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�� Introduction

Many applications of machine learning in practice involve predicting a �class� that
takes on a continuous numeric value� and the technique of model tree induction has
proved successful in addressing such problems �Quinlan� ����� Wang and Witten�
����	
 Structurally� a model tree takes the form of a decision tree with linear
regression functions instead of terminal class values at its leaves
 Numerically�
valued attributes play a natural role in these regression functions� while discrete
attributes can also be handled�though in a less natural way
 This is the converse
of the classical decision�tree situation for classi
cation� where discrete attributes
play a natural role
 Prompted by the symmetry of this situation� we wondered
whether model trees could be used for classi
cation
 We have discovered that they
can be turned into classi
ers that are surprisingly accurate


In order to apply the continuous�prediction technique of model trees to discrete
classi
cation problems� we consider the conditional class probability function and
seek a model�tree approximation to it
 During classi
cation� the class whose model
tree generates the greatest approximated probability value is chosen as the predicted
class


The results presented in this paper show that a model tree inducer can be used
to generate classi
ers that are signi
cantly more accurate than the decision trees
produced by C���
� The next section explains the method we use and reviews the
features that are responsible for its good performance
 Experimental results for
thirty�three standard datasets are reported in Section �
 Section � brie�y reviews
related work
 Section � summarizes the results


�� Applying model trees to classi�cation

Model trees are binary decision trees with linear regression functions at the leaf
nodes� thus they can represent any piecewise linear approximation to an unknown
function
 A model tree is generated in two stages
 The 
rst builds an ordinary
decision tree� using as splitting criterion the maximization of the intra�subset vari�
ation of the target value
 The second prunes this tree back by replacing subtrees
with linear regression functions wherever this seems appropriate
 Whenever the
model is used for prediction a smoothing process is invoked to compensate for the
sharp discontinuities that will inevitably occur between adjacent linear models at
the leaves of the pruned tree
 Although the original formulation of model trees had
linear models at internal nodes that were used during the smoothing process� these
can be incorporated into the leaf models in the manner described below


In this section we 
rst describe salient aspects of the model tree algorithm
 Then
we describe the procedure� new to this paper� by which model trees are used for
classi
cation
 Some justi
cation for this procedure is given in the next subsection�
following which we give an example of the inferred class probabilities in an arti
cial
situation in which the true probabilities are known
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���� Model�tree algorithm

The construction and use of model trees is clearly described in Quinlan�s �����	
account of the M� scheme
 An implementation called M�� is described by Wang
and Witten �����	 along with further implementation details
 The freely available
version� of M�� we used for this paper di�ers from that described by Wang and
Witten �����	 only in its improved handling of missing values� which we describe
in the appendix
� There were no other changes� and no tuning of parameters

It is necessary to elaborate brie�y on two key aspects of model trees that will

surface during the discussion of experimental results in Section �
 The 
rst� which
is central to the idea of model trees� is the linear regression step that is performed
at the leaves of the pruned tree
 The variables involved in the regression are the
attributes that participated in decisions at nodes of the subtree that has been
pruned away
 If this step is omitted and the target is taken to be the average target
value of training examples that reach this leaf� then the tree is called a �regression
tree� instead

The second aspect is the smoothing procedure that� in the original formulation�

occurred whenever the model was used for prediction
 The idea is 
rst to use the
leaf model to compute the predicted value� and then to 
lter that value along the
path back to the root� smoothing it at each node by combining it with the value
predicted by the linear model for that node
 Quinlan�s �����	 calculation is

p� �
np� kq

n� k
� ��	

where p� is the prediction passed up to the next higher node� p is the prediction
passed to this node from below� q is the value predicted by the model at this node�
n is the number of training instances that reach the node below� and k is a constant

Quinlan�s default value of k � �� was used in all experiments below

Our implementation achieves exactly the same e�ect using a slightly di�erent

representation
 As a 
nal stage of model formation we create a new linear model
at each leaf that combines the linear models along the path back to the root� so
that the leaf models automatically create smoothed predictions without any need
for further adjustment when predictions are made
 For example� suppose the model
at a leaf involved two attributes x and y� with linear coe�cients a and b� and the
model at the parent node involved two attributes y and z�

p � ax� by q � cy � dz� ��	

We combine these two models into a single one using the above formula�

p� �
na

n� k
x�

nb� kc

n� k
y �

kd

n� k
z� ��	

Continuing in this way up to the root gives us a single� smoothed linear model
which we install at the leaf and use for prediction thereafter

