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Abstract

Model selection is important in many areas of
supervised learning. Given a dataset and a set
of models for predicting with that dataset, we
must choose the model which is expected to best
predict future data. In some situations, such as
online learning for control of robots or facto-
ries, data is cheap and human expertise costly.
Cross validation can then be a highly effective
method for automatic model selection. Large
scale cross validation search can, however, be
computationally expensive. This paper intro-
duces new algorithms to reduce the computa-
tional burden of such searches. We show how
experimental design methods can achieve this,
using a technique similar to a Bayesian version
of Kaelbling’s Interval Estimation. Several im-
provements are then given, including (1) the use
of blocking to quickly spot near-identical mod-
els, and (2) schemata search: a new method for
quickly finding families of relevant features. Ex-
periments are presented for robot data and noisy
synthetic datasets. The new algorithms speed up
computation without sacrificing reliability, and in
some cases are more reliable than conventional
techniques.

1 INTRODUCTION

Model selection is an important aspect of many areas of
supervised learning. The computer is given a dataset and
a set of models for predicting with that dataset, and must
determine the best model. The models might be a collection
of rival learning algorithms, or different sets of high-level
learning parameters, or a collection of alternative architec-
tures for a given learning algorithm (e.g. different neural-
net architectures). The best model is the one which is
expected to give the most accurate predictions for future
data.

Cross validation is a much used, powerful method for model
selection. It is also general purpose: it has few prior as-

sumptions and is rarely tied to particular internal features
of an algorithm.

There are two prices to be paid for the generality of cross
validation.

� A data penalty. Firstly, unless leave-one-out cross
validation is used, some data must be reserved for use
as a test set. Secondly, a naive intensive use of cross
validation, perhaps over many thousands of models,
may produce a deceptively good lowest-error model,
in a manner similar to overfitting of data. Deciding
how much data is required to justify searching over
a given number of models is extremely difficult, and
to our knowledge no general-purpose decision proce-
dure exists. In the absence of further assumptions,
the danger of searching with insufficient data must be
guarded against by leaving out yet another portion of
the data, and using this to check the basic cross vali-
dation search.

� A computational penalty. With medium or large
datasets, computing the cross validation error of each
model can take too long. For instance, computing the
leave-one-out error for the 10-nearest neighbor algo-
rithm on a 1000 datapoint, 12 input dataset takes 20
seconds on a SPARC. Performing search over thou-
sands of models may take many hours, which is im-
practical for some applications. Some large datasets
may have sufficient data to theoretically support a
search across millions of models, yet the computa-
tional cost of a cross validation search would be pro-
hibitive.

We are interested in applying cross validation to control
tasks in robotics and manufacturing. These often involve
decisions based on streams of information from sensors and
actuators, where data is plentiful. There have been several
such cases where cross validation was helpful in selecting
(1) relevant sets of visual features [Moore et al., 1992],
(2) the relevance and weightings of robot joint torques
[Atkeson, 1990], (3) smoothing kernel sizes [Schaal and
Atkeson, 1994, Moore, 1992], and (4) determining neural
network architectures [Moody and Utans, 1992]. In this pa-
per we describe new algorithms for speeding up such cross



validation decisions.

1.1 CROSS VALIDATION

This paper uses leave-one-out cross validation (LOOCV)
applied to memory-based (or instance-based) learning.

Given
�

models models and a dataset with
�

datapoints train-
ing points, define the LOOCV error of the � th point using
model ��� as the difference between the true output of the� th point and the predicted output when model � is trained
on all members of the dataset except for the � th point. Call
this error ���	�
��� .�
����������� output��� Predict ������� Dataset ��� th point ����� 1 �
Then the LOOCV error of model ��� is the mean

���� � 1�
datapoints

 � �
�	�
��� � 2 �
The search problem is to find which � � minimizes � �� .

