduced, then a review of the most popular measures proposed in the litera-
ture to compare community detection methods is reported. In Section 3, the information
theory-based measures are recalled. In Section 4, the problem of selection bias, inherent
to information theoretic-based measures, is described. In Section 5, the unfair behavior of
these measures is investigated on artificial clusterings. Section 6 introduces the reference
closeness property and proposes to multiply MI measures by a scaling factor that allows to
reduce the selection bias problem. Section 7 shows the fair behavior of the scaled measures
on the same clusterings of Section 5 and compares some well-known methods with respect
to NMI and its adjusted versions by using synthetic generated networks and two real-world
networks. Finally, Section 8 concludes the article and discusses the advantages of adopting
the scaled NMI.

2. DEFINITIONS AND RELATED WORK

Let G D .V;E/ be the graph modeling a network N , where V is the set of n nodes
constituting the network, and E the set of m edges connecting couples of elements of V . A
community structure, or clustering, on V is a partition A D ¹A1; : : : ; ARº of V in a number
R of subsets, such that [RiD1Ai D V and Ai \ Aj D ;.

Given two partitions A D ¹A1; : : : ; ARº and B D ¹B1; : : : ; BSº of V , the overlap
between A and B can be represented through the contingency table C (Table 1), also called
confusion matrix, of size R�S , where nij denotes the number of nodes that clusters Ai and
Bj share.

Community detection methods, as pointed out in Fortunato (2010), generally discover
different community structures because of the variety of adopted strategies and functions
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TABLE 1. Contingency Table Between
Clusterings A and B .

B1 B2 : : : BS Sums

A1 n11 n12 : : : n1S a1
A2 n21 n22 : : : n2S a2
: : : : : : : : : : : : : : : : : :

AR nR1 nR2 : : : nRS aR

Sums b1 b2 . . . bS n

they optimize. Thus, an important issue is the availability of validity indices that assess the
quality of the results obtained by an algorithm. As regards clustering objects represented as
feature sets, there has been more research and a plenty of validity indices have been defined.
They have been classified in Halkidi et al. (2001) and Halkidi et al. (2002) as internal,
when they rely on characteristics inherent the data and evaluate the fit between the data
and the expected structure, relative when the clustering structure is compared with other
clustering schemes, and external, if they use additional domain knowledge to assess the
clustering outcomes.

These indices have often been borrowed and modified to evaluate the many methods
proposed for community mining. Rabbany et al. (2013), especially, considered the same
classification scheme for community detection methods, investigated quality criteria for
internal, relative, and external evaluation and modified some validity indices to make them
apt for network data.

In the following, we consider only external criteria, that is, indexes that evaluate a com-
munity structure by comparing it with a so-called gold-standard ground-truth community
partitioning for which nodes are explicitly labeled.

These kinds of external measures for comparing network clusterings have been classi-
fied as set matching, pair counting, and information theoretic-based measures (Meilă 2007;
Vinh et al. 2010). Set matching measures compute the best match for each cluster and then
sum up these contributions. As discussed in (Meilă 2007), this approach generates the so-
called problem of matching because the unmatched part is completely disregarded, that is,
two clusterings C1 and C2 could obtain the same evaluation because of the equivalence
between matched parts, but be very different on the assignment of the remaining elements
to clusters.

Pair counting-based measures count the pairs of nodes on which two clusterings overlap.
Given two divisions A and B , these measures compute, among the possible pairs

�
n
2

�
of

nodes, the number n11 of pairs appearing in the same cluster in both A and B , the number
n00 of pairs that appear in different clusters in both A and B , the number n10 of pairs
appearing in the same cluster in A but in different clusters in B , and the number n01 of pairs
that are in the same cluster in B and not in A.

The Rand Index, introduced by Hubert and Arabie (1985), is one of the most popular
measures in this class, and it is defined as RI.A;B/ D .n11 C n00/=

�
n
2

�
.

Information theoretic measures are based on information theory (Cover and Thomas
1991) and will be described in detail in the next section. In the following, the most recent
proposals for new evaluation criteria or extensions of existing ones are reported.

Criteria that take into account topological and functional properties of communities
have been proposed by Orman et al. (2012). The authors observed that two algorithms can
obtain the same performance but on solutions having rather different link distribution. Thus,
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they suggest that the comparison between community structures should consider these dif-
ferences. To this end, they introduced a number of measures that take into account the
neighbors of a node, the community size distribution and density, the reachability of nodes
inside the same community, and the presence of hub nodes, that is, nodes connected with
many others inside the same community. By comparing some of the most popular commu-
nity detection methods with respect to these new topological indexes, the authors found that
performance of algorithms and topological properties do not always agree, that is, divisions
with high values of measures such as Rand Index sensibly differ from the reference one.

Labatut (2015) has investigated three well-known evaluation measures, Purity (Man-
ning et al. 2008), Rand Index, and Normalized Mutual Information, and pointed out their
limitations. The author experimentally found that both Purity and NMI favor algorithms that
obtain many small communities. Moreover, because of the results of the study of Orman
et al. (2012), he suggests to modify these indexes to take into account the role of each
node in the network topology when computing the closeness between two partitions. This is
obtained by assigning a weight to each node. The choice of the more appropriate weight is
not an easy task. The author proposes a value that combines the node degree and the num-
ber of connections it has in its community. Experiments on the results of some well-known
community detection algorithms showed to be consistent with the results found by Orman
et al. (2012), and that, among the three measures, the modified NMI is able to assess the
similarity between a reference and predicted clustering in terms of both membership and
topological properties.