Smoothing substantially enhances the performance of model trees� and it turns

out that this applies equally to their application to classi
cation
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���� Procedure

Figure � shows in diagrammatic form how a model tree builder is used for classi
�
cation� the data is taken from the well�known Iris dataset
 The upper part depicts
the training process and the lower part the testing process

Training starts by deriving several new data sets from the original dataset� one

for each possible value of the class
 In this case there are three derived datasets�
for the Setosa� Virginica and Versicolor varieties of Iris
 Each derived dataset
contains the same number of instances as the original� with the class value set to �
or � depending on whether that instance has the appropriate class or not
 In the
next step the model tree inducer is employed to generate a model tree for each of
the new datasets
 For a speci
c instance� the output of one of these model trees
constitutes an approximation to the probability that this instance belongs to the
associated class
 Since the output values of the model trees are only approximations�
they do not necessarily sum to one

In the testing process� an instance of unknown class is processed by each of the

model trees� the result of each being an approximation to the probability that it
belongs to that class
 The class whose model tree gives the highest value is chosen
as the predicted class


���� Justi�cation

The learning procedure of M�� e�ectively divides the instance space into regions
using a decision tree� and strives to minimize the expected mean squared error be�
tween the model tree�s output and the target values of zero and one for the training
instances within each particular region
 The training instances that lie in a partic�
ular region can be viewed as samples from an underlying probability distribution
that assigns class values of zero and one to instances within that region
 It is stan�
dard procedure in statistics to estimate a probability distribution by minimizing
the mean square error of samples taken from it �Devroye� Gyoer
 and Lugosi� �����
Breiman� Friedman� Olshen and Stone� ����	


���� Example

Consider a two�class problem in which the true class probabilities are linear func�
tions of two attributes x and y� p�classjx� y�� as depicted in Figure �a� summing
to � at each point
 A dataset with ��� instances is generated randomly according
to these probabilities
 To do this� uniformly distributed �x� y	 values are chosen
and the probability at that �x� y	 value is used to determine whether the instance
should be assigned to the 
rst or the second class
 The data generated is depicted
in Figure �b� where the classes are represented by 
lled and hollow circles
 It is
apparent that the density of 
lled circles is greatest at the lower left corner and
decreases towards the upper right corner� the converse is true for hollow circles

When the data of Figure �b is submitted to M�� it generates two model trees


In this case the structure of the trees generated is trivial�they each consist of a
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Figure �� Example use of model trees for classi�cation� �a� class probabilities for data generation�
�b� the training dataset� �c� inferred class probabilities

single node� the root
 Figure �c shows the linear functions f �classjx� y� represented
by the trees
 As the above discussion intimates� they are excellent approximations
to the original class probabilities from which the data was generated

The class boundary is the point of intersection of the two planes in Figure �c� and

as this example illustrates� classi
ers based on model trees are able to represent
oblique class boundaries
 This is one reason why model trees produced by M��

outperform the univariate decision trees produced by C���
 Another is that M��

smooths between regression functions at adjacent leaves of the model tree


�� Experimental results

Our experiments are designed to explore the application of model trees to classi
ca�
tion by comparing their results with decision tree induction and linear regression�
and determining which of their components are essential for good performance

Speci
cally� we address the following questions�

�
 How do classi
ers based on model trees compare to state�of�the�art decision
trees� and to classi
ers based on simple linear regression�

�
 How important are �a	 the linear regression process at the leaves� and �b	 the
smoothing process�
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To answer the 
rst question� we compare the accuracy of classi
ers based on the
smoothed model trees generated by M�� with the pruned decision trees generated
by C���� we will see that M�� often performs better
 However� the performance
improvement might conceivably be due to other aspects of the procedure� M��

converts a nominal attribute with n attribute values into n � � binary attributes
using the procedure employed by CART �Breiman et al�� ����	� and it generates one
model tree for each class
 To test this we ranC��� using exactly the same encodings�
transforming each nominal attribute into binary ones using the procedure employed
byM�� and generating one dataset for each class� and then building a decision tree
for each dataset and using the class probabilities provided by C��� to arbitrate
between the classes
 We refer to the resulting algorithm as C����
 We also report
results for linear regression �LR	 using the same input�output encoding