1.2 THIS PAPER

First we describe earlier work [Maron and Moore, 1994],
where we use statistical tests to decide whether a partially
completed cross validation has already produced a clear fa-
vorite, rendering the rest of the computation unnecessary.
For this we appeal to statistical techniques known as ex-
perimental design methods ([Box et al., 1978]). To our
knowledge, this has not been used before for accelerating
model selection or feature selection in function approxima-
tion problems. In a number of other applications, similar
techniques have been used. One of the first such exam-
ples in the AI literature is Kaelbling’s Interval Estimation
method [Kaelbling, 1990], which uses confidence testing to
alleviate the “exploration versus exploitation” dilemma in
reinforcement learning. [Greiner and Jurisica, 1992] also
use a similar technique for decision-making in knowledge-
based systems. [Gratch et al., 1993] uses a related method
for choosing appropriate search rules in very large schedul-
ing domains.

This paper then extends these ideas to several new algo-
rithms, and demonstrates them on cross validation search.
The new algorithms should also be applicable elsewhere in
machine learning.

2 RACING THE CROSS VALIDATION
ERRORS

In [Maron and Moore, 1994] Hoeffding bounds were used
to accelerate cross validation. Hoeffding bounds are a non-
parametric method which, given a sequence of independent
observations of a random variable, permit one to place a
confidence interval on the underlying mean value of the
random variable. With probability � 1 �"!#� the true un-
derlying mean lies within distance $ of the sample mean

where

$��
% &

2 ln � 2 '(!#�
2 ) � 3 �

where
&

is the (known a priori) maximum range of the
random variables and ) is the number of samples. The ad-
vantage of Hoeffding bounds is the lack of an assumption
about the distribution of the random variable. Its disad-
vantage is its resulting conservatism. If, instead, we make
stronger assumptions then our confidence intervals will be
able to shrink faster.

In this paper we start by considering a variant which we
will here call the RACE algorithm, where the Hoeffding
bounds are replaced by a Bayesian approach. Estimates
of the mean LOOCV error of each model are built up in
parallel, in a kind of race. During the race, if we predict
a model is highly unlikely to eventually have the lowest
LOOCV error (i.e. is unlikely to “win”) then that model is
eliminated.

The RACE algorithm first randomizes the order of the dat-
apoints. We will make the (rather strong) assumption that
the leave-one-out errors are distributed normally. For each
model � � they have a priori unknown mean � �� and vari-
ance * �� . Remember that � �� is the true mean LOOCV of all
the datapoints in the dataset using model ��� , and the goal
of the computation is to find the model which minimizes
this value.

As evidence accumulates, the uncertainty of � �� decreases.
Let +,.- � and +* 2- � be the sample mean and variance of model� ’s LOOCV errors up to the / th iteration, when all surviving
models have been evaluated on / datapoints.

+,.- � � 1/
- �10 1

� � ����� � 4 �
+* 2- � � 1/2� 1

- �30 1 4 � � �����5��+,.- ��6 2 � 5 �
(remembering that ���	�
��� is the leave-one-out error when
model �7� is used to predict the � th datapoint).

For each model � � we use Bayesian statistics, along with
the values +, - � , +* 2- � , and / , to put a probability distribution
on � �� . This is a relatively elementary process1 which is
described in, for example, [Schmitt, 1969], and is summa-
rized in this paper’s Appendix. Figure 1 gives an example.
From these distributions one can compute (using the Welch
approximation [Welch, 1937]) for any pair of models, �7�
and �7��8 , how likely it is that � �� is less than � ���8 . In Figure 1
it would be very probable that � �2 is lower than � �4 , but only
fairly probable that � �1 is lower than � �4 .

The race algorithm proceeds by eliminating any model, �9� ,
for which there exists another model ����8 that is almost
certainly better or indistiguishable. This statement needs

1The priors for the mean and variance are uninformative.
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Figure 1: The posterior distributions on the LOOCV errors
of four models involved in a race. The lower the LOOCV
error the better, so it seems very unlikely that � 4 will turn
out to be better than � 2 at the end of the race. Thus � 4 is
eliminated at this point.

some clarification. We wish to eliminate any model which
we are confident is worse than some other model. The
confidence required will be denoted by ! . For example,
if ! � 0 � 001 that means we are willing to risk a one in a
thousand chance of making an error on this test. We also
wish to stop a race between two models which we believe
with high confidence to be extremely similar. This can be
achieved by defining a threshold � (which is also a small
positive number) and eliminating any model which we are
confident has a mean value within distance � of another
model.