Zhang (2015) performed an analytic and experimental study showing that NMI has a
systematic bias when evaluating methods obtaining different numbers of groups, because it
prefers algorithms obtaining a large number of partitions. The author shows that this is due
to the finite size effect of entropy, which is different when considering an infinite or finite
number of nodes. To fix this problem, he proposes to consider the statistical significance
of NMI by comparing it with the NMI of a null model. Given the ground truth partition
A, Zhang chooses a random partition C having the same cluster size distribution of the
predicted partition B and defines the relative normalized mutual information (rNMI) as
rNMI.A;B/ D NMI.A;B/ � hNMI.A;C /i, where hNMI.A;C /i is the expected NMI
betweenA andC , averaged on different random configurations ofC . A comparison between
the results of different community detection methods on synthetic networks shows that a
method deemed more accurate than another with respect to NMI can obtain lower rNMI .

Extensions of the NMI measure for hierarchical community structure have been pro-
posed by Perotti et al. (2015) and for overlapping partitions by Lancichinetti and Fortunato
(2009), McDaid et al. (2011), and Rabbany and Zaïane (2015).

Perotti et al. (2015) generalized the MI to compare hierarchical structures represented
as trees. The MI of two subtrees is assumed to be a null value if one of the two subtrees
is a leaf; otherwise, it is computed by recursively considering the descendants of the set of
nodes shared between the two subtrees.

Lancichinetti and Fortunato (2009) proposed an extension of NMI to compare commu-
nity structures where nodes can appear in more than one community. The measure is based
on the normalization of the variation of information, introduced by Meilă (2007). McDaid
et al. (2011) found that this kind of normalization often overestimates the similarity of two
clusters; thus, they proposed a different normalization factor that avoids the problem.

Recently, Rabbany and Zaïane (2015) proposed a generalized clustering distance that
encompasses agreement measures belonging to the pair counting and information theoretic
families. This distance is based on two functions � and �, where the former quantifies the
similarity between two partitions by building their contingency table, and the latter com-
putes the dispersion in each row of this table. The advantage of this generalized measure is
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that it can derive other evaluation indexes by properly choosing the two functions. Moreover,
it can be extended to deal with overlapping clusters and to take into account the data struc-
ture. Experiments on the clusterings obtained by some state-of-the-art community detection
methods on synthetic networks show that the ranking of these algorithms with respect to
agreement measures is consistent with the proposed distance.

In the next section, a detailed description of information theoretic measures is reported.

3. INFORMATION THEORETIC MEASURES FOR COMPARING
COMMUNITY STRUCTURES

Information theoretic measures are based on the information theory concepts (Cover
and Thomas 1991; Vinh et al. 2010) of entropy (formula (1)), joint entropy (formula (2)),
and conditional entropy (formula (3)). These concepts are defined in terms of the elements
of the contingency table as follows:

H.A/ D �

RX

iD1

ai

n
log
ai

n
(1)

H.A;B/ D �

RX

iD1

SX

jD1

nij

n
log
nij

n
(2)

H.A j B/ D �

RX

iD1

SX

jD1

nij

n
log
nij =n

bj=n
(3)

The MI between two clusterings A and B is then defined as

I.A;B/ D �

RX

iD1

SX

jD1

nij

n
log

nij =n

aibj=n2
(4)

The MI of two clusterings is the amount of information that one clustering has about
the other. This can be expressed as

I.A;B/ D H.A/ �H.A j B/ D H.A/CH.B/ �H.A;B/ (5)

In order to compare clusterings, the normalized version of MI in the range [0,1] is pre-
ferred, where 0 means no similarity between A and B , and 1 that A and B coincide. Several
normalizations have been considered in the literature because MI is upper-bounded by the
following:

I.A;B/ � min¹H.A/;H.B/º �
p
H.A/H.B/ �

1

2
¹H.A/CH.B/º � max¹H.A/;H.B/º � H.A;B/

(6)

Depending on the type of normalization, different versions of the Normalized Mutual
Information can be obtained. In Table 2, the most popular ones, as described in Vinh et al.
(2010), are reported.
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TABLE 2. Different Normalizations of Mutual Information.

NMI Expression

NMIsum
2I.A;B/

H.A/CH.B/
Kvalseth (1987)

NMIjoint
I.A;B/
H.A;B/

Yao (2003)

NMImax
I.A;B/

max¹H.A/;H.B/º
Kvalseth (1987)

NMIsqrt
I.A;B/

p
H.A/H.B/

Strehl and Ghosh (2002)

NMImin
I.A;B/

min¹H.A/;H.B/º
Kvalseth (1987)

In particular, NMIsqrt has been used in Kvalseth (1987) and Strehl and Ghosh (2002)
for ensemble clustering, whileNMIsum has been proposed by Danon et al. (2005) as a reli-
able measure for evaluating the similarity of community structures obtained by community
detection methods. NMIsum is one of the most used normalizations of MI ; thus, in the
following, we refer to it as NMI , without the subscript.

