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Abstract
Iterative refinement clustering algorithms (e.g. K-Means,
EM) converge to one of numerous local minima.  It is known
that they are especially sensitive to initial conditions.  We
present a procedure for computing a refined starting
condition from a given initial one that is based on an
efficient technique for estimating the modes of a distribution.
The refined initial starting condition leads to convergence to
“better” local minima.  The procedure is applicable to a wide
class of clustering algorithms for both discrete and
continuous data. We demonstrate the application of this
method to the Expectation Maximization (EM) clustering
algorithm and show that refined initial points indeed lead to
improved solutions.  Refinement run time is considerably
lower than the time required to cluster the full database.  The
method is scalable and can be coupled with a scalable
clustering algorithm to address the large-scale clustering in
data mining.

1 Background   
Clustering has been formulated in various ways in the
machine learning [F87], pattern recognition [DH73,F90],
optimization [BMS97,SI84], and statistics literature
[KR89,BR93,B95,S92,S86].  The fundamental clustering
problem is that of grouping together data items which are
similar to each other.  The most general approach to
clustering is to view it as a density estimation problem
[S86, S92,BR93].  We assume that in addition to the
observed variables for each data item, there is a hidden,
unobserved variable indicating the “cluster membership”
of the given data item.  Hence the data is assumed to
arrive from a mixture model and the mixing labels (cluster
identifiers) are hidden. In general, a mixture model M
having K clusters Ci, i=1,…,K,  assigns a probability to a

data point x as follows: ∑
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where Wi are called the mixture weights.  Many methods
assume that the number of clusters K is known or given as
input.
The clustering optimization problem is that of finding
parameters associated with the mixture model M (Wi and
parameters of components Ci) to maximize the likelihood
of the data given the model.  The probability distribution
specified by each cluster can take any form. The EM
(Expectation Maximization) algorithm [DLR77, CS96] is
a well-known technique for estimating the parameters in
the general case.  It finds locally optimal solutions
maximizing the likelihood of the data.  Maximum
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likelihood mixture model parameters are computed
iteratively by EM:
1. Initialize the mixture model parameters, producing a

current model,
2. Compute posterior probabilities of data items,

assuming the current model (E-Step)
3. Re-estimate model parameters based on posterior

probabilites from 2, producing new model, (M-Step)
4. If current and new model are sufficiently close,

terminate, else go to 2.
We focus on the initialization step 1. Given the initial
condition of step 1, the algorithms define a deterministic
mapping from initial point to solution. EM converges
finitely to a point (set of parameter values) that is locally
maximal for the likelihood of the data given the model.
The deterministic mapping means the locally optimal
solution is sensitive to the initial point choice.
We shall assume a model that represents a mixture of
Gaussains. Associated with each data point x is the
“weight” or posterior probability that x was generated by
mixture component l, p(x|l). We focus on mixture models
in which individual component densities are multi-variate
Gaussians:
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µl is d-dimensional mean and Σl is dxd covariance matrix.
There is little prior work on initialization methods for
clustering.  According to [DH73] (p. 228):

"One question that plagues all hill-climbing
procedures is the choice of the starting point.
Unfortunately, there is no simple, universally good
solution to this problem."

"Repetition with different random selections" [DH73]
appears to be the defacto method.  Most presentations do
not address the issue of initialization or assume either
user-provided or randomly chosen starting points
[DH73,R92, KR89]. A recursive method for initializing
the means by running K clustering problems is mentioned
in [DH73] for K-Means.  A variant consists of taking the
mean of the entire data and then randomly perturbing it K
times [TMCH97].  This method does not appear to be
better than random initialization in the case of EM over
discrete data [MH98].  In [BMS97], the values of initial
means along any one of the d coordinate axes is
determined by selecting the K densest "bins" along that
coordinate. Methods to initialize EM include K-Means
solutions, hierarchical agglomerative clustering (HAC)
[DH73,R92,MH98] and “marginal+noise” [TMCH97].  It
was found that for EM over discrete data initialized with
either HAC or “marginal+noise” showed no improvement
over random initialization [MH98].
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2 Refining Initial Conditions
We address  the problem of initializing a general
clustering algorithm, but limit our presentation of results
to EM.  Since no good method for initialization exists
[MH98], we compare against the defacto standard method
for initialization: randomly choosing an initial starting
point. The method can be applied to any starting point
provided.
A solution of the clustering problem is a parameterization
of each cluster model. This parameterization can be
performed by determining the modes (maxima) of the joint
probability density of the data and placing a cluster
centroid at each mode. Hence one clustering approach is to