These rules can be combined into one rule: eliminate any
model � � for which there exists some other model � � 8 for
which

Prob �
������ ���� 8 � � ���	� 1 � � . . . ���	��/ � �
����8�� 1 � � . . . ����8���/��
�9� 6 �
is less than ! . Statistics are gathered and models are elim-
inated until only one model remains, or we run out of dat-
apoints, whereupon we select the model with the lowest+, - � .

2.1 BLOCKING

We will see that the race algorithm can greatly reduce the
computational effort when compared with fully computing
the LOOCV errors of all the models. Sometimes, how-
ever, its behavior can be ruined when two or more models
produce nearly identical predictions. Such near-identical
models will have to run the race through every point in
the dataset. This problem can be reduced by a statistical
technique called Blocking [Box et al., 1978].

For a given datapoint � , the ��������� are unlikely to be indepen-
dent for different models. For instance, in a noisy dataset
imagine that datapoint 15 is particularly noisy and has a
larger output value than its neighbors. Then all models are
likely to have a large leave-one-out error for it. Some of the
spread of the distributions in Figure 1 is due to such factors,
and they are not independent between models. This spread
can be eliminated by blocking.

The trick is to estimate the values � ��
� 8 defined by:

� ���� 8 � ���� ������ 8 � 7 �
During the race we maintain the following statistics:

+,���
��8 ��/���� 1/
- �10 1 4 ���	�
��� � ����8��
��� 6 � 8 �

+* ��
� 8 ��/ � �
���	 1/2� 1

- �30 1



4 �
�(�����5����� 8
�
��� 6 � +, ��
� 8�� 2 � 9 �

As before, we can use Bayesian statistics to maintain, for
all � , ��
 , probability distributions on � ��
� 8 . But this time
dependencies between models will have been removed. If� 6 and � 7 both have a large variation of errors but � 6’s
are always fractionally smaller than � 7’s, the blocking
statistics will reveal this much more quickly than would
the basic race.

As before, model �7� is eliminated when for some ��
 ,
Prob ��� �� � � �� 8 � � � becomes very small; this is detected by
testing for

Prob ��� ��
� 8 � � � � � ! � � 10 �
The simplest example of blocking having a beneficial effect
is the case where two models in the race are identical. Then
the RACE algorithm would have to race for a long time.
The racers would have the same mean at each step of the
race, but RACE would only end when they both had so
many samples that the confidence intervals on its measures
of the mean error of each model were both very close to� (its indifference parameter). In contrast, the BRACE
(blocking race) algorithm would maintain, at each step,
the difference between the leave-one-out errors on each
datapoint. Because the models are the same, this difference
would always be zero and it would only require a very small
number of statistics (perhaps less than ten, depending upon
the parameters) before one of the models was eliminated.

The example of identical models is extreme, but in the more
common case of near-identical models there can also be a
large reduction in the time to elimination.

2.2 RESULTS: RACING AND BLOCKING

Table 1 shows some results comparing both the RACE al-
gorithm and the BRACE algorithm with the standard al-
gorithm that computes all the models exhaustively. In the
results, “Evals” denotes the number of individual LOOCV
computations needed by the search, “Correct?” asks
whether the model selected by the search had the true min-
imum LOOCV, and the “Relative evals” column gives the
fraction of the cost of the search relative to the exhaustive
search.

The algorithms were tested on datasets from a billiards
robot (3 inputs, 1 output, 253 points) and a juggling robot
(12 inputs, 1 output, 972 points). For these experiments,! � 0 � 001 and � � 0 � 001. The ! value means we have to



be 99 � 9% ( � 100 � 1 ��!#� ) sure before eliminating a model
from a race. The � value means we are prepared to acci-
dently eliminate models which are very slightly better (by
a factor � � 0 � 001) than the race winner. There were
the same set of twenty models in each race. Ten mod-
els were local weighted averaging (also known as kernel
regression) and ten models were locally weighted regres-
sion [Cleveland and Delvin, 1988]. Each group of ten
models had different kernel smoothing parameters from the
set

�
2 � 9 � 2 � 8 � . . . 2 � 1 � 20 � .