Vinh et al. (2010) pointed out that the variants ofNMI can be used as distance measures
by subtracting them from 1 and showed that djoint D 1 � NMIjoint and dmax D 1 �
NMImax are metrics because they satisfy the properties of positive definiteness, symmetry,
and triangle inequality, while dsum, dsqrt , and dmin are not metrics. Thus, they suggest
that djoint and dmax are preferable with respect to the other measures. The variation of
information (VI ), defined by Meilă (2007) as VI.A;B/ D H.A/CH.B/ � 2I.A;B/, is
an example of metric.

4. SELECTION BIAS OF MEASURES

Vinh et al. (2009, 2010) argued that a measure comparing two independent clusterings,
such as, for example, clusterings sampled at random, should have the constant baseline
property, which is their expected similarity value should be a constant, ideally equal to zero
to indicate no similarity. Measures without this property have the so-called selection bias,
that is, they have the tendency of selecting clusterings having a higher number of clusters.
Vinh et al. (2010) showed that the information theoretic measures do not satisfy the constant
baseline property, and that a correction for chance is needed in some particular situations,
such as the number of clusters of the two partitions sensibly differs.

This problem was already pointed out by Hubert and Arabie (1985) for the Rand Index,
and a proposal of index corrected for chance was formulated as follows:

AdjustedIndex D
Index � ExpectedIndex

MaxIndex � ExpectedIndex
(7)

where the expected value is that obtained when two partitions are chosen at random with
the constraints of having the same number of groups and the same number of elements in
each group. They computed the expected value of the Rand Index and then proposed the
Adjusted Rand Index as follows:

ARI.A;B/ D
2.n00n11 � n01n10/

.n00 C n01/.n01 C n11/C .n00 C n10/.n10 C n11/
(8)
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Vinh et al. (2009, 2010) adopted the same form of correction of Hubert and Arabie and
defined the Adjusted Mutual Information (AMI), as follows:

AMI.A;B/ D
NMI.A;B/ �E ¹NMI.A;B/º

1 �E ¹NMI.A;B/º
(9)

where E¹NMI.A;B/º is the expected MI between A and B .
Romano et al. (2014), however, showed that this corrected formula has the same selec-

tion bias of NMI, although in a much dampened form. The same authors, thus, proposed
a standardization of NMI, named SMI, based on the variance of the MI. To standardize
the measure, it is necessary to compute the number of standard deviations that the MI is
away from the mean value. The standardized formula SMI does not present the bias, but
its computational complexity is rather high, being O

�
max

®
RSn3; S2n3

¯�
, where R and

S are the number of rows and columns of the confusion matrix, and n is the data set size.
Although the authors suggest a parallel implementation of the formula, even for moderately
low values of these parameters, comparing two partitions to obtain the standardized MI is
very computing demanding, and unfeasible for thousands of nodes.

In the next section, we investigate more in depth the selection bias problem, by
considering in particular the measures NMI, NMIjoint , NMImax , AMI, and SMI .

5. NORMALIZED MUTUAL INFORMATION UNFAIRNESS

Let A and B be the ground truth division in R communities of a network constituted
by n nodes, and the partitioning in S communities obtained by a method, respectively. The
NMI NMI.A;B/ of A and B can be written in terms of contingency table as follows:

NMI.A;B/ D
�2

PR
iD1

PS
jD1 nij log

�
nijn=aibj

�
PR
iD1 ai log.ai=n/C

PS
jD1 bj log

�
bj =n

� (10)

Vinh et al. (2010) argued about the unfair behavior of information theoretic measures
when the ratio n=S is small. In fact, if the similarity of two clusterings B and B 0 must
be evaluated with respect to a true partitioning A, the measures of MI, RI, and NMI
monotonically increase as the number of obtained clusters increases.

Here, we want to emphasize that, in the extreme case of a solution B having a number
of clusters equal to the number n of nodes, the NMI value between A and B should be
zero, because knowing B gives no information about A; thus, there is not any reduction of
uncertainty about A. Instead, the NMI value depends only on A and n because the expres-
sionNMI.A;B/ D 2I.A;B/= .H.A/CH.B// reduces to 2H.A/= .H.A/C nlog.1=n//,
being H.A j B/ D 0 and H.B/ D nlog.1=n/ (Cover and Thomas 1991). In fact, sup-
pose A D ¹A1; : : : ; ARº be the ground truth division of a network in R communities, and
B D ¹B1; : : : ; Bnº a division constituted by n singleton clusters. In Equation (10), we will
have nij is either 1 or 0 8i; j , bj D 1, thus

SX

jD1

nij log.nijn=aibj / D
nX

jD1

nij log.n=ai / D ai log.n=ai / (11)
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TABLE 3. Contingency Table Between
Two Clusterings A and B .

