
 University of Texas at Austin, Artificial Intelligence Lab. Technical Report AI-TR-99-284.

Naı̈ve-Bayes vs. Rule-Learning in Classification of Email

Jefferson Provost
Department of Computer Sciences
The University of Texas at Austin

jp@cs.utexas.edu

Abstract

Recent growth in the use of email for communication and the
corresponding growth in the volume of email received has
made automatic processing of email desirable. Two learn-
ing methods, na¨ıve bayesian learning with bag-valued features
and the RIPPER rule-learning algorithm have shown promise
in other text categorization tasks. I present three experiments
in automatic mail foldering and spam filtering, showing that
naı̈ve bayes outperforms RIPPER in classification accuracy.

1 Introduction
The volume of email that we get is constantly growing. Most
modern mail reading software packages provide some form
of programmable automatic filtering, typically in the form
of sets of rules that file or otherwise dispose of mail based
on keywords detected in the headers or message body. Un-
fortunately programming these filters is an often arcane and
sometimes time-consuming process. An adaptive mail sys-
tem which can learn its users’ mail sorting preferences would
be very attractive.

This paper compares two learning algorithms, one proba-
bilistic and one rule-based, on the task of learning to sort or
filter email. Both algorithms have been used previously with
success in text categorization tasks, but this paper will show
that the probabilistic algorithm shows more promise than the
rule-learner for email classification.

2 Email Classification
2.1 Data Representation
In the experiments in this paper email messages are repre-
sented in a structured “bag of words” representation. Each
email message is represented as vectors of features, in which
the message body and each individual message header are
represented as separate features. The content of each fea-
ture is all the words that appear in that feature, with repeated
words counted multiple times.

In tokenizing the messages, all letters are converted to a
single case, all punctuation is removed, and email addresses,
domain names, URLs, etc, are broken down into their con-
stituent “words.” For example

From: Jefferson Provost
<jp@cs.utexas.edu>

would become

from = fjefferson; provost; jp; cs; utexas; edug.

Many high-frequency, low-information content words, such
as “a,” “an,” “the,” most prepositions and conjunctions,
and all single-character words are removed from the token
stream before bagging, however, no complex stemming is
performed.

2.2 Algorithms
The experiments in this paper compare two learning algo-
rithms: a na¨ıve bayesian algorithm used by Mooney et al.
(1998) for text categorization, and RIPPER, a rule-learning
approach used by Cohen (1996) for categorization of email

Rule Learning The rule learning algorithm used in these
experiments is the RIPPER algorithm described by Cohen
(1995). It is a propositional learner designed for efficient per-
formance on large, noisy datasets. RIPPER is designed to
handle set- and bag-valued attributes equivalently by gener-
ating what Cohen calls “keyword-spotting rules.” These are
rules of the form

cs328 \utexas00 2 from ^ \utexas00 2 to:

This rule states that a message belongs in the foldercs328
if the word “utexas” appears in both thefrom andto headers.
Rules like this are highly suitable for email classification and
filtering because many email reading programs are already
equipped to use rules of this type in classification, thus in-
tegrating this kind of rule-learning system into existing mail
systems becomes a question of converting the syntax of the
rules into one understood by the mail reader.

Naı̈ve Bayes The second learning algorithm is a feature-
based bayesian text classfier similar to the one described in
Mooney et al. (1998), but extended to handle bag-valued fea-
tures. The ability of this classifier to utilize the word counts in
the bags of words in calculating its probability tables should
give it an advantage in classification accuracy over ripper. As
the experiments will show, this seems to be the case.

The disadvantage of a bayesian classifier is difficulty of
integration with existing mail reading software, because of
the lack of a rule-based representation of the classification.
This may be changing, however. For example, theGnusnews
and mail reading system (Ingebrigsten 1999), distributed with

1

GRACS: 108 5.27%
ROBOT: 175 8.53%

PSYSCOPE: 109 5.31%
NN: 131 6.39%

SCHOOL: 69 3.36%
CS328: 691 33.69%

PERSONAL: 694 33.84%
CONNECTIONISTS: 74 3.61%

Total examples: 2051 100.00%

Table 1:Data-set 1: Hand Sorted Mail. The categories and dis-
tribution for data set 1. These data comprise 4 months of email,
hand-sorted by the author.

recent versions ofGNU Emacshas hooks that allow instal-
lation of arbitrary programs for filtering and foldering news
and mail. Furthermore, there are several open-source mail-
readers which could be modified to include a hooks for arbi-
trary classifiers.