estimate the density and attempt to find the maxima
(“bumps”) of the estimated density function.  Density
estimation in high dimensions is difficult [S92], as is
bump hunting [F90]. We propose a method, inspired by
this procedure that refines the initial point to a point likely
to be closer to the modes.  The challenge is to perform
refinement efficiently.
The basic heuristic is that severely subsampling the data
will naturally bias the sample to representatives “near” the
modes. In general, one cannot guard against the possibility
of points from the tails appearing in the subsample.  We
have to overcome the problem that the estimate is fairly
unstable due to elements of the tails appearing in the
sample. Figure 1 shows data drawn from a mixture of two

Gaussians (clusters) in 2-D with means at [3,2] and [5,5].
On the left is the full data set, on the right a small
subsample is shown, providing information on the modes
of the joint probability density function.  Each of the
points on the right may be thought of as a “guess” at the
possible location of a mode in the underlying distribution.
The estimates are fairly varied (unstable), but they
certainly exhibit “expected” behavior. Worthy of note here
is that good separation between the two clusters is
achieved. This observation indicates that the solutions
obtained by clustering over a small subsample may
provide good refined initial estimates of the true means, or
centroids, in the data

 Clustering Clusters
To overcome the problem of noisy estimates, we employ
secondary clustering. Multiple subsamples, say J, are
drawn and clustered independently producing J estimates
of the true cluster locations.  To avoid the noise associated
with each of the J solution estimates, we employ a
“smoothing” procedure.  However, to “best” perform this
smoothing, one needs to solve the problem of grouping the
K*J points (J solutions, each having K clusters) into K
groups in an “optimal” fashion.  Figure 2 shows 4
solutions obtained for K=3, J=4. The “true” cluster means
are depicted by “X”. The A’s show the 3 points obtained
from the first subsample, B’s second, C’s third, and D’s

fourth. The problem then is
determining that D1 is to be
grouped with A1 but A2,  not
with {A1, B1, C1, D1}.
The Refinement Algorithm
The refinement algorithm
initially chooses J small
random sub-samples of the
data, Si, i=1,…,J.   The sub-
samples are clustered via EM
with the proviso that empty
clusters at termination will

have their initial centers re-assigned and the sub-sample
will be re-clustered.  The sets CMi , i=1,…,J are these
clustering solutions over the sub-samples which form the
set CM. CM is then clustered via K-Means initialized with
CMi producing a solution FMi.  The refined initial point is
then chosen as the FMi having minimal distortion over the
set CM.  Note that this secondary clustering is a K-means
clustering and not EM. The reason is that the goal here is
to cluster solutions in a hard fashion to solve the
corresondence problem. Other procedures could be used
for secondary clustering including hierarchical
agglomerative clustering.  Clustering CM is a smoothing
over the CMi to avoid solutions “corrupted” by outliers
included in the sub-sample Si. The refinement algorithm
takes as input: SP (initial starting point), Data, K, and J
(number of small subsamples to be taken from Data):
Algorithm Refine( SP, Data, K, J)

CM = φ
For i=1,…,J

Let Si be a small random subsample of Data
Let CMi = EM_Mod(SP, Si, K)
CM = CM ∪  CMi

FMS = φ
For i=1,…,J

Let FMi = KMeans(CMi, CM, K)
Let FMS = FMS ∪  FMi

Let FM = { }),( CMFMLikelihoodArgMax i

iFM

Return (FM)
We define the following functions called by the
refinement algorithm: KMeans( ), EM_Mod( ) and
Likelihood( ).  KMeans is simply a call to the classic K-
Means algorithm taking:  an initial starting point, dataset
and the number of clusters K, returning a set of K d-
dimensional vectors, the estimates of the centroids of the
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A2 C2

D2

A3

C3

B3

D3 True solution
A’s: solutions from trial 1
B’s: solutions from trial 2
C’s: solutions from trial 3
D’s: solutions from trial 4

Figure 2.  Multiple Solutions from Multiple
Samples.