B1 B2

A1 39 11 50
A2 11 39 50

50 50 100

SX

jD1

bj log.bj =n/ D
nX

jD1

log.1=n/ D nlog.1=n/ (12)

NMI D
�2

PR
iD1 ai log.n=ai /PR

iD1 ai log.ai=n/C nlog.1=n/
(13)

that is, it depends only on the clustering A and the number n of nodes. In these cases, the
use of NMI to compare community detection results can lead to wrong conclusions. Con-
sider the toy example in which the contingency table between the ground truth clustering A
and a division B is that of Table 3. In this case, NMI.A;B/ D 0:2398. If we now consider
a division B 0 of 50 singleton clusters NMI.A;B 0/ D 0:2616, thus B 0 is evaluated as a bet-
ter partition than B , which is not intuitive because if B is given, for the 78 % of nodes, the
knowledge that a node u is a member of a cluster in B gives the correct information regard-
ing the true cluster u should belong to. Instead, the knowledge that u appears in a cluster of
B 0 does not reduce the uncertainty about the membership to a reference community for all
the n nodes.

In order to show the unfair behavior of information theoretic measures, we performed
two types of experimentations. The former, analogously to Romano et al. (2014), evaluates
the measures on randomly generated partitions, and the second one considers partitions of
a network that either refine or merge ground truth communities.

5.1. Random Cluster Generation

The first experiment is analogous to that reported by Romano et al. (2014). We consider
a reference clustering ofR D 10 clusters of equal size for a network constituted by n D 500
nodes. Then, six random clusterings are generated with increasing number of communities
S D ¹2; 6; 10; 14; 18; 22º, and the values of each measure are computed. The solution that
obtains the highest value, for each evaluation index, is counted as a win. The winning fre-
quencies for 5,000 trials are reported in Figure 1(a–e), while the average values of measures
are displayed in Figure 1(f–j).

Figure 1 clearly points out the selection bias of NMI, joint NMI, max NMI, and AMI
towards the solutions having the highest number of clusters, that is, 18 and 22, although
AMI has a less pronounced bias than the others. SMI actually shows the constant baseline
property because every random clustering has the same constant value to be chosen. The
results confirm those obtained by Romano et al. (2014), but it is worth to observe that, on
average, the values of SMI computed for community structures consisting of 18 and 22
communities are higher than those with a lower number of communities. However, the main
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FIGURE 1. (a–e) Selection probability of random clusterings with increasing number of communities when
compared with a reference community structure having 10 clusters with 50 nodes each, (f–j) values of measures.

FIGURE 2. (a–d) Selection probability of random clusterings with increasing number of communities
when compared with a reference community structure having 100 clusters with 50 nodes each, (e–h) values of
measures.

problem of SMI is that it cannot be practically used as a measure to compare clusterings
because of the too high-computational resources it needs. To compute SMI for this example
of 500 nodes, we needed 120 h on a cluster computer with 32 cores, 2.6 GHz, and 48 GB
RAM, which is impractical for real situations.

In order to better investigate the constant baseline property, we repeated the exper-
iment with n D 5;000 nodes, a reference clustering of R D 100 communities
of equal size, and generated random clusterings with number of communities S D
¹5; 10; 25; 50; 100; 200; 250; 500; 1;000; 2;500; 5;000º, thus taking into account also the
limit case of clusters constituted by singleton nodes. The SMI values could not be com-
puted because of its cubic complexity in n. Figure 2(a–c) shows that NMI, joint NMI,
and max NMI always prefer the degenerate solution of 5,000 singleton communities, and
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Figure 2(e–g) highlights the abnormal values of these measures for such a solution, which
can reach the values 0.65, 0.48, 0.5, respectively. On the other hand, although AMI does
not any more satisfy the constant baseline property, it does not present the selection bias
problem; instead, it has a selection probability biased towards the ground truth solution,
that is, 100 clusters, followed by the nearest one with 50 clusters, and then with decreasing
probabilities for the other values.

5.2. Join and Refine

In this experiment, we consider the set of clusterings that can be obtained from a ref-
erence clustering A by progressively splitting and merging its clusters. We first define the
concept of clustering refinement, as introduced by Meilă (2007), and that of merging. A
clusteringB refines (merges) a clusteringA if for each communityAi 2 A there is a unique
community Bj 2 B such that Bj � Ai (Bj � Ai ). Thus, a refinement of A is obtained by
splitting some clusters of A, while a merging by joining some of them. We considered the
two reference clusterings of R D 10; 100 communities of equal size, with n D 500; 5;000
nodes, of the previous experiment and generated refined and merged clusterings by splitting
or merging the original 10 and 100 clusters in ¹2; 5; 10; 20; 25; 50; 100; 200; 250; 500º and
¹5; 10; 25; 50; 100; 200; 250; 500; 1;000; 2;500; 5;000º, respectively, communities of equal
size. Figures 3 and 4 show the values of NMI, joint NMI and max NMI, AMI, and SMI
(only for the n D 500 example). The figures highlight more clearly the counterintuitive
behavior of the first three measures that assume very high values even when the original
clusterings are either split or merged in a number of clusters rather far from the original
one. For example, a clustering constituted by 2,500 communities with couples of nodes has
an NMI value between 0.7 and 0.8. It is also worth to observe that NMI does not exploit
the nominal range [0,1], as already observed by Vinh et al. (2010), but it ranges in the nar-
rower intervals [0.43,1] and [0.5,1] when n D 500 and n D 5;000, respectively. In the next
section, we focus only on NMI, considering that joint and max NMI have similar behavior.