In both these experiments RACE improved on the exhaus-
tive method, and BRACE in turn improved upon RACE.
The proportional improvement was greater for the juggling
example, mainly because the juggling dataset is larger. A
larger dataset means the exhaustive method has to perform
proportionally many extra LOOCV evaluations, whereas
the racing methods can stop before all datapoints are evalu-
ated. In three of the four races in Table 1 there was only one
model left at the end of the race. For the RACE algorithm
on the billiards dataset, 8 of the 20 models survived to the
end.

2.3 COMMENTS ON RACE AND BRACE

Here we will briefly discuss several issues regarding RACE
and BRACE. The first concerns our decision to use Bayesian
statistics rather than the looser non-parametric Hoeffding
bounds used in [Greiner and Jurisica, 1992] and [Maron
and Moore, 1994]. For a given value of ! (defining the con-
fidence level at which we are prepared to cut off a competitor
from the race) the Bayesian approach cuts off far earlier than
the Hoeffding approach. The Bayesian approach achieves
its superiority by making stronger assumptions about the
distribution of the errors, and so might be expected to be
less robust than the almost assumptionless Hoeffding ap-
proach. In the experiments we have performed to date the
Bayesian method does not seem to converge to the wrong
model more easily than the Hoeffding approach, but this
is an empirical observation which may not be true for all
datasets.

Another issue concerns our choice to assume a normal dis-
tribution for the errors. In future work it might be more
sensible to use a different distribution, such as an exponen-
tial or chi-squared. The normal distribution does not take
into account the possibility of occasional highly aberrant
datapoints (outliers) in the dataset which might have errors
very many times greater than the root-mean-square error.

It is also worth considering the computational penalty of
maintaining the statistics and making cut-off decisions dur-
ing the race. This cost is �2� � models ��/�� 2 � for the / th step
of the race, when

�
models ��/ � models remain. In our exam-

ples, this cost is quite small in comparison with the cost of
computing the leave-one-out errors. In the case of memory-
based methods such as locally weighted regression, for one
model, the cost of computing the leave-one-out error of
one datapoint is � � � datapoints � 2 � � 3 � where � is the
number of input variables in the dataset. Each step of the

race requires the computation of a leave-one-out error for�
models �
/ � models. Thus provided that � � � models ��/ � 2 �

is small compared with � � � models ��/ � � � datapoints � 2 �
� 3 �
� , requiring�

models �
/ � � � �
datapoints � 2 � � 11 �

then the computational penalty is small. Furthermore, if
we ever need to reduce the computational penalty further
it might not be difficult to invent racing schemes which
require less computation than � � � models ��/ � 2 � per step by
means of only testing a carefully chosen subset of all pairs
of models.

3 SEARCHING FOR SETS OF GOOD
FEATURES

A particularly promising use of cross validation is to auto-
matically choose relevant inputs from a wider set of possible
inputs. An obvious benefit is in accelerating the learning
rate of algorithms which suffer in the face of irrelevant in-
puts. Other benefits include helping select relevant visual
features for visually controlled robot tasks [Moore et al.,
1992], and selecting sets of time windows in time series
predictions. This problem, known as “subset selection” is
a well-known problem in statistics, surveyed thoroughly
in [Miller, 1990] and is rapidly gaining attention in the
Machine Learning community. In this proceedings, three
other papers addressing subset selection for various ma-
chine learning algorithms are: [Caruana and Freitag, 1994,
John et al., 1994, Skalak, 1994].

Given � inputs there are 2 � possible input sets, and so
performing an exhaustive cross validation search over all of
them soon becomes impractical as � rises, even assuming
adequate data support to justify searching so many models.
Hill climbing is clearly a sensible alternative. In this section
we provide several hill climbing versions of BRACE; these
aim to both speed up the computation and also to reduce
the danger of becoming trapped at local maxima.

