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Abstract. Given the rapid growth of data, it is important to extract,
mine and discover useful information from databases and data ware-
houses. The process of data cleansing is crucial because of the ”garbage
in, garbage out” principle. ”"Dirty” data files are prevalent because of
incorrect or missing data values, inconsistent value naming conventions,
and incomplete information. Hence, we may have multiple records refer-
ing to the same real world entity. In this paper, we examine the problem
of detecting and removing duplicating records. We present several effi-
cient techniques to pre-process the records before sorting them so that
potentially matching records will be brought to a close neighbourhood.
Based on these techniques, we implement a data cleansing system which
can detect and remove more duplicate records than existing methods.

1 Introduction

Organizations today are confronted with the challenge of handling an ever-
increasing amount of data. In order to respond quickly to changes and make
logical decisions, the management needs rapid access to information in order to
research the past and identify relevant trends. These information is usually kept
in very large operational databases and the easiest way to gain access to this
data and facilitate strategic decision making is to set up a data warehouse. Data
mining techniques can then be used to find ”optimal” clusterings, or interesting
irregularities in the data warehouse because these techniques are able to zoom
in on interesting sub-parts of the warehouse.

Prior to the process of mining information in a data warehouse, data cleans-
ing or data scrubbing is crucial because of the ”garbage in, garbage out”
principle. One important task in data cleansing is to de-duplicate records. In
a normal client database, some clients may be represented by several records for
various reasons: (1) incorrect or missing data values because of data entry errors,
(2) inconsistent value naming conventions because of different entry formats and
use of abbreviations such as 'ONE’ vs ’1’, (3) incomplete information because
data is not captured or available, (4) clients do not notify change of address,
and (5) clients mis-spell their names or give false address (incorrect information
about themselves). As a result, we encounter situations where several records
may refer to the same real world entity while not being syntactically equivalent.
We can treat a set of records that refer to the same entity in two ways. We



can view one of the records as correct and the rest of the records as duplicates
containing erroneous information. Then the objective is to cleanse the database
of the duplicate records [6,2]. Alternatively, we can view each matching record
as a partial source of information. Then the objective is to merge the duplicate
records to obtain one record with more complete information.

In this paper we hold the latter view when we examine the problem of de-
tecting and removing duplicating records. We present several novel techniques to
pre-process the records before sorting them so that potentially matching records
will be brought to a close neighbourhood subsequently. This will enable more
matching records to be detected and removed. The pre-processing techniques
include scrubbing data fields using external source files to remove typographical
errors and the use of abbreviations, tokenizing data fields and then sorting the
tokens in the data fields to solve the different field entry format problem which
always exists in dirty data files but has been neglected by existing methods. We
also introduce the use of field weightage to compute similarity among records.
Accuracy 1s further improved with the help of external source files. Based on
these techniques, we implement a data cleansing system which is able to detect
and remove duplicate records than existing methods.

The rest of the paper is organized as follows. Section 2 gives a motivating
example and surveys related works. Section 3 describes our proposed data cleans-
ing methodology. Section 4 discusses the implementation and time complexity
of our system, and finally we conclude in Section 5.

2 Motivation

To remove duplicated records from a dataset, the main consideration is how to
decide that two records are duplicate? We need to compare records to determine
their degree of similarity, which implies that corresponding fields in the records
has to be compared. The comparison of fields to determine whether or not two
syntactic values are alternative representations of the same semantic entity is
also known as the field matching problem [5].

Record| EmpNo |Name |Address
1 142625M

Liu Hang Xiang|1020 Jalan Bandar Lamma,
Industrial Park 3, West Malaysia
Mr. Liu H.X. |Ind Park 3, 1020 Jalan Bandar
Lama, Malaysia

Table 1. Example of two duplicate records.

2 142725M

Table 1 shows two records, Record 1 and Record 2. At first glance, all the field
values in both records look different. On closer examination, we note that the
EmpNo in Record 1 and Record 2 are very similar except for a digit difference.
We observe that ”Liu” 1s common in the Name field of Record 1 and Record 2

and "H.X.” in Record 2 seems to be an abbreviation of ”Hang Xiang” in Record
1. If the address of Record 2 is reorganized as {1020 Jalan Bandar Lamma,



Ind Park 3, Malaysia}, we find that the Address of Record 1 and Record 2 are
actually the same except for a typographical error {Lamma} in Record 1 and a
missing word { West} in Record 2. Moreover, abbreviation {Ind} has been used
in Record 2 instead of {Industrial}. Since the EmpNo, Name and Address field
values of Record 1 and 2 are very similar to each other, we may conclude that
Record 1 and Record 2 are most likely to be duplicates and they refer to the
same employee in the real world. The differences in the Name and Address field
values in Record 1 and 2 are typical of different field entry format problem.

