Prova scritta dell'esame di Fondamenti di Informatica

Data: 15 dicembre 2005 Durata della prova: 2 ore

Cognome e Nome		Corso		Matricola	
----------------	--	-------	--	-----------	--

TRACCIA C

Esercizio 1

Si consideri il seguente programma:

Si descriva sinteticamente la funzione svolta dal metodo metodo1C e, in particolare, si mostri l'esecuzione e cosa viene stampato nel caso in esempio, in cui v = [11, 12, 20, 16, 8, 16].

Esercizio 2

Si scriva un metodo *annullaSimmetrici* che riceve in ingresso un vettore di interi **v**, e restituisce un vettore di interi **w** ottenuto ponendo a zero le coppie di elementi simmetrici uguali.

Ad esempio, se $\mathbf{v} = [7, 3, 6, 6, 1, 8, 8, 6, 3, 5]$, il vettore restituito è $\mathbf{w} = [7, 0, 0, 6, 1, 8, 8, 0, 0, 5]$.

Esercizio 3

Si scriva una classe *Esercizio3C* che contenga i seguenti metodi:

- 1. Un metodo *righeDecrescenti* che riceve una matrice di interi **M** e restituisce *true* se e solo se ogni riga di **M** è a valori decrescenti. Per maggiore chiarezza si veda l'esempio.
- 2. Un metodo *controlla* che riceve in ingresso una matrice di interi **M** ed un intero **k**, e restituisce *true* se e solo se la sottomatrice di **M** ottenuta eliminando la riga di indice **k** contiene solo valori non nulli. Per maggiore chiarezza si veda l'esempio.
- 3. Un metodo *costruisci* che riceve in ingresso una matrice di interi **M** e restituisce una matrice **R** ottenuta ponendo l'elemento **R[i][j]** pari alla somma degli elementi presenti sulla **j**-esima colonna di **M**. Per maggiore chiarezza si veda l'esempio.
- 4. Un metodo *main* nel quale si legge una matrice di interi, e si invocano opportunamente i metodi definiti ai punti 1, 2 e 3.

Esempio:

$\mathbf{M} =$	12	9	8	5	3
	5	0	-1	-3	-10
	15	12	13	6	3
	9	8	5	3	-2
	9	7	5	3	1

- 1. righeDecrescenti (M) restituisce true
- 2. controlla (M, 1) restituisce true
- 3. costruisci (**M**) restituisce la matrice **R** =

50	36	30	14	-5
50	36	30	14	-5
50	36	30	14	-5
50	36	30	14	-5
50	36	30	14	-5