FIGURE 3. Measure values of clusterings with merged/refined communities when compared with a
reference community structure having 10 clusters with 50 nodes each.

FIGURE 4. Measure values of clusterings with merged/refined communities when compared with a
reference community structure having 100 clusters with 50 nodes each.
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6. ADJUSTMENT FOR CLOSENESS

In this section, we propose to correct the NMI measure to direct it toward the number
of ground-truth clusters. We, thus, suggest to adjust the NMI with respect to a new prop-
erty, called the reference closeness property, that is, the closer the number of communities
found by an algorithm to the number of clusters of the reference clustering, the higher the
MI value should be. This desirable behavior of any evaluation criterion has been pointed
out by Rabbany et al. (2013), where they state that the “ideal behaviour of an index should
be that it gives low scores for partitionings/fragmentations in which the number of clus-
ters is much higher or lower than what we have in a ground-truth.” Moreover, Vinh et al.
(2010) experimentally found that, in the context of consensus clustering Strehl and Ghosh
(2002), a clustering having a number of clusters coincident with the true cluster number is
more robust.

The extensive experimentation reported in the previous section has pointed out that
NMI value is factitiously high when the clustering obtained by a method is constituted by
many small groups, that is, as already argued by Vinh et al. (2010), the ratio n=S is small,
where n is the number of nodes and S is the number of predicted clusters. A viable way to
face this problem could be to dampen this value when S is far from the true number of clus-
ters. We thus propose to scale NMI by multiplying it with a scaling factor that diminishes
its value as the difference between the true numberR of clusters and the predicted number S
of clusters increases. A desirable property of the scaling factor should be that, if we assume
the number R of clusters of the reference clustering as the mean value of the differences
between the predicted number S of clusters and the expected true number R, the shape of
the function should follow the typical bell curve of a Gaussian distribution. In such a way,
the scaled NMI should not differ too much from the not scaledNMI for those methods for
which the difference R � S in absolute value is low but punish methods that obtain a num-
ber of clusters either too higher or too lower than the true number. Scaled NMI would thus
have a fairer behavior toward the former methods and reduce the selection bias problem.

The scaling factor sf we propose is defined as follows:

sf D ˛e�
jS�Rjˇ

� (14)

Because formula (14) is defined in terms of three parameters ˛, ˇ, � , by varying their
values, there can be infinitely many choices of scaling factors. We tested different combi-
nations of these parameters. By setting ˛ D ˇ D 1 and � D R, we obtained a shape that
resembles a normal distribution, although it never assumes a zero value. By combining dif-
ferent other values for ˛, ˇ and � , we obtained functions similar to the Gaussian function.
Thus, we experimented two types of scaling factors. The first one is a Gaussian function
having ˛ D 1p

2��
, ˇ D 2, � D 2�2, where � is the standard deviation between the pre-

dicted number S of clusters and the expected true number R, the second one has ˛ D 1,
ˇ D 1, � D R.

Thus, we have

Gauss NMI D
1

p
2��

e
� jS�Rj

2

2�2 �NMI (15)

FNMI D e�
jS�Rj
R �NMI (16)

It is worth to note that, as regards formula (15), when the predicted number S and the
true number R of communities are the same, the standard deviation is zero. In this case, it
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FIGURE 5. Scaling factors for R D 25 and S varying in the interval Œ1; : : : ; 50�.

is known that the Gaussian function reduces to the Dirak pulse of unit area (Parker 2009).
Thus, we can then safely assume that the scaling factor sf D 1.

Analogously for formula (16), when R D S , the exponent of the exponential function
is 0, and the scaling factor is 1. Thus, when R D S , the value of NMI is not changed.
However, as the difference between R and S increases, both if either a lower or a higher
number S of communities is obtained, the value of NMI proportionally decreases, because
it is scaled by a factor sf .

The behavior of these scaling factors can be seen in Figure 5 for an example having
R D 25 and S varying in the interval Œ1; : : : ; 50�. It is known that � determines the width of
the Gaussian function. Thus, the main difference between Gauss NMI and FNMI is their
amplitude, which is very sharp for the former and smooth for the latter. This implies that
when the predicted number S of clusters deviates from the expected true number R, the
NMI value is scaled either quickly or in a soft way.

A toy example that explains the effect of the scaling factors for a small data set clustered
in two ground-truth clusters of 10 nodes each, where cluster membership is denoted by the
plus (cluster 1 in the Figure) and triangle (cluster 2 in the Figure) symbols, is shown in
Figure 6, on the left. If the data set is divided in a clustering B consisting of two clusters
with mis-clustered nodes, or in a clustering C where the first cluster is split into two pure
groups, or a clustering D with five clusters, then for clustering B, we have the following:

S D 2;R D 2;NMI.A;B/ D 0:1187

FNMI.A;B/ D e�
j2�2j
2 � 0:1187 D 0:1187

�S;R D �2;2 D 0;
1

p
2�0
� e
� jS�Rj

2

2�02 � 1

GNMI.A;B/ D� 1 � 0:1187 D 0:1187

for clustering C, we have

S D 2;R D 3;NMI.A;C / D 0:8000
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FIGURE 6. A toy example of 20 nodes divided in two groups. Three different clusterings are reported on
the right: a clustering B with the same number of clusters but mis-clustered nodes, a clustering C with three
pure groups, and a clustering D with four mixed groups and a pure group.