There has been little research on the field matching problem although it has
been recognized as important in the industry. Published work deals with domain-
specific cases such as the Smith-Waterman algorithm for comparing DNA and
protein sequences [7], and variant entries in a lexicon [4]. [2] use domain specific
equational axioms to determine if two tuples are equivalent. [5] gives a basic field
matching algorithm based on matching strings and a recursive algorithm to han-
dle abbreviations. However, the former algorithm does not handle abbreviation
while the latter has quadratic time complexity.

The standard method of detecting exact duplicates in a database is to sort
the database and check if neighbouring records are identical [1]. The most reliable
way to detect approximate duplicates is to compare every record with every other
record in the database. But this is a very slow process which requires N(N-
1)/2 record comparisions, where N is the number of records in the database. [2]
proposed a Sorted Neigbourhood Method (SNM) to detect approximate
duplicates by first sorting the database on a chosen application-specific key such
as {Name, Address} to bring ”potentially matching” records to within a close
neighbourhood. This key is a sequence of a subset of attributes, or substrings
within the attributes, which has sufficient discriminating power in identifying
likely candidates for matching. There is no rule specifying how the key should
be designed. We can design a key which concatenates the first 3 digits in EmpNo
and the first 5 consonants in Name. Next, pairwise comparisons of nearby records
are made by sliding a window of fixed size over the sorted database. Suppose
the size of the window is w records, then every new record entering the window
is compared with the previous w-1 records to find "matching records”. The first
record in the window slides out of the window.

SNM is obviously faster since it requires only wN comparisons. However, the
effectiveness of this approach depends on the quality of the chosen keys which
may fail to bring possible duplicate records near to each other for subsequent
comparison. For example, if we choose the Address field in Table 1 to be the key
to sort the database, then Record 1 and Record 2 will be very far apart after
sorting because the address field value of Record 1 starts with 71020” while that
of Record 2 starts with ”Ind”. If we choose the Name field to be the sort key,
then Record 1 and Record 2 will be very close after sorting since both their name
field values start with ” Liu”.

The Duplication Elimination SNM (DE-SNM) [3] improves the results
of SNM by first sorting the records on a chosen key and then dividing the sorted
records into two lists: a duplicate list and a no-duplicate list. The duplicate list



contains all records with exact duplicate keys. All the other records are put
into the no-duplicate list. A small window scan is performed on the duplicate
list to find the lists of matched and unmatched records. The list of unmatched
records 1s merged with the original no-duplicate list and a second window scan
is performed. But the drawback of SNM still persists in DE-SNM.

In general, the duplicates elimination problem 1s difficult to handle both in
scale and accuracy. Our proposed approach aims to increase the accuracy by
first pre-processing the records so that subsequent sorting will bring potentially
matching records to a close neighbourhood. In this way, the window size can be
reduced which improves processing time. Finally, we note that while there are a
few data cleansing software in the industry, most companies do not disclose the
details of how it’s done.

3 Proposed Cleansing Methodology

Our approach to cleansing a database comprises of several steps.

1. Serub dirty data fields. This step attempts to remove typographical er-
rors and abbreviations in data fields. This will increase the probability that
potentially matching records be brought closer after sorting which uses keys
extracted directly from the data fields.

2. Sort tokens in data fields. Characters in a string can be grouped into
meaningful pieces. String values in data fields such as Name and Address
can be split into meaningful groups, called tokens, which are then sorted.

wo

. Sort records.

4. Comparison of records. A window of fixed size is moved through the
sorted records to limit the comparisons for matching records. Field weightage
is used to compute the degree of similarity between two records.

5. Merge matching records. Matching record are treated as a partial source

of information and merged to obtain a record with more complete informa-

tion.

Steps 1 and 2 are not found in existing cleansing methods. These additional
steps enhance the possibility that matching records will be brought closer during
the sorting. The following subsections elaborates on steps 1, 2 and 4.