3 Experiments
Below I will describe experiments comparing these two sys-
tems in three tasks: learning a user’s foldering preferences
from his hand-sorted email, reconstructing the categorization
policy of a hand-coded automated mail classifier from a set
of machine-sorted email, and learning to identify junk email
from a set of messages classified as either spam, or not. All
experiment were run using ten-fold cross-validation. Learn-
ing curves and significance measures from two-tailed t-tests
are provided. As a baseline comparison, the accuracy that
would be achieved by always choosing the most common cat-
egory in the training data is also plotted for each experiment.

3.1 Hand-Sorted Mail
The first experiment compares the accuracy of the classifiers
at learning a user’s mail sorting preferences from sorted mail.
The input data are four months of the author’s sorted mail.
Table 1 shows the folders and distribution of messages in the
data set.

These data pose an interesting challenge for a learning sys-
tem. Not only is the distribution of messages in to folders
highly nonuniform, but the selection of folders for messages
is strongly ideosynchratic. While the contents of one folder,
CONNECTIONISTS, are entirely determined by a single key-
word match (\connectionists00 2 to), the rest were not de-
terimined by a single keyword match on thefromor to fields,
but rather by my judgement of what folder would the best
mnemonic for later retrieval of the message based on its con-
tent, sender and recipients. In this case, the task of the learner
is to induce a model of the user’s mail sorting preferences.

The results of this experiment are shown in Figure 1. Na¨ıve
bayes performs significantly better (p < 0:01) than RIPPER
throughout learning, achieving 87% test accuracy after 400
training examples, and 80% test accuracy after 175 examples.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400

%
 C

or
re

ct

Training Examples

RIPPER
BAYES-INDP-BVF

MOST-COMMON-CATEGORY

Figure 1: Test Accuracy on Hand-Sorted Data. Naı̈ve Bayes
significantly outperforms (p < :01) RIPPER on dataset 1: hand
sorted email.

RIPPER achieves 78% accuracy after 400 examples, and only
67% accuracy after 175 examples.

3.2 Automatically-Sorted Mail

The second experiment compares the two classifiers on a data
set in which each folder consisted entirely of messages from
a single mailing list of users or developers of a Debian/GNU
software package. These messages were automatically sorted
by a hand-crafted classifier consisting of pattern-match rules.
Some of the handcrafted rules contain regular expressions,
and thus are somewhat more complex than simple keyword-
spotting rules. Nevertheless, it is reasonable to expect that
both na¨ıve bayes and RIPPER will do well on this dataset.
Table 2 shows the categories and distribution of the data set.
Test accuracy of each learner on these data is shown in Fig-
ure 2.

As expected, both classifiers perform well on this data set.
Naı̈ve bayes, however, outperforms RIPPER by a slight but
statistically significant margin (p < :05) when trained on 175
examples or more.

2

GNOMEANNOUNCE: 302 1.74%
LJFS: 101 0.58%

VORTEX: 398 2.29%
ALSAUSER: 2728 15.71%

TULIP: 1137 6.55%
BBDB: 332 1.91%

DINGGNUS: 3681 21.20%
DEBIANMENTORS: 3377 19.45%

AMANDAUSERS: 5304 30.55%
Total examples: 17360 100.00%

Table 2:Data-set 2: Autmatically Filtered Mail. The categories
and distribution for dataset 2. These data consist of messages from
Debian/GNU user and developer mailing lists that were automati-
cally sorted into folders by hand-built rule-based classifier.

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400

%
 C

or
re

ct

Training Examples

RIPPER
BAYES-INDP-BVF

MOST-COMMON-CATEGORY

Figure 2:Test accuracy on Machine-Sorted Email.Naı̈ve Bayes
shows a small advantage in accuracy even on machine sorted mes-
sages. The results are significant atp < 0:05, for training on 175
examples or more.

Spam: 204 22.7%
Non-spam: 694 77.3%

Total examples: 898 100.0%

Table 3: Data-set 3: Spam Data.This dataset consists of spam
messages donated from a several sources, and non-spam messages
comprised of a subset of dataset1.

3.3 Spam Detection
The final experiment test the ability of the two algorithms
to learn to detect junk email, or spam, from the content of
the messages. In this dataset, the junk examples are a collec-
tion of junk mail donated by several users, while the non-junk
messages are a subset of the data used in the first experiment.
For this reason, theFrom: and To: headers have been ex-
cluded from consideration in learning. I do not believe this
to be a problem, however, because junk mail advertisers typ-
ically forge both theFrom: andTo: headers in an attempt to
both disguise the origination point of the spam and fool au-
tomatic spam filters. Thus it is reasonable to that the learners
should focus on the content of the message, namely theSub-
ject: header and the message body. The distribution of the
data is shown in Table 3.