Sets of inputs can be represented as binary strings. Given
four possible inputs 0101 would denote “ignore inputs 1
and 3, use inputs 2 and 4.” The standard non-racing hill
climbing algorithm begins with a start string (e.g. 0000)
then makes all possible 1-feature changes to it (1000, 0100,
0010, 0001) and exhaustively finds which minimizes the
LOOCV error. It then uses this best string (say 0100) as a
new base point, generates all its 1-feature successors (1100,
0000, 0110, 0101), and determines the best. It continues
in this way until no single-feature change improves it. The
special case of starting with all zeroes is termed forward
selection (FOR-SEL), and that of starting with all ones
is termed backward elimination (BACK-EL). Forward se-
lection is better if only a few features are expected to be
relevant and backward elimination is better if only a few
features are expected to be irrelevant. Unfortunately, such
prior knowledge may not be available at the start of the
search.



Table 1: Experiments Described In The Text

Billiards Juggling
Method Evals Correct? Relative Evals Correct? Relative

Evals to Evals to
EXH EXH

EXH 5060 Yes 1.000 19440 Yes 1.000
RACE 2464 Yes 0.487 2558 Yes 0.132
BRACE 1049 Yes 0.207 882 Yes 0.045

The racing counterparts to these algorithms are straightfor-
ward: from the base string generate all 1-feature changes
and race them. Proceed until the winner of a race does
not improve on its base. In the experiments described later
two versions are tested, FOR-BRACE and BACK-BRACE,
which start at all zeroes and all ones respectively.

There is, however, an objection to this simple application
of BRACE. Imagine that inputs 4, 5, and 6 are all relevant
and independently provide a reduction in the LOOCV er-
ror. If we start at string 0000000 and successors 0000100,
0000010, and 0000001 are all good, it will be a shame to
run through three separate hill climbing iterations to switch
them all on. This motivates the next algorithm, a Gauss-
Seidel version of hill climbing:

� Begin with a predefined start string (e.g. 00000)
� Race between the current string and the current string

with the first bit flipped (00000 versus 10000)
� Select the winner of that race as the new current string

(e.g. 10000)
� Now race between the current string and the current

string with the second bit flipped (10000 versus 11000)

...

...until all bits have been raced. Then return to the first bit
and proceed until an entire pass through the current string
fails to produce an improvement.

Versions of this algorithm, FOR-GS-BRACE and BACK-
GS-BRACE, are tested below. On some occasions they do
indeed help, but on others their performance is poor. A
further new algorithm does Gauss-Seidel’s job better, and
also solves another problem.

3.1 SCHEMATA SEARCH

Schemata search is another new algorithm which aims
to solve the same problem that the Gauss-Seidel method
addresses—the problem of forward selection taking a long
time if many features are relevant, or similarly backward
elimination taking a long time if many features are irrel-
evant. It will also help with a second problem. Suppose
there is a family of three features which must all be on
simultaneously for any reduction in the LOOCV error. If
any family member is ignored then the LOOCV error is

just as bad as if all family members were ignored. This
can happen quite easily, for example if the features are dis-
tributed between -1 and 1 and the function being learned
is their product. Forward selection would be very likely to
miss this family and to converge on something suboptimal.
Backward elimination would not have this problem, but if
many features are irrelevant then it can become stuck itself
(because in the early stages of hill climbing the removal of
one irrelevant attribute among many does not improve the
LOOCV error).

Schemata search searches over the space of schemata
strings, which have 0’s, 1’s and � ’s in them. A � denotes
a fifty percent chance of the attribute being ignored, and
a fifty percent chance of it being used. The LOOCV error
of such a string is the expected LOOCV error of a binary
string generated from the schemata string according to these
random rules, for example

LOOCVE � 101��� � � 1
4

LOOCVE � 10100 � �

1
4

LOOCVE � 10101 � �

1
4

LOOCVE � 10110 � �

1
4

LOOCVE � 10111 �
Now a simple algorithm is to begin with all stars (e.g.
��������� ) , and then to find out (by racing) whether it is better
to have the first field as a 1 or a 0 (i.e. we would race
1������� and 0 ������� ). Having finished the first race, we could
determine the second field by another race, and so on until
the entire string is filled with 1’s and 0’s.