3.1 Scrubbing Dirty Data Fields

Existing data cleansing techniques such as the SNM and the DE-SNM are highly
dependent on the key chosen to sort the database. Since the data is dirty and
the keys are extracted directly from the data, then the keys for sorting will also
be dirty. Therefore, the process of sorting the records to bring matching records
together will not as effective. A substantial number of matching records may not
be detected in the subsequent window scan.

Data in records are ”dirtied” in various ways. It is common to find data
entry errors or typing mistakes in name and address fields. Such typographical



errors causes the data to be incorrect or contain missing values. These fields
may have different entry format as illustrated in Table 1. Abbreviations
are often used to speed up data entry. The effectiveness of any de-duplicating
method is to first remove such dirty data in the record fields.

Suppose we have a record with entry ACER TECHNOOLGY PTE LTD in
its Company Name Field. There may be some typographical error in this field
which cannot be corrected by a spelling checker because special names such
as the name of a person or a company cannot be found in any dictionaries.
For example, ACER is not spelled wrongly because it is a company name but
TECHNOOLGY has a typographical error. Abbreviations such as TECH. for
TECHNOLOGY may also be used. To ensure the correctness of data in the
database, we use external source files to validate the data and resolve any
data conflicts. The external source files contain information in record format.
each record will have fields as shown in Table 2. Such external source files can
be obtained from National Registries such as the Registry of Birth, Registry of
Companies etc, which would contain more accurate and complete information
on a person or company.

In Table 2, a particular person’s information is contained in only one record.
This external source file can be used to format and correct the information in a
7dirty” database. We note that there exists a functional dependency SSNO —
Name, Age, Sex in our example external source file. SSNO is unique and is
called the key field. This feature in the external source file may be used to enforce
any functional dependencies between the fields in the database. Fields in the
source files should correspond to fields in the database and this correspondence
have to be provided by users. Formatting of the fields in the ”dirty” database
will be carried out according to key field in the external source file. Table 3 shows
an example ”dirty” record in the database. During the scrubbing process, the
system will find the SSNO of this record in the external source file (Table 2).
It will then change the values of the Name and Age fields of of the "dirty”
record (Table 3) to the corresponding field values of the equivalent record in
the external source file (Table 2). Table 4 shows the cleansed record with the
Name field value re-formatted and the Age value corrected. With this step, we
can guarantee the correctness of data as well as standardize the entry format in
the database.

There are two possible scenarios for errors in the SSNO of the dirty database:

1. The wrong SSNO does not exist in external source file.
In this case, the system would inform the user of the error.

2. The SSNO is the SSNO of another person.
Here, the system should calculate the similarity between the record in the
database and those in the external source file. We develop a method to
compute the similarity between two records by using field weightage. This
method (details in section 3.3) can be used to calculate the similarity between
a record in the database and a matching record in the external file. The
field values in the database record will only be re-formatted or corrected if



the computed similarity exceed certain value. Otherwise, the system would
prompt the user whether or not to format the record in the database.

SSNO Name AgeSex
0273632T|Koh Yiak Heng|43 |M
3635290Y | Tan Kah Seng |16 |M
5927356K| Vivian Chua (25 |F
Table 2. Example of an external source file.

SSNO Name |Age Sex
0273632T|Koh Y.H.[42 [M
Table 3. ”Dirty” record in the database.

SSNO Name AgeSex
0273632T|Koh Yiak Heng|43 |M
Table 4. ”Cleaned” record in the database.

3.2 Tokenizing and Sorting Data Fields

We have seen how a key chosen for sorting the database records plays an im-
portant role in bringing potentially matching records to within a window. This
key can also cause the matching records to become further apart and hence re-
duce the effectiveness of the subsequent comparison phase. Table 5 shows three
records in a database. If we choose the Address field in Table 5 to be the key
to sort the database, then Record 1 and Record 2 will be very far apart after
sorting because the address field value of Record 1 starts with a numeric string
71020” while that of Record 2 starts with ”Industrial”.

We observe that characters in a string can be grouped into meaningful pieces.
We can often identify important components or tokens within a Name or Ad-
dress field by using a set of delimiters such as space and punctuations. Hence,
we can first tokenize these fields and then sort the tokens within these fields. For
example, we obtain the tokens {Liu Kok Hong} in the Name field of Record 1
in Table 5. After sorting these tokens, we will obtain {Hong Kok Liu}. Table 6
shows the resulting database.