Figure 3 shows that again the na¨ıve Bayesian classifier sig-
nificantly (p < :001) outperforms RIPPER in classification
accuracy. Na¨ıve bayes is recognizing spam with 90% accu-
racy after training on 25 examples and has reached 95% ac-
curacy after 50 examples. RIPPER meanwhile, is still strug-
gling to reach 90% accuracy after 400 training examples.

4 Discussion and Future Work
4.1 Methodology
The above experiments show that a na¨ıve bayesian classi-
fier with bag-valued features is a promising method for au-
tomatically constructing email classifiers, with the obvious
caveat that the experiments were run on only a limited sam-
ple of data. Unfortunately more studies with samples of sev-
eral users’ foldering preferences are difficult to perform be-
cause of users’ understandable reluctance to donate private
email for study. Furthermore it is questionable to what extent
“abridged” collections of email will be useful in truly assess-
ing the system’s ability to model users’ foldering preferences.

4.2 Classification Accuracy in Foldering
It remains to be seen whether The 87% accuracy achieved on
hand-sorted email in the first experiment is typical of what
can be achieved with the average user. If it is, however, it
does not seem accurate enough to be confidently installed for
automatic pre-sorting of email. There are a some ways in
which this might be overcome, however. First, a mail clas-
sifier could be made to only pre-sort email for which it has
high confidence in is choice of folders, while the messages for
which it is unsure are placed in the user’sINBOX or default
folder, to be handled by the user. Then the user’s foldering

3

50

55

60

65

70

75

80

85

90

95

100

0 50 100 150 200 250 300 350 400

%
 C

or
re

ct

Training Examples

RIPPER
BAYES-INDP-BVF

MOST-COMMON-CATEGORY

Figure 3: Test Accuracy in Spam Detection.Naı̈ve Bayes sig-
nificantly outperforms RIPPER (p < :001) in detecting spam from
message content (Subject:andmessage bodyonly).

choices on these messages could be fed back to the learner
to refine its hypothesis. Further, it may not always be neces-
sary to pre-folder at all; many mail readers, such asGnus, and
Pineoffer a default choice (e.g. the last folder used) when the
user chooses to file a message in a folder. A system that au-
tomatically chose the correct result 87% of the time would be
very useful.

4.3 Future Work in Spam Detection
Spam detection and filtering both for email and USENET
messages seems to be the most promising area of applica-
tion suggested by these experiments. Direct marketers and
system adminstrators are in a race of constant adaptation as
the system administrators implement new schemes for detect-
ing and blocking spam while the spammers find new ways
to evade being blocked so that they can reach their potential
customers. A fast learning, accurate, adaptive spam catcher
would be a valuable tool for system administrators and users
wishing to block spam in email and USENET messages.1

1It could also be a tool for the spammers, who could use it to test
new potential spam for “undetectability.” Such is the way of an arms

Before such a tool can be put in place, however, more in-
vestigation must be done. In particular, these experiments did
not investigate the precision and recall of either classification
method. A good blocking device, however, should be sensi-
tive to the cost of different kinds of misclassification errors,
and tunable with respect to them. While many users would
rather let a few spam through than miss legitimate messages,
some users may prefer just the opposite.

5 Conclusion
I have presented three experiments comparing a na¨ıve
Bayesian algorithm with bag-valued features against the RIP-
PER rule learning algorithm in different email classification
tasks. In learning a user’s foldering preferences, and learning
to detect spam, the Bayesian classifier substantially outper-
formed RIPPER in classification accuracy. In reconstructing
the policy of an automated, rule-based email classifier, both
systems performed very well, but the Bayesian classifier still
showed a small but statistically significant improvement over
RIPPER.

References
Cohen, W. W. (1995). Fast effective rule induction. In

Machine Learning: Proceedings of the Twelfth Interna-
tional Conference.

Cohen, W. W. (1996). Learning rules that classify e-mail. In
AAAI Spring Symposium on Machine Learning in Infor-
mation Access.

Ingebrigsten, L. M. (1999). Gnus network user services.
World Wide Web Site: http://www.gnus.org/.

Mooney, R. J., Bennett, P. N., and Roy, L. (1998). Book
recommending using text categorization with extracted
information. InPapers of the AAAI-98/ICML-98 Work-
shop on Learning for Text Categorization and Papers
of the AAAI-98 Workshop on Recommender Systems.
Madison, WI.

Mooney, R. J., and Roy, L. (1999). Content-based book
recommending using learning for text categorization.
In Proceedings of the SIGIR-99 Workshop on Recom-
mender Systems: Algorithms and Evalutation. Berkely,
CA.

race.

4