Figure 1.  Two Gaussian bumps in 2-d: full sample versus small subsample.
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Figure 3. The Starting Point Refinement Procedure

K clusters.  EM_Mod takes the same arguments as
KMeans (above) and performs the same iterative
procedure as classic EM except for the following slight
modification.  When classic EM has converged, the K
clusters are checked for membership.  If any of the K
clusters have no membership (which often happens when
clustering over small subsamples), the corresponding
initial estimates of the empty cluster centroids are set to
data elements which have least likelihood given the
current model, and classic EM is called again from these
new initial centriods.
The heuristic re-assignment is motivated by the following:
if, at termination of EM, there are empty clusters then
reassigning all empty clusters to points with least
likelihood, maximizes likelihood the most at this step.
Likelihood takes set of K estimates of cluster parameters
(the means and covariances) and the data set and computes
the likelihood of the data set given the model.  This scalar
measures the degree of fit of a set of clusters to the
dataset.  The EM algorithm terminates at a solution which
is locally optimal for this likelihood function
[B95,DLR77,CS96]. The refinement process is illustrated
in the diagram of Figure 3.

3 Scalability to Large Databases
The refinement algorithm is primarily intended to work on
large databases.  When working over small datasets (e.g.
most data sets in the Irvine Repository), applying the
classic EM algorithm from many different starting points
is a feasible option.  However, as database size increases
(especially in dimensionality), efficient and accurate
initialization becomes critical.  A clustering session on a
data set with many dimensions and tens of thousands or
millions of records can take hours to days.  In [BFR98],
we present a method for scaling clustering to very large
databases, specifically targeted at databases not fitting in
RAM.  We show that accurate clustering can be achieved
with improved results over a sampling based approach
[BFR98].  Scalable clustering methods obviously benefit
from better initialization.
Since our method works on very small samples of the
data, the initialization is fast. For example, if we use
sample sizes of 1% (or less) of the full dataset size, trials
over 10 samples can be run in time complexity that is less
than 10% of the time needed for clustering the full

database. For very large databases, the initial sample
becomes negligible in size.
If, for a data set D, a clustering algorithm requires Iter(D)
iterations to cluster it, then time complexity is |D| *
Iter(D).  A small subsample S ⊆ D, where |S| << |D|,
typically requires significantly fewer iteration to cluster.
Empirically, it is reasonable to expect that Iter(S) <
Iter(D).  Hence, given a specified budget of time that a
user allocates to the refinement process, we simply
determine the number J of subsamples to use in the
refinement process.  When |D| is very large, and |S| is a
small proportion of |D|, refinement time is essentially
negligible, even for large J.
Another desirable property of the refinement algorithm is
that it easily scales to very large databases.  The only
memory requirement is to hold a small subsample in
RAM. In the secondary clustering stage, only the solutions
obtained from the J subsamples need to be held in RAM.
Note we assume that it is possible to obtain a random
sample from a large database. In reality this can be a
challenging task. Unless one can guarantee that the
records in a database are not ordered by some property,
random sampling can be as expensive as scanning the
entire database (using some scheme such as reservoir
sampling, e.g. [J62]). Note that in a database environment
a data  view may not exist as a physical table. The result of
a query may involve joins, groupings, and sorts. In many
cases database operations impose a special ordering on the
result set, and “randomness” of the resulting database
view cannot be assumed in general.

4 Experiments on Synthetic Data
Synthetic data was created for dimension d = 2, 3, 4, 5, 10,
20, 40, 50 and 100.  For a given value of d, data was
sampled from 10 Gaussians (hence K=10) with elements
of their mean vectors (the true means) µ sampled from a
uniform distribution on [-5,5].  Elements of the diagonal
covariance matrices Σ were sampled from a uniform
distribution on [0.7,1.5].  The number of data points
sampled was chosen as 20 times the number of model
parameters.  The K=10 Gaussians were not evenly
weighted.
The goal of this experiment is to evaluate how close the
means estimated by classic EM are to the true Gaussian
means generating the synthetic data. We compare 3
initializations:
1. No Refinement: random starting point chosen uniformly
on the range of the data.
2. Refinement (J=10, 1%): a starting point refined from (1)
using our method. Size of the random subsamples: 1% of
full dataset , the number of subsamples: 10.
3. Refinement (J=10, 5%): same as (2) but subsample of
size 5%.
Once classic EM has computed a solution over the full
dataset from any of the 3 initial points described above,
the estimated means must be matched with the true
Gaussian means in some optimal way prior to computing
the distance between these estimated means the true
Gaussian means.  Let Kll ,,1, K=µ  be the K true