In practice, we can do better than this. Instead of beginning
by racing the first field, we can race all fields against each
other in parallel:

1������� races against 0�������
� 1 ����� races against � 0 �����
��� 1 ��� races against ��� 0 ���
����� 1� races against ����� 0�
������� 1 races against ������� 0

Thus, given � inputs, we have � races occurring in parallel,
and we stop all races when any one race produces a winner
(to confidence level ! ). On each step of the race a random



binary string is generated, and then the LOOCV error of one
randomly chosen datapoint is computed using that binary
string. This statistic is added to the statistics of all the strings
in the above sets of races which match the binary string.
This continues until one of the pairs of racers becomes
significant, i.e. when we believe with probability 1 � !
that one member of the significant pair beats its competitor.
Then the next iteration of the race begins with a new set
of racers which all have the winning field of the previous
race switched on. If, in the above race, � 1 ����� became
significantly better than � 0����� the next iteration would have

11����� races against 01�����
� 11 ��� races against � 10 ���
� 1 � 1� races against � 1 � 0 �
� 1 ��� 1 races against � 1 ��� 0

This may be preferable to our other hill climbing racers for
three reasons:

� If any feature is outstandingly good, it will be detected
quickly without having to wait for an entire iteration
of hill climbing to take place.

� If several features are independently good then one of
them will be quickly selected, without having to wait
to determine which precisely is the best, which is a
weakness of FOR-BRACE and BACK-BRACE.

� Small, mutually dependent, families of features that
would be missed by the other hill climbers may be
found. If features 1, 2 and 3 must all be on to gain any
benefit, then schemata string 1 ��������� will eventually
win a race against 0 ��������� because 25% of the strings
generated from the former have features 1, 2, and 3 all
on, whereas 0% of the latter do. We have performed
experiments, not shown here, to test this phenomena
in noisy binary optimization problems with mutually
dependent families of up to size five, and schemata
search is the only algorithm that finds the correct fam-
ily.

4 EXPERIMENTS

We have run all these algorithms on fifty-six randomly gen-
erated synthetic datasets. The task was to find the set of fea-
tures which minimized the leave-one-out cross-validation
error of a 1-nearest-neighbor function approximator. The
datasets all had between 4 and 12 inputs and one real-
valued output which was a noisy multivariate function of
a random subset of the inputs. All inputs were randomly
generated uniformly in the range � 1

��� � � 1. The multi-
variate function was from the syntax in Table 2.

The number of terms in the dataset was also randomly de-
cided, and varied between 5 and 30. Thus some datasets
were trivial, such as output � 1

2 � � 2
� �

7 � , and others com-
plex, such as

output = max( corrupt( product(
mean( g( x4 ) , g( corrupt( x2 )

) ), product( x5 , corrupt( x5 )
) ) ) , g( corrupt( g( g( g( g(
corrupt( max( x5 , corrupt( x3 )
) ) ) ) ) ) ) ) )

It is interesting to note that all the searchers managed to
identify the precise set of relevant inputs for this complex
dataset, which had 950 datapoints2. In all the experiments,! � � � 0 � 001.

Figure 2 shows the performance of the forward searchers
and schemata on the 56 random datasets. There are two
measures of performance.

� Accuracy. How often do the searchers end at subop-
timal solutions? This is shown by the columns

– ����� � the percentage of datasets for which the
searcher produced an “imperfect” result. A re-
sult is imperfect if any other search produced a
feature-set with a lower LOOCV error.

– ���
	 � the percentage of datasets for which the
result was fairly wrong, i.e. had a LOOCV er-
ror more than 0.001 greater than the minimum
found by any other search. To give this num-
ber some meaning, the minimum LOOCV errors
found were typically in the range 0 � 01 � 0 � 2 de-
pending on the dataset, with a similar magnitude
of variation.

– ��� 	 � the percentage of datasets for which the
result was very wrong, i.e. had a LOOCV error
more than 0.01 greater than the minimum found
by any other search.