FNMI.A;C / D e�
j2�3j
3 � 0:8000 D 0:4852

�S;R D �2;3 D 0:7071

GNMI.A;C / D
1

p
2� � 0:7071

� e
� j2�3j2

2�0:70712 � 0:8000 D 0:1660

Finally, for clustering D, we have

S D 2;R D 5;NMI.A;D/ D 0:1659

FNMI.A;D/ D e�
j2�5j
5 � 0:1659 D 0:0370

�S;R D �2;5 D 2:1213

GNMI.A;D/ D
1

p
2� � 2:1213

� e
� j2�5j2

2�2:12132 � 0:1659 D 0:0115

In the next section, we repeat the experimentation on the clusterings of the previous
section and show that the modification proposed for MI measures sensibly dampens the
selection bias problem and allows a better exploitation of the range [0,1] of values that the
information theoretic-based measures can assume.



COMPUTATIONAL INTELLIGENCE

7. EXPERIMENTAL EVALUATION ON SCALED NORMALIZED
MUTUAL INFORMATION

In this section, we reconsider the clusterings with 5,000 nodes of the Section 5 and show
the values of the scaled measures. Moreover, the constant baseline property, investigated
by Vinh et al. (2010), is studied also for these measures. Then, we perform a comparative
evaluation among community detection methods on synthetic generated networks and two
real-life networks. For the former data set, we also show the values of the rNMI measure
of Zhang (2015).

7.1. Random and Merged/Refined Communities

Figure 7 depicts the selection probability and the values of NMI, joint NMI, and max
NMI scaled according to formulas (15) and (16) for the network of 5,000 nodes. Because
the values of NMI, joint and max NMI are similar, only the values of Gauss NMI are
reported. As can be observed from the figures, the selection probability is biased toward
the true number of communities for all the measures. As regards the values of the MI,
Figure 7(e–g) and (i–k) shows that the scaled values are now well distributed around the
reference number of communities, both for the randomly generated clusterings and those
obtained by merging/refining the 100 true clusters. In particular, it is worth to note that, for

FIGURE 7. Selection probability (a–d) and values (e–h) of the adjusted measures for random clusterings
with increasing number of communities when compared with a reference community structure having 100
clusters with 50 nodes each. (i–l) Adjusted measure values of clusterings with merged/refined communities.
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community structures with more than 500 communities, the values are near zero; thus, the
not intuitive behavior of assigning high values of NMI to solutions with clusters of one
or two nodes, and, in general, very few nodes with respect to the number of nodes of true
clustering, is avoided. Gauss NMI, because of the very deep decrease it induces on NMI
values when the difference between R and S increases, shows a severe penalty for solutions
having S different from R, even for small differences.

7.2. Similarity Between Random Divisions

In this section, we investigate the corrected measures with respect to the constant base-
line property that should be satisfied by any similarity index, that is, two clusterings sampled
independently at random, should have a constant baseline value, ideally equal to zero.
Figure 8 reports the values ofNMI, FNMI, and Gauss NMI for the experiment with 5,000
nodes, described in Section 5.1, where also the reference clustering is generated at random.
Bars denote standard deviation. Figure 8(a) shows that, as already pointed out by Vinh et al.
(2010), the NMI measure does not satisfy the property because the similarity between two
random clusterings increases as the number of communities augments. Figure 8(b) and (c)
highlights that, although FNMI and Gauss NMI have a small increase around the num-
ber of clusters of the reference random clustering, the average values are rather close to
zero; thus, the reference closeness property of these measures implicitly induces the almost
satisfiability of the constant baseline property.

7.3. Comparing Methods on Synthetic Networks

In this section, six very popular methods for community detection are compared on
the LFR benchmarks proposed by Lancichinetti et al. (2008). The characteristics of the
networks are the same of those reported in Lancichinetti et al. (2008) and extensively used
in several papers for comparing the performances of methods (Lancichinetti and Fortunato
2009; Orman and Labatut 2010; Orman et al. 2013). The benchmark networks consist of
5,000 nodes, average node degree 20, maximum node degree 50, minimum community
size 10, maximum community size 50, exponent of degree distribution �2, community size
distribution�1, and mixing parameter� varying in the range [0.1,0.8].� expresses the ratio
between the external and total degree of nodes; thus, the higher its value the more difficult to
find community structure because it is less well defined. The algorithms we considered are
Fast Greedy (Newman 2004) and Louvain (Blondel et al. 2008) that are based on modularity

FIGURE 8. Average similarity for random clusterings. Bars denote standard deviation.
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FIGURE 9. Average number of clusters obtained by the methods (left) and corresponding values of
measures for synthetic networks. Bars denote standard deviation.
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optimization, InfoMap (Rosvall and Bergstrom 2008) and InfoMod (Rosvall and Bergstrom
2007) that are based on data compression, WalkTrap (Pons and Latapy 2005) and Markov
Cluster (van Dongen 2008) based on the concept of random walk. The former exploits
random walks to define the distance between nodes, and the latter simulates random walks,
also called flows, within a graph.