Gaussian means and let Klx l ,,1, K= be the K means
estimated EM over the full dataset.  A “permutation” π is
determined so that the following quantity is minimized:
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by classic EM over the full dataset is simply the above
quantity divided by K.  This is the average distance
between the true Gaussian means and those estimated by
EM from a given initial starting point.
Results
Figure 4 summarizes results averaged over 10 random
initial points determined uniformly on the range of the
data.  Note that the EM solution computed from refined
initial points is consistently nearer to the true Gaussian
means generating the dataset than the EM solution
computed from the original initial points.  On the left we
summarize average distance to the true Gaussian means.
On the right we show corresponding log-likelihood of the
data given the model. For low dimensions, effect of
initialization is not as strong as it is for high dimensions,
as expected. Sampling at 5% produces better refinement,
but of course costs more. With non-synthetic data,
sampling more sometimes results in worse solution as
effect of “finding modes by subsampling” is reduced.

5 Results on Public Data
We present computational results on two publicly
available “real-world” datasets. We are primarily more
interested in large databases -- hundreds of dimensions
and tens of thousands to millions or records.  It is for these
data sets that our method exhibits the greatest value. The
reason is simple: a clustering session on a large database is
a time-consuming affair. Hence a refined starting
condition can insure that the time investment pays off.
To illustrate this, we used a large publicly available data
set available from Reuters News Service. We also wanted
to demonstrate the refinement procedure using data sets
from the UCI Machine Learning Repository1. For the most
part, we found that these data sets are too easy: they are
low dimensional and have a very small number of records.
With a small number of records, it is feasible to perform
multiple restarts efficiently. Since the sample size is small
to begin with, sub-sampling for initialization is not
effective. Hence most of these data sets are not of interest
to us. Nevertheless, we report on our general experience
with them as well as detailed experience with one of these
data sets to illustrate that the method we advocate is useful
when applied to smaller data sets. We emphasize,
however, that our refinement procedure is best suited for
large-scale data. The refinement algorithm operates over
small sub-samples of the database and hence run-times
needed to determine a “good” initial starting point (which
speeds the convergence on the full data set) are orders of
magnitude less than the total time needed for clustering in
a large-scale situation. We note that it is very likely that
the cluster labeling associated with many real-world
databases do not correspond to the clusters assigned by
EM (whose objective is to maximize likelihood). So
evaluation of results on such data is not as easy as
synthetic data where truth is known.
5.1  Datasets from UCI ML Repository
We evaluated our method on several Irvine data sets.  First
we discuss one set, then general comments on others.

                                                          
1 For more details, see the the Irvine ML Data Repository at
http://www.ics.uci.edu/~mlearn/MLRepository.html

Image Segmentation Data Set
This data set consists of 2310 data elements in 19
dimensions. Instances are drawn randomly from a
database of 7 outdoor images (brickface, sky, foliage,
cement, window, path, grass).  Each of the 7 images is
represented by 330 instances.
Random initial starting points were computed by sampling
uniformly over the range of the data.  We compare
solutions achieved by the classic EM algorithm starting
from: 1) random initial starting points, and 2) initial points
refined by our method. A best measure in this case is to
report the log-likelihood of the data given the extracted
model. The results are as follows:

Refinement Method Log Likelihood % increase
None -123857 45.6%
1% Refined (J=10) -85577 1%
5% Refined (J=10) -85054 0

Other Irvine Datasets
We evaluated the refinement procedure on other data sets
such as Fisher’s IRIS, Star-Galaxy-Bright, etc. Because
these data sets are very low dimensional and their sizes
small, the majority of the results were of no interest.
Clustering these data sets from random initial points and
from refined initial points led to approximately equal gain
in entropy and equal distortion measures in most cases.
We did observe, however, that when a random starting
point leads to a “bad” solution, then refinement indeed
takes it to a “good” solution. So in those (admittedly rare)
cases, refinement does provide expected improvement. We
use the Reuters information retrieval data set to
demonstrate our method on a real and difficult clustering
task.