� Search time. This is given by the number of individ-
ual evaluations of LOOCV errors. The mean figure is
shown, but this is dominated by the few hard datasets
which required tens of thousands of evaluations for
all methods. Many other datasets required only thou-
sands, or in some cases, hundreds of evaluations. For
this reason, also shown (by scatterplots) are the dis-
tributions of the ratio of number of samples needed
compared with the number of samples needed by the
conventional forward selection method. As can be
seen, this distribution is highly skewed, especially for
the schemata searches. 50% of the schemata searches
took less than a quarter of the time of the conventional
search. 12 of the 56 schemata searches took over twice
as long.

Figure 3 is a similar table comparing the various backward
methods and the same schemata searches (which have no
forward or backward biases).

The forward and backward racing methods were usually
faster than the conventional methods with little loss of accu-
racy. The Gauss-Seidel races were similar in performance.
The schemata search was also roughly equal in accuracy,

2The slowest method was FOR-SEL, needing 19000 evalua-
tions, and the fastest was SCHEMATA 
 , described shortly, which
needed 2215 evaluations



Table 2: Syntax Of Multivariate Functions In Experiments

expr::=
� � the � th input
expr � expr the product of the subexpressions
mean(expr � expr) the mean of the subexpressions
max(expr � expr) the maximum of the subexpressions
corrupt � expr � gaussian random noise of � 0 � 1 is added to the value

of the subexpression� � expr � where � is a non-differentiable function � � � � � � � 2

if
���

0 and � � � � � � � 2 � 2
�

if
� �

0.

except that in this set of experiments it achieved the dis-
tinction of no “very wrong” errors.

Of the twelve schemata searches which were twice as
long as the conventional forward method, seven were due
to the conventional method quickly becoming stuck with
an inferior solution—after considerably more computa-
tion schemata search found a better result. Of the other
five, four eventually found equally good solutions and one
found a slightlyinferior solution. Interestingly the schemata
searches frequently found all the relevant features very fast,
often in a tenth of the total time of their search. This pro-
duced strings with only 1’s and � ’s in them. But they would
then spend a very long time convincing themselves that they
were justified in putting 0’s elsewhere.

As an initial and ugly attempt to address this, we tried an
additional algorithm, SCHEMATA � , which would give up
and replace � ’s with 0’s very eagerly. If 2000 iterations of
one of its races produced no significant winners, it forced
one of the stars to zero (using the race statistics to choose
the input least likely to be relevant). SCHEMATA � was
the fastest algorithm at converging but was less reliable than
SCHEMATA.

5 DISCUSSION

We would like to extend this research in several ways.
Firstly, we could investigate the formal relationship be-
tween the cutoff probability, ! , the tolerance factor � , and
the overall probability that a race will produce a satisfac-
tory answer. Secondly, we could explore the relationship
between our searches and the techniques of gradient descent
and genetic optimization.

Gradient descent can be used in combination with cross val-
idation and memory-based methods [Atkeson, 1990], and
can also be used to identify irrelevant features. It can select
between models that are parameterized by smoothly vary-
ing continuous parameters. Gradient descent can be partic-
ularly useful for locally refining near-optimal solutions. In
other cases, we suspect that it would often be more com-
putationally expensive, and more prone to local maxima,
than our discrete searches, but additional investigation is
merited.

Genetic optimization has an evident similarity to the

schemata search presented here, but in earlier work [Moore
et al., 1992] we saw that it was inferior to conventional
hill climbing (producing poorer solutions and requiring
more computation time). Indeed, the invention of schemata
search was intended to yield some of the widely reported
benefits of genetic optimization, while using statistical
bookkeeping to minimize binary string evaluations.

In [Aha, 1990, Aha et al., 1991] a method is given to permit
nearest-neighbor-like learners to incrementally improve es-
timates of the relevance of input features. An advantage of
their technique is that it operates locally, so that features that
are relevant only in some parts of the input space may be
ignored elsewhere. It would be interesting to try combining
schemata search with this kind of local model selection.

6 CONCLUSION

This paper introduced the notion of “racing” with Bayesian
statistics to accelerate model selection. It then extended
these algorithms in several new ways. Some of these new
search methods may have applications elsewhere in ma-
chine learning, and this merits further investigation.

APPENDIX

This appendix concerns inferences about means of normal
distributions from a random sample using Bayesian statis-
tics. The analysis is directly from [Schmitt, 1969].