To investigate the second question� we 
rst compare the accuracy of classi
ers
based on model trees that are generated by M�� with ones based on smoothed
regression trees �SRT	
 As noted above� regression trees are model trees with con�
stant functions at the leaf nodes� thus they cannot represent oblique class bound�
aries
 We apply the same smoothing operation to them asM�� routinely applies to
model trees
 Then we compare the accuracy of classi
ers based on the �smoothed	
model trees of M�� with those based on unsmoothed model trees �UMT	
 Because
a smoothed regression tree is a special case of a smoothed model tree� and an un�
smoothed tree is a special case of a smoothed tree� only very minor modi
cations
to the code for M�� are needed to generate SRT and UMT models


���� Experiments

Thirty�three standard datasets from the UCI collection �Merz and Murphy� ����	
were used in the experiments� they are summarized in Table �
 The 
rst sixteen
involve only numeric and binary attributes� the last seventeen involve non�binary
nominal attributes as well
� Since linear regression functions were designed for
numerically�valued domains� and binary attributes are a special case of numeric
attributes� we expect classi
ers based on smoothed model trees to be particularly
appropriate for the 
rst group


Table � summarizes the accuracy of all methods investigated
 Results give the per�
centage of correct classi
cations� averaged over ten ten�fold �non�strati
ed	 cross�
validation runs� and standard deviations of the ten are also shown
 The same folds
were used for each scheme
 Results for C��� are starred if they show signi
cant
improvement over the corresponding result for M��� and vice versa
 Throughout�
we speak of results being �signi
cantly di�erent� if the di�erence is statistically
signi
cant at the �� level according to a paired two�sided t�test� each pair of data
points consisting of the estimates obtained in one ten�fold cross�validation run for
the two learning schemes being compared


Table � shows how the di�erent methods compare with each other
 Each entry
indicates the number of datasets for which the method associated with its column
was signi
cantly more accurate than the method associated with its row
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Table �� Datasets used for the experiments

Dataset Instances Missing Numeric Binary Nominal Classes
values ��� attributes attributes attributes

balance�scale 	�� ��� 
 � � �
breast�w 	�� ��� � � � �
glass �G�� �	� ��� � � � �
glass ��
 ��� � � � 	
heart�statlog ��� ��� �� � � �
hepatitis ��� ��	 	 �� � �
ionosphere ��� ��� �� � � �
iris ��� ��� 
 � � �
letter ����� ��� �	 � � �	
pima�indians �	
 ��� 
 � � �
segment ���� ��� �� � � �
sonar ��
 ��� 	� � � �
vehicle 

	 ��� �
 � � 

vote 
�� ��	 � �	 � �
waveform�noise ���� ��� 
� � � �
zoo ��� ��� � �� � �

anneal 
�
 ��� 	 �
 �
 �
audiology ��	 ��� � 	� 
 �

australian 	�� ��	 	 
 � �
autos ��� ��� �� 
 	 	
breast�cancer �
	 ��� � � 	 �
heart�c ��� ��� 	 � 
 �
heart�h ��
 ���
 	 � 
 �
horse�colic �	
 ���
 � � �� �
hypothyroid ���� ��� � �� � 

german ���� ��� 	 � �� �
kr�vs�kp ���	 ��� � �� � �
labor �� ��� 
 � � �
lymphography �

 ��� � � 	 

primary�tumor ��� ��� � �
 � ��
sick ���� ��� � �� � �
soybean 	
� ��
 � �	 �� ��
vowel ��� ��� �� � � ��

���� Discussion of results

To answer the 
rst question above� we observe from Table � that M�� outperforms
C��� in 
fteen datasets� whereas C��� outperforms M�� in four
 �These numbers
also appear� in boldface� in Table �
	 Of the sixteen datasets having numeric and
binary attributes� M�� is signi
cantly more accurate on nine and signi
cantly less
accurate on none� on the remaining datasets it is signi
cantly more accurate on six
and signi
cantly less accurate on four
 These results show that classi
ers based on
the smoothed model trees generated byM�� are signi
cantly more accurate than the
pruned decision trees generated by C��� on the majority of datasets� particularly
those with numeric attributes
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Table �� Experimental results� percentage of correct classi�cations� and standard deviation