5.2 Reuters  Information Retrieval Data Set
The Reuters text classification database is derived from
the original Reuters-21578 data set made publicly
available as part of the Reuters Corpus, through available
as part of the Reuters Corpus, through Reuters, Inc.,
Carnegie Group and David Lewis2.  This data consists of
12,902 documents. Each document is a news article about
some topic: e.g. earnings, commodities, acquisitions,
grain, copper, etc… There are 119 categories, which
belong to some 25 higher level categories (there is a
hierarchy on categories). The Reuters database consists of
word counts for each of the 12,902 documents.  There are
hundreds of thousands of words, but for purposes of our
experiments we selected the 302 most frequently
occurring words, hence each instance has 302 dimensions
indicating the integer number of times the corresponding
word occurs in the given document.  Each document in the
IR-Reuters database has been classified into one or more
categories.  We use K=25 for clustering purposes to reflect
the 25 top-level categories. The task is then to find the best
clustering given K=25.
Reuters Results
For this data set, because clustering the entire database
requires a large amount of time, we chose to only evaluate
results over 5 randomly chosen starting conditions. Results
are shown as follows:
                                                          
2 See: http://www.research.att.com/~lewis/ reuters21578/ README.txt
for more details on this data set.
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Refinement Method ∆ Log Likelihood
None -5319570
1% Refined (J=10) 0
5% Refined (J=10) -201116

The chart shows a significant decrease in the log
likelihood measure from the best solution. In this case, 1%
samples did better than 5%.  To normalize results per case
simply divide by 12K (size of data). Since each document
belongs to a category (there are 119 categories), we can
also measure the quality of the achieved by any clustering
by measuring the gain in information about the categories
that each cluster gives (i.e. pure clusters are informative).
The quality of the clusters can be measured by the average
category purity in each cluster. In this case the average
information gain for the clusters obtained from the refined
starting point was 4.13 times higher than the information

gain obtained without refining the initial points.

6 Concluding Remarks
A fast and efficient algorithm for refining an initial
starting point for a general class of clustering algorithms
has been presented.  The refinement algorithm operates
over small subsamples of a given database, hence
requiring a small proportion of the total memory needed to
store the full database and making this approach very
appealing for large-scale clustering problems.  The
procedure is motivated by the observation that
subsampling can provide guidance regarding the location
of the modes of the joint probability density function
assumed to have generated the data.  By initializing a
general clustering algorithm near the modes, not only are
the true clusters found more often, but it follows that the
clustering algorithm will iterate fewer times prior to
convergence.  This is very important as the clustering
methods discussed here require a full data-scan at each
iteration and this may be a costly procedure in a large-
scale setting.
We believe that our method’s ability to obtain a
substantial refinement over randomly chosen starting
points is due in large part to our ability to avoid the empty
clusters problem that plagues traditional EM. Since during
refinement we reset empty clusters to far points and
reiterate the EM algorithm, a starting point obtained from
our refinement method is less likely to lead the subsequent
clustering algorithm to a “bad” solution. Our intuition is
confirmed by the empirical results.

The refinement method presented so far has been in the
context of the EM. However, we note that the same
method is generalizable to other algorithms: an example of
this method used to initialize the K-Means algorithm is
given in [BF98]. Generalization is possible to discrete data
(on which means are not defined). The key insight here is
that if some algorithm ClusterA is being used to cluster the
data, then ClusterA is also used to cluster the subsamples.
The algorithm ClusterA will produce a model. The model
is essentially described by its parameters. The parameters
are in a continuous space. The stage which clusters the
clusters (i.e. step 3 of the algorithm Refine in Section 2)
remains as is; i.e. we use the K-Means algorithm in this
step. The reason for using K-Means is that the goal at this
stage is to find the “centroid” of the models, and in this
case the harsh membership assignment of K-Means is
desirable.
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