Records will now be sorted based on the sorted tokens in the selected key
field. If the user chooses to use the Address field to sort the database, then
the order of the records in the database will be 3, 2, 1. However, if the user
selects the Name field to sort the database, then the order of the records in the
database will be 2, 1, 3. Users can also choose to use {Name, Address} to sort
the database. In this case, the system will make two pass on the database. It
will first sort the records according to the Name field and remove any duplicate
records. Then it will sort the database according to the Address field and remove
any duplicate records. Information in the duplicate records are merged to obtain
a record with more complete information. Note that if a field contains digits



and character strings, then we need to separate the character string tokens and
digit tokens. Otherwise, a record containing an address with a house number will
never be close to another record with the same address but without the house
number. Furthermore, users should choose fields which contains representative
information of the record. For example, using the Sex field to sort the database
will not be able to bring matching records close to each other since there are a
lot of records containing same value in this field.

Record Name Address Sex
1 Liu Kok Hong {1020 Jalan Bandar Lama, M

Industrial Park 3, Malaysia

2 Liu K.H. Industrial Park 3, 1020 Jalan (M

Bandar Lama, Selangor Darul

Ehsan, Malaysia

3 |Yap Kooi Shan|Blk 33 Marsiling Ind. Estate, |F
#07-03, Singapore 130037

Table 5. Unsorted database

Record Name Address Sex
1 Hong Kok Liu 3 1020 Bandar Industrial |M
Jalan Lama Malaysia Park
2 H K Liu 3 1020 Bandar Darul Ehsan|M
Ind. Jalan Lama Selangor
3  |Kooi Shan Yap|03 07 33 130037 Blk Estate |F
Ind. Marsiling Singapore
Table 6. Database with fields tokenised and sorted

3.3 Comparing Records

After the records in the database has been sorted, a window of fixed size w is
moved through the records to limit comparisons of potentially matching records
to those records in the window. Every new record entering the window is com-
pared with the previous w — 1 records to find matching records. The first record
in the window slides out of the window.

An efficient method 1s required to compare two records to determine their
degree of similarity. We introduce the concept of field weightage which indi-
cates the relative importance of a field to compute the degree of similarity
between two records. The Name field obviously have a higher weightage than
Sex field since because name is more representative of a record than sex. The
field weightage is provided by users and the sum of all field weightages should be
equal to 1. For example, if the user want to eliminate duplicate records based on
the Name and Address fields equally, then they should assign a weightage of 0.5
to each of these two fields and 0 for the other fields in the record. Thus, records
with same Name field and Address field will be considered as duplicates.

The process of computing the similarity between two records starts with com-
paring the sorted tokens of the corresponding fields. The tokens are compared



using exact string matching, single-error matching, abbreviation matching and
prefix matching. Based on the field token comparison results, the similarity be-
tween the entire field 1s computed. Finally, the record similarity can be computed
from the fields similarity and the fields weightage. This is given in the following
two propositions.

Proposition: Field Similarity

Suppose a field in Record X has tokens ¢5,,{5,,...,1z, and a corresponding field
in Record Y has tokens ty,,%y,,...,%y,.. Bach token t;,,1 < ¢ < n is compared
with tokens #,.,1 < j <m. Let DoS;,, ..., DoSg,, DoSy,, ..., DoSy,, be the max-
imum of the degree of similarities computed for tokens t, ...,z , ty,,...,t

s ym
respectively. Then field similarity for Record X and Y Simp(X,Y) is given by

(i te + 2000 ty)/ (n +m).

Proposition: Record Similarity

Suppose a database has fields Fy, Fs, ..., F,, with field weightages Wy, Wy, ..., W,
respectively. Given records X and Y, let Simp, (X,Y), ..., Simp, (X,Y) be the
field similarities computed. Then record similarity for X and Y is given by the
expression Y -, Simp, (X,Y) x W;

We can have a rule that two records with record similarity exceeding a cer-
tain threshold such as 0.8 are duplicates and therefore, should be merged. While
it 1s straightforward to check whether two tokens are exactly the same, it is not
sufficient because of the existence of typographical errors, use of abbreviations
etc. We need to consider single-error matching, abbreviation matching and sub-
string matching when comparing tokens to calculate the degree of similarity. If
two tokens are an exact match, then they have a degree of similarity of 1. Oth-
erwise, if there is a total of x characters in the token, then we deduct % from
the maximum degree of similarity of 1 for each character that is not found in
the other token. For example, if we are comparing tokens ”cat” and ”late” | then
DoSeqr =1 — % = (0.67 since the character ¢ in ”cat” is not found in ”late” and
DoSjgte = 1 — % = (.33 since the characters [ and e are not found in ”cat”. We
shall now elaborate on the various matching techniques and how the degree of
similarity of tokens are obtained.