Dataset C��� M�� LR M�� SRT M�� UMT C����

balance�scale ���
���� 
	�
����� 
	������ �������� �
�
���� �
������
breast�w �
������ ��������� ���
���� �
������ �
�����
 �
������
glass �G�� �
������ 
��
���� ���
���
 �������� �������� �
�
����
glass 		������ �������
 	������� 	��	���	 	��
���� ��������
heart�statlog �
�	���
 
�������� 
������
 �������
 �
�
���� �
�	���

hepatitis �������� 
�������� 
��	���� ���	���� �
�
���� ��������
ionosphere 

�����	 
������� 
	�	���� 

������ 
������� 

�����	
iris �
������ �
������ 
������� �
������ �������
 �
������
letter 
��	���� ��������� �������� 
	������ 
	������ 
�������
pima�indians �
������ �	�����
� �������� �������� �������� �
������
segment �	�
���� �������� 

������ �	������ �������� ��������
sonar �
�����
 �
�����
� ���	���
 �
�����
 ���
���� �
�����

vehicle �������� �	������� �������� �������� 	������� ��������
vote �	�����	 �	������ ���	���� ���	���� �������� �	�
����
waveform�noise ���
���� 
�������� 
������� 
������� �������
 ��������
zoo ���
���� �������� �
�����
 
������� �������� 
������


anneal �
������ �
�
���� �������� �������� �
������ ��������
audiology �������� �	������ 	
�	���	 	������� �	�
���
 ��������
australian 
������� 
��
���� �������	 
������� 
��
���� 
��
����
autos ��������� �
�
���� �������� �������� �������
 ���	����
breast�cancer �������	� 	��	���� �������� �������� 	������
 	
�
����
heart�c �	�	���� 
������
� 
������
 �������	 �	������ �
�
���	
heart�h ���
���� �������
 
������� �������� �	������ ��������
horse�colic 
������	 

�	���� 
������� 

������ 
��
���� 

�����	
hypothyroid ��������� �	�	���� �������� ���	���� �	������ ���
����
german �������� ��������� ���
���	 �
������ 	������
 ���	���

kr�vs�kp �������� ���
���� �
������ �
������ �������� ���
����
labor �
���
�
 �����
�	 
��
�	�� ���
���	 �������	 �	�
�
��
lymphography �
�����	 ���
���
� 
��	���� �	�����	 �������� ��������
primary�tumor 
������
 
������	� 
������� 
������� 
��
���� 
�������
sick �
�
����� �
������ �������� �
������ �
�	���� �
������
soybean �������� ��������� 
������	 

�
���� �������� ��������
vowel �������� 
�������� 
������� �������� �
�����
 �
������

Table � shows that C���� is signi
cantly less accurate than C��� on eight datasets
�
rst column� last row	 and signi
cantly more accurate on 
ve �
rst row� last col�
umn	
 It is signi
cantly less accurate than M�� on seventeen datasets and signi
�
cantly more accurate on three
 These results show that the superior performance
of M�� is not due to the change in input�output encoding


We complete our discussion of the 
rst question by comparing simple linear regres�
sion �LR	 to M�� and C���
 Table � shows that LR performs signi
cantly worse
thanM�� on seventeen datasets and signi
cantly worse than C��� on eighteen
 LR
outperforms M�� on eleven datasets and C��� on fourteen
 These results for linear
regression are surprisingly good
 However� on some of the datasets the application
of linear regression leads to disastrous results and so one cannot recommend this
as a general technique
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Table �� Results of paired t�tests �p������� number indicates how
often method in column signi�cantly outperforms method in row

C��� M�
�

LR M�
�
SRT M�

�
UMT C���

�

C��� � �� �
 � � �
M�� � � �� � � �
LR �
 �� � �	 �
 ��
M�� SRT �� �� �
 � �� ��
M�� UMT �� �� �
 �� � ��
C���

� 
 �� �
 
 � �

To answer the second of the above two questions� we begin by comparing the
accuracy of classi
ers based on M�� with ones based on smoothed regression trees
�SRT	 to assess the importance of the linear regression process at the leaves �which
the former incorporates but the latter does not	
 Table � shows that M�� produces
signi
cantly more accurate classi
ers on twenty�three datasets and signi
cantly less
accurate ones on only two
 Compared to C����s pruned decision trees� classi
ers
based on smoothed regression trees are signi
cantly less accurate on 
fteen datasets
and signi
cantly more accurate on 
ve
 These results show that linear regression
functions at leaf nodes are essential for classi
ers based on smoothed model trees
to outperform ordinary decision trees