We generated 100 different instances of the benchmark and obtained networks with
average number of communities 202 for� D ¹0:3; 0:4; 0:7; 0:8º and 203 for the other values
of �. Figure 9 shows on the left the average number of clusters obtained by each method,
while on the right, the average values of NMI, AMI, rNMI, FNMI, and Gauss NMI
(denoted GNMI). Bars denote standard deviation of each measure.

Fast Greedy finds a number of clusters much lower than the true number. This number
reduces as the mixing parameter increases; thus when the community structure becomes
more difficult to uncover, this algorithm has the tendency to join communities. Actually, it
merges too much, because also with � D 0:2 it gives, on average, only 45 communities.
Information theoretic measures diminish as � increases, as expected, but the NMI values
are above 0.4 until � D 0:5. In such a case, however, Fast Greedy obtains only 13 com-
munities out of the 203 it should find. AMI and rNMI values are lower. FNMI values
are still lower than AMI and rNMI , which seems reasonable, because a predicted division
with 13 communities and a true one with 203 do not seem so similar. Gauss NMI in this
case is too low to be considered as a reliable similarity value.

InfoMap is a very accurate method that is capable to find the correct community structure
until � D 0:7; thus, any evaluation measure does not change its superiority with respect to
the other methods. When � D 0:8, it finds 240 communities, with an NMI value of 0.63;
thus, values below 0.5 of the other measures are more coherent.

InfoMod obtains an NMI value above 0.8 until � D 0:6, although the number of com-
munities it finds is much lower than 203. Also in this case, while GNMI reduces too
much because � D 0:1, FNMI has a deeper decrease than NMI, AMI, and rNMI .
For instance, when � D 0:4, InfoMod returns 54 communities, FNMI D 0:41, while
NMI D 0:92, AMI D 0:70, and rNMI D 0:65. This algorithm, thus, merges communi-
ties, and it is not able to obtain a partition of nodes close to the ground truth division, while
0.92 and 0.70 values indicate high similarity.

Louvain performs quite well. It obtains a number of communities very close to the true
number, except for � D 0:7. In such a case, it finds an average of 49 communities. Thus,
it merges communities, and a value of NMI D 0:69 is too high. AMI D 0:48, rNMI D
0:56, and FNMI D 0:31 can be actually considered more consistent.

Markov Cluster clearly shows the selection bias problem discussed in Section 4. It finds
the correct partitioning for � � 0:3, but, for � D 0:4, the number of clusters is 302, and
then it drastically splits the networks by returning an average of 1,279, 3,027, 4,469, and
4,890 communities for � D 0:5; 0:6; 0:7; 0:8 with NMI values of 0.89, 0.81, 0.76, 0.75,
respectively. These very high values are implausible and could be misleading when, for
example, we have to choose between another method against Markov Cluster on the base
of the performances measured by an assessment criterion such as NMI . In fact, Markov
Cluster algorithm outperforms Fast Greedy, InfoMod, and WalkTrap for � D 0:4, and the
first two for � D 0:5; 0:6 which is plausible, but it is considered better than all the other
methods except InfoMod for � D 0:7, and the best for � D 0:8. FNMI and Gauss NMI
avoid the biased evaluation of Markov Cluster in a safe way by reducing its very good
evaluation, due to a too high and inconsistent NMI value, when the mixing parameter is
above 0.4.



COMPUTATIONAL INTELLIGENCE

WalkTrap, analogously to Fast Greedy, has the tendency to merge communities as �
increases. Nonetheless, its NMI values are above 0.9 until � � 0:6, which is misleading
about its goodness. The lower values of FNMI are more reliable.

It is worth to point out that when the number of communities obtained by a method,
such as Louvain and Infomap, is very close to the ground truth and, consequently, the NMI
values are high, the corresponding rNMI values are sensibly lower than NMI . For exam-
ple, Infomap gives NMI D 1 for � � 0:7 and the corresponding rNMI is 0.61. This
rather high reduction rate is smoother for lower values of NMI . Neither FNMI nor AMI
present this behavior.

7.4. Comparing Methods on Real-World Networks

In this section, we consider two real-world networks studied by Yang and Leskovec
(2015) for evaluating quality functions with respect to the ability of obtaining commu-
nity divisions that resemble the ground-truth partitioning. The first network is the Ama´on
product co-purchasing network. It consists of 334,863 nodes, 925,872 edges, and 75,149
ground-truth communities. The other network is the DBLP collaboration network where
nodes are paper authors and edges connect authors that coauthored a paper. It consists of
317,080 nodes, 1,049,866 edges, and 13,477 ground-truth communities. Both networks can
be downloaded from http://snap.stanford.edu/data/. Because it is very difficult to have large
size data sets with ground-truth divisions, even if Amazon and DBLP have overlapping com-
munities, we made them nonoverlapping by choosing one of the partitions for those nodes
belonging to more than one cluster.

Figure 10 reports the complementary cumulative distribution function of the size of the
ground-truth communities in logarithm scale. As observed in Yang and Leskovec (2015),
the distributions show the presence of many small communities, but also, large communities
can exist. The six methods described in the previous section have been executed on the
Amazon and DBLP networks, and the values of NMI, FNMI, and GNMI are showed in
Tables 4 and 5, respectively, along with the number of communities each method obtains.