Let us assume that a priori we know nothing about the
distribution except that it is normal. The mean , might be
any value between ��� and � � . The variance * 2 might
be any value between 0 and � � . This ignorance can be
turned into the uninformative priors:

� � , ��� Constant � 12 �
� ��*�� � Constant' * � 13 �

Where � � � � denotes a probability density function3.

Then, if we observe a sample
� �

1 � � 2 � . . . � �
	 � we can define

3Note that neither of these priors is a legitimate probability den-
sity function. Such an approximation is harmless (see [Schmitt,
1969] for more details).



Method Mean #
����� ����� �	���

Mean Median
Evals relative relative

evals evals

FOR-SEL 17378 17.9 16.1 7.1 1 1

FOR-RACE 6658 19.6 17.9 5.4 0.51 0.43

FOR-GS-RACE 7960 17.9 14.3 5.4 0.67 0.53

SCHEMATA 7779 16.1 8.9 0 1.7 0.22

SCHEMATA 
 4159 19.6 14.3 5.4 0.9 0.13

Distribution of relative evals (relative to
FOR-SEL)

0.0 0.5 1.0 1.5 2.0

2 ratios greater than 2

12 ratios greater than 2

8 ratios greater than 2

Figure 2: Comparing the conventional forward selection algorithm against its racing counterparts, and against
schemata search (which has no forwards-backwards bias).

Method Mean #
����� ����� �	���

Mean Median
Evals relative relative

evals evals

BACK-EL 26358 16.1 14.3 7.1 1 1

BACK-RACE 13943 16.1 12.5 7.1 0.62 0.57

BACK-GS-RACE 5611 17.9 16.1 5.4 0.46 0.23

SCHEMATA 7779 16.1 8.9 0 2.1 0.18

SCHEMATA 
 4159 19.6 14.3 5.4 1.0 0.11

Distribution of relative evals (relative to
BACK-EL)

0.0 0.5 1.0 1.5 2.0

10 ratios greater than 2

8 ratios greater than 2

Figure 3: Comparing the conventional backward elimination algorithm against its racing counterparts, and against
the same schemata search results as in Figure 2.

sample size � , sample mean
��� 1� ��� � � �
14 �

and sample variance� 2 � 1��� 1

��� � � � � 
� � 2 � �
15 �

The marginal posterior distribution of the mean � is a stu-
dent distribution with mean


� , variance � 2 � � , and ��� 1
degrees of freedom. The cumulative density function of
this distribution can then be used to compute the probabil-
ity that the true mean � lies within any given interval.

In our implementation of BRACE the computation of

Prob

������ �"!	# �%$�� #'&
(Equation 10) is achieved in this manner. For each ( and(*) the sample size is + , the sample mean is ,�	-� �"! � +.� and the
sample variance is

� ,/ -��� ! � +.�0� 2 from4 Equations 8 and 9.

4It should be noted that these statistics can be updated incre-
mentally: 12�34�4 !�576 
 1 8 and 19.3474 !:576 
 1 8 can be defined in terms of6 , 12 34:4 !;576 8 , 19 34:4 !:576 8 , and < 4 576 
 1 8�=>< 4 ! 576 
 1 8 .

In our implementation of RACE we need to compute the
probability that the means of two distributions differ by
more than a certain amount (Equation 6). This is achieved
by the Welch approximation to the Behrens-Fisher prob-
lem [Welch, 1937].

Given two samples with the same assumptions as before,
let the first sample have size � 1, sample mean


�
1 and sam-

ple variance � 2
1. The corresponding values for the second

sample are � 2,

�

2 and � 2
2. Let?

1
�@� 2

1
� � 1 A ? 2

�@� 2
2
� � 2 A �

16 �B �C?
1
� � ?

1 D ?
2 � � �

17 �
Then � 1 ��� 2 (the signed difference between the population
means) has, approximately, a student distributionwith mean
�

2 � 
�
1, variance ?

1 D ?
2, and degrees of freedomE B 2� 1 � 1 D �

1 � B � 2� 2 � 1 FHG 1 � �
18 �
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