1. Exact string matching
The standard stremp() function will return 1 if two tokens are exactly the
same, else return 0.

2. Single-error matching
Single-error checking includes checking for additional characters, missing
characters, substituted characters and transposition of adjacent characters.
Table 7 shows resulting degree of similarities when we compare the tokens
"COMPUPTER”, ”COMPTER”, ”COMPUTOR”, ”COMPUTRE” to the
token ”COMPUTER”.

3. Abbreviation matching
An external source file containing the abbreviations of words i1s needed. Ta-
ble 8 shows an example abbreviation file. A token A is a possible abbreviation
of token B only if all the characters in A are contained in B and these char-



acters in A appear in the same order as in B. If a token is found to be an
abbreviation of another, then they have a similarity of degree 1.
4. Prefix substring matching

Here, we look for two similar tokens where one is a leading substring of
the other. For example, ”Tech.” and ”Technology”, or ”Int.” and ”Interna-
tional”. Note that DoSp.., = 1 since all the characters in ” Tech.” are found
in ”Technology” while DoSTcchnology = 0.4 since there are 6 characters in
”Technology” that are not found in ”Tech”. If a substring does not occur at
the beginning of a token, then the two token may not be too similar. For
example, "national” and ”international” and we assign a similarity of degree
of 0.0 for both these tokens.

Token 1 Token 2 DoStokent | D0SToken2
COMPUTER|COMPUPTER 1.0 0.89
COMPUTER| COMPTER 0.88 1.0
COMPUTER| COMPUTOR 0.88 0.88
COMPUTER| COMPUTRE 1.0 1.0

Table 7. Single-error matching

Abbreviation| Word
SVCS Services
PTE Private
LTD Limited

Table 8. Example of an abbreviation file

4 Data Cleansing System - Implementation and
Performance

We implemented a data cleansing system in C on the UNIX and tested our
system with an actual company dataset of 856 records. Each record has seven
fields: Company Code, Company Name, First Address, Second Address, Cur-
rency Used, Telephone Number and Fax Number. Manual inspection of the
dataset reveals 40 duplicate records. Typical problems in this dataset include
records with empty Company Code or Address, matching records with differ-
ent Company Code, typographical errors and abbreviations. The fields which
contains representative information of a record and are most likely able to dis-
tinguish the records are Company Name, First Address and Second Address.
We merged the First Address and Second Address fields because almost half the
number of records have empty First Address.

It 1s possible that duplicate records are not detected and similar records
which do not represent the same real world entity are treated as duplicates.
These incorrectly paired records are known as false-positives. We obtain the
following results when we run our system on the company dataset with a window
size of 10:



1. Misses. The system failed to detect 5 individual records. That is, it has 12.5
% misses or 87.5 % true-positives.

2. False-positives. The system incorrectly matched 1 record. That is, it has
0.12 % false-positives.

The results show that our system is able to detect and remove the majority of
the duplicate records with minimal false-positives. The additional pre-processing
steps of scrubbing the data fields using external source files, tokenizing and sort-
ing the data fields enables the subsequent sorting step to bring more potentially
matching records to a close neighbourhood. An mathematical analysis of our
system’s time complexity shows that although these pre-processing steps may
take extra time, they are not exponential.

5 Conclusion

We have examined the problem of detecting and removing duplicating records.
We presented several efficient techniques to pre-process the records before sorting
them so that potentially matching records will be brought to a close neighbour-
hood subsequently. These techniques include scrubbing data fields using external
source files to remove typographical errors and the use of abbreviations, tokeniz-
ing data fields and then sorting the tokens in the data fields. These pre-processing
steps, which have been neglected by existing methods, are necessary if we want
to detect and remove more duplicate records. We also proposed a method to
determine the degree of similarity between two records by using field weightage.
We implemented a data cleansing system and the preliminary results obtained
has been encouraging. Ongoing work involves testing the system’s scalability and
accuracy with real-world large data set.
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