Finally� to complete the second question� we compare the accuracy of classi�


ers based on M�� with classi
ers based on unsmoothed model trees �UMT	
 Ta�
ble � shows that M�� produces signi
cantly more accurate classi
ers on twenty�
ve
datasets and signi
cantly less accurate classi
ers on only one
 Comparison with
C����s pruned decision trees also leads to the conclusion that the smoothing pro�
cess is necessary to ensure high accuracy of model�tree based classi
ers


�� Related work

Neural networks are an obvious alternative to model trees for classi
cation tasks

When applying neural networks to classi
cation it is standard procedure to approx�
imate the conditional class probability functions
 Each output node of a neural
network approximates the probability function of one class
 In contrast to neural
networks where the probability functions for all classes are approximated by a sin�
gle network� with model trees it is necessary to build a separate tree for each class

Model trees o�er an advantage over neural networks in that the user does not have
to make guesses about their structure and size to obtain accurate results
 They
can be built fully automatically and much more e�ciently than neural networks

Moreover� they o�er opportunities for structural analysis of the approximated class
probability functions� whereas neural networks are completely opaque

The idea of treating a multi�class problem as several two�way classi
cation prob�

lems� one for each possible value of the class� has been been applied to standard
decision trees by Dietterich and Bakiri �����	
 They used C��� �Quinlan� ����	�
the predecessor of C���� to generate a two�way classi
cation tree for each class
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However� they found that the accuracy obtained was signi
cantly inferior to the
direct application of C��� to the original multi�class problem�although they were
able to obtain better results by using an error�correcting output code instead of the
simple one�per�class code

Smyth� Gray and Fayyad �����	 retro
tted a decision tree classi
er with kernel

density estimators at the leaves in order to obtain better estimates of the class
probability functions
 Although this did improve the accuracy of the class prob�
ability estimates on three arti
cial datasets� the classi
cation accuracies were not
signi
cantly better
 Moreover� the resulting structure is opaque because it includes
a kernel function for every training instance
 Torgo �����	 also investigated 
tting
trees with kernel estimators at the leaves� this time regression trees rather than
classi
cation trees
 These could be applied to classi
cation problems in the same
manner as model trees� and have the advantage of being able to represent non�linear
class boundaries rather than the linear� oblique� class boundaries of model trees

However� they su�er from the incomprehensibility of all models that employ kernel
estimators
 An important di�erence between both Smyth et al� �����	 and Torgo
�����	� and the M� model tree algorithm� is that M� smooths between the models
at adjacent leaves of the model tree
 This substantially improves the performance
of model trees in classi
cation problems� as we saw

Also closely related to our method are linear regression and other methods for


nding linear discriminants
 On comparing our experimental results with those
obtained by ordinary linear regression� we 
nd that although for many datasets
linear regression performs very well� in several other cases it gives disastrous results
because linear models are simply not appropriate


�� Conclusions

This work has shown that when classi
cation problems are transformed into prob�
lems of function approximation in a standard way� they can be successfully solved
by constructing model trees to produce an approximation to the conditional class
probability function of each individual class
 The classi
ers so derived outper�
form a state�of�the�art decision tree learner on problems with numeric and binary
attributes� and� more often than not� on problems with multivalued nominal at�
tributes too

Although the resulting classi
ers are less comprehensible than decision trees� they

are not as opaque as those produced by statistical kernel density approximators

The expected time taken to build a model tree is log�linear in the number of in�
stances and cubic in the number of attributes
 Thus model trees for each class can
be built e�ciently if the dataset has a modest number of attributes
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Appendix

Treatment of missing values

We now explain how instances with missing values are treated in the version of
M�� used for the results in this paper
 During testing� whenever the decision tree
calls for a test on an attribute whose value is unknown� the instance is propagated
down both paths and the results are combined linearly in the standard way �as in
Quinlan� ����	
 The problem is how to deal with missing values during training