The tables point out that Infomap, Infomod , and Louvain detect a number of com-
munities much lower than the ground-truth on both networks; thus, these methods merge
almost all the small communities in bigger ones. The NMI values, however, are never
less than 0.34. FNMI properly reduces these values, although GNMI, because of the too
high difference between the true and predicted number of communities, decreases them
too much. Infomap, for the Amazon network, finds only 15 communities out of 75,149.
Nonetheless, the NMI value is 0.3418, FNMI, instead, is 0.1258, which is a more realis-
tic value. Analogously, Louvain obtains 242 communities and an NMI D 0:5565, while

FIGURE 10. Complementary cumulative distribution function of the number of nodes belonging to the
ground truth partitioning of (a) Amazon and (b) DBLP networks.

http://snap.stanford.edu/data/
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TABLE 4. Comparing Methods on the Amazon Network: 334,863
Nodes, 925,872 Edges, and 75,149 Ground-Truth Communities.

Measure

Algorithm NMI FNMI GNMI nc

Fast Greedy 0.4975 0.1869 1:4037 � 10�6 1,595
Infomap 0.3418 0.1258 9:4413 � 10�7 15
Infomod 0.5524 0.2037 1:5293 � 10�6 184
Louvain 0.5565 0.2054 1:5421 � 10�6 242
Markov Cluster 0.6956 0.4754 5:0491 � 10�6 46,557
Walktrap 0.6174 0.2537 1:9170 � 10�6 8,307

NMI, normalized mutual information; GNMI, Gauss NMI.

TABLE 5. Comparing Methods on the DBLP Network: 317,080
Nodes, 1,049,866 Edges, 13,477 Ground-Truth Communities.

Measure

Algorithm NMI FNMI GNMI nc

Fast Greedy 0.3278 0.1516 6:5442 � 10�6 3082
Infomap 0.4298 0.1641 6:8735 � 10�6 499
Infomod 0.3726 0.1391 5:8245 � 10�6 198
Louvain 0.3622 0.1355 5:6735 � 10�6 225
Markov Cluster 0.6577 0.1069 5:5744 � 10�6 37964
Walktrap 0.5626 0.3908 2:3783 � 10�5 18387

NMI, normalized mutual information; GNMI, Gauss NMI.

FNMI D 0:2054. On the other hand, Markov Cluster returns 46,557 communities, which
is more than the half of true number, with NMI D 0:6956, while FNMI D 0:4754. For
this network, both NMI and FNMI measures consider Markov Cluster as the best among
the considered methods. This is a plausible result because the other methods find too few
communities, including Fast Greedy (1,595 clusters out of 75,149) and Walktrap (8,307
communities).

As regards theDBLP network, Markov Cluster returns 37,964 clusters, a number much
higher than that of ground-truth partitioning which is 13,477, and an NMI D 0:6577;
thus, it is considered to outperform the other methods. However, while again Infomap,
Infomod , and Louvain merge too much thus are unable to detect small communities,
Walktrap in this case obtains 18,387 clusters, which is the nearest value to the ground-
truth, with an NMI value of 0.5626, lower than that obtained by Markov Cluster. In this
case, it is very clear the selection bias of NMI that evaluates this latter method better than
Walktrap, in spite of the excessively high number of clusters it obtains. FNMI decreases
the NMI values from 0.6577 and 0.5626 to 0.1069 and 0.3908, respectively, thus scoring
Walktrap better than the other methods, which seems a reasonable conclusion.

Finally, Figures 11 and 12 display the complementary cumulative distribution functions
of the predicted community sizes. The figures confirm that the distributions of the predicted
community structures are rather different from those of the true partitioning, except for
Markov Cluster on the Ama´on network and Walktrap on the DBLP network.
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FIGURE 11. Complementary cumulative distribution function of the number of nodes belonging to the
partitioning obtained by each method for the Amazon network.

FIGURE 12. Complementary cumulative distribution function of the number of nodes belonging to the
partitioning obtained by each method for the DBLP network.



CORRECTION FOR CLOSENESS: ADJUSTING NMI

8. CONCLUSIONS

In this article, we highlighted unfairness of information theoretic measures for cluster-
ing comparison, and the importance of the reference closeness property when there is not a
clear community structure. In fact, in this case, some methods, although find either a too few
or a too high number of clusters, have an NMI value rather high when compared with the
ground truth division. This may be misleading in situations where a method must be chosen
among others, and the criterion adopted for selection is based on NMI. The scaled NMI, as
experiments showed, gives a more intuitive idea of clustering similarity and guarantees a fair
comparison among methods. Thus, in situations where the network structure is difficult to
uncover, a scaledNMI can be more useful when performing comparative analysis of meth-
ods to assess the superiority of an approach with respect to another. The reference closeness
property is a contribution to better discriminate performances of algorithms. Further inves-
tigation, however, is necessary to determine other scaling functions that could improve the
reliability of information theoretic measures. The experimentation reported in the article
shows that, in general, NMI values alone are not sufficient to affirm the superiority of an
algorithm. Authors should discuss about topological features of the obtained clusterings, at
least reporting the number of communities, because, as also argued in Orman et al. (2011),
often high NMI values do not correspond to topological properties similar to those of the
ground truth division.
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