To tackle this problem� Breiman et al� �����	 describe a �surrogate split� method

in which� whenever a split on value v of attribute s is being considered and a
particular instance has a missing value� a di�erent attribute s� is used as a surrogate
to split on instead� at an appropriately chosen value v��that is� the test s � v is
replaced by s� � v�
 The attribute s� and value v� are selected to maximize the
probability that the latter test has the same e�ect as the former

For the work described in this paper� we have made two alterations to the pro�

cedure
 The 
rst is a simpli
cation
 Breiman�s original procedure is as follows

Let S be the set of training instances at the node whose values for the splitting
attribute s are known
 Let L be that subset of S which the split s � v assigns to
the left branch� and R be the corresponding subset for the right branch
 De
ne
L� and R� in the same way for the surrogate split s� � v�
 Then the number of
instances in S that are correctly assigned to the left subnode by the surrogate split
s� � v� is L � jL�L�j� and R � jR�R�j is the corresponding number for the right
subnode
 The probability that s� � v� predicts s � v correctly can be estimated
as �L � R	�jSj
 v� is chosen so that the surrogate split s� � v� maximizes this
estimate
 Whereas Breiman chooses the attribute s� and value v� to maximize this
estimate� our simpli
cation is to always choose the surrogate attribute s� to be the
class �but to continue to select the optimal value v� as described	
 This stratagem
was reported in Wang and Witten �����	

The second di�erence is to blur the sharp distinctions made by Breiman�s pro�

cedure
 According to the original procedure� a �training	 instance whose value for
attribute s is missing is assigned to the left or right subnode according to whether
s� � v� or not
 This produces a sharp step�function discontinuity which is inap�
propriate in cases when s� � v� is a poor predictor of s � v
 Our modi
cation�
which is employed by the version of M�� used in the present paper� is to soften the
decision by making it stochastic according to the probability curve illustrated in
Figure A
�
 The steepness of the transition is determined by the likelihood of the
test s� � v� assigning an instance to the incorrect subnode� and this is assessed by
considering the training instances for which the value of attribute s is known

First we estimate the probability pr that s� � v� assigns an instance with a

missing value of s to the rightmost subnode� the probability of it being assigned to
the left node is just �� pr
 The probability that an instance is incorrectly assigned
to the left subnode by s� � v� can be estimated as pil � � � L�jL�j� likewise the
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Figure A��� How the soft step function model is �tted to the training data

probability that it is correctly assigned to the right subnode is pcr � R�jR�j
 Let
ml be the mean class value over the instances in L�� and mr the corresponding
value for R�
 We estimate pr by a model of the form

pr �
�

� � e�ax�b
�

where x is the class value� and a� b are chosen to make the curve pass through
the points �ml� pil	 and �mr� pcr	 as shown in Figure A
�
 This has the desired
e�ect of approximating a sharp step function if s� � v� is a good predictor of
s � v� which is when pil � � and pcr � �� or when the decision is unimportant�
which is when ml � mr
 However� if the prediction is unreliable�that is� when
pil is signi
cantly greater than � or pcr is signi
cantly less than ��the decision is
softened� particularly if it is important�that is� whenml andmr di�er appreciably


During training� an instance is stochastically assigned to the right subnode with
probability pr
 During testing� surrogate splitting cannot be used because the class
value is� of course� unavailable
 Instead an instance is propagated to both left
and right subnodes� and the resulting outcomes are combined linearly using the
weighting scheme described in Quinlan �����	� the left outcome is weighted by the
proportion of training instances assigned to the left subnode� and the right outcome
by the proportion assigned to the right subnode


Notes

�� C��� is the successor of C��� �Quinlan� ������ Although a commercial product� a test version
is available from http���www�rulequest�com�

�� See http���www�cs�waikato�ac�nz��ml

�� For a realistic evaluation on standard datasets it is imperative that missing values are accom�
modated� If we removed instances with missing values� half the datasets in the lower part of
Table � would have too few instances to be usable�
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� Following Holte ������� the G� variant of the glass dataset has classes � and � combined and
classes 
 to � deleted� and the horse�colic dataset has attributes �� ��� �	� ��� �
 deleted with
attribute �
 being used as the class� We also deleted all identi�er attributes in the datasets�
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