
GP Ensembles for

Large Scale Data Classification

Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano

ICAR-CNR,

Via P.Bucci 41/C,

Univ. della Calabria

87036 Rende (CS), Italy

{folino,pizzuti,spezzano}@icar.cnr.it

July 6, 2005

Abstract

An extension of Cellular Genetic Programming for data classification to induce an en-

semble of predictors is presented. The method is able to deal with large data sets that do

not fit in main memory since each classifier is trained on a subset of the overall training

data. The predictors are then combined to classify new tuples. Experiments on several data

sets show that, by using a training set of reduced size, better classification accuracy can be

obtained, but at a much lower computational cost.

Index terms: data mining, genetic programming, classification, bagging, boosting.

Corresponding author: Clara Pizzuti

1

1 Introduction

Genetic programming (GP)[18] is a general purpose method that has been successfully applied to

solve problems in different application domains. In the data mining field [10], GP showed to be

a particularly suitable technique to deal with the task of data classification [15, 22, 25, 20, 11]

by evolving decision trees. Many data mining applications manage databases consisting of a

very large number of objects, each of which having several attributes. This huge amount of data

(gigabytes or even terabytes of data) is too large to fit into the memory of computers, thus it

causes serious problems in the realization of predictors, such as decision trees [23]. One approach

is to partition the training data into small subsets, obtain an ensemble of predictors on the base

of each subset, and then use a voting classification algorithm to predict the class label of new

objects [6, 4, 7].

Bagging [2] and boosting [27] are well known ensemble techniques that repeatedly run a

learning algorithm on different distributions over the training data. Bagging builds bags of data

of the same size of the original data set by applying random sampling with replacement. Unlike

bagging, boosting draws tuples randomly, according to a distribution, and tries to concentrate

on harder examples by adaptively changing the distributions of the training set on the base

of the performance of the previous classifiers. It has been shown that bagging and boosting

improve the accuracy of decision tree classifiers [2, 24, 1].

The combination of Genetic Programming and ensemble techniques has been receiving a lot

of attention because of the improvements that GP obtains when enriched with these methods

[17, 28, 19, 5, 12, 14]. The first proposal of using bagging and boosting in Genetic Programming

is due to Iba [17]. The main features of his approach are the following. First divide the

whole population in a set of subpopulations, then evolve each subpopulation sequentially and

independently on a training set of the same size of the whole data set, obtained by applying

resampling techniques, finally select the best individuals from each of the subpopulations to vote

on the test set. Iba applied his approach to well-known problems used in GP literature, like

discovery of trigonometric identity, and boolean concept formation.

However, when the data set is large, constructing and elaborating a fixed number of training

2

sets of the same size of the entire data set does not seem a feasible approach. In particular, for

the task of data classification, if the training set contains a high number of tuples with many

features, large decision trees are requested to accurately classify them. Thus a decision tree

generator based on genetic programming should cope with a population of large sized trees. It

has been pointed out [25] that, in order to obtain the same classification accuracy of a decision

tree generated by C4.5 [23], small population size is inadequate. Processing large populations

of trees that contain many nodes considerably degrades the execution time of GP and requires

an enormous amount of memory.

In this case data reduction through the partitioning of the data set into smaller subsets seems

a good approach, though an important aspect to consider is which kind of partitioning has the

minimal impact on the accuracy of the results. Furthermore, to speed up the overall predictor

generation process it seems straightforward to consider parallel implementations of bagging and

boosting.

Cellular Genetic Programming for data classification (CGPC) enhanced with ensemble tech-

niques [12, 14] showed to enhance both the prediction accuracy and the running time of CGPC.

In [12] and [14] the algorithms BagCGPC (Bag Cellular Genetic Programming Classifier) and

BoostCGPC (Boost Cellular Genetic Programming Classifier), that implement the bagging

technique of Breiman [2] and the AdaBoost.M1 boosting algorithm of Freund and Shapire [16],

respectively, by using CGPC as base classifier, have been presented.

This paper extends the previous works by implementing the algorithm AdaBoost.M2 to

efficiently deal also with multi-class problems, and presents several experiments that show how

Cellular Genetic Programming enriched with these voting algorithms obtains enhancements in

both accuracy and execution time. More interestingly, it is experimentally shown that higher ac-

curacy can be obtained by using a small subset of the training set at a much lower computational

cost. The main contributions of the paper can be summarized as follows:

• a parallel cellular implementation of genetic programming extended with bagging and

boosting techniques is described and applied for the task of data classification;

• two algorithms BagCGPC, implementing the bagging technique, and BoostCGPC, im-

3

plementing the boosting one, are reported and compared with CGPC, that realizes the

base cellular genetic programming approach for data classification;

• to asses the effectiveness of the approach, experiments on several data sets, having different

sizes, and number of attributes and classes are presented;

• the influence of the training set size on the accuracy of the methods has been evaluated by

executing BagCGPC, BoostCGPC and CGPC on training sets, built from the overall

training set by using random sampling with replacement, of size 5%, 10%, 20%, 50%, and

100% of the size of the training data;

• the accuracy obtained by BagCGPC and BoostCGPC has been studied when both the

number of classifiers and the sample sizes are increased and the error rates obtained have

been compared with that produced by CGPC running on all the data set;

• a scalability analysis of the algorithms when the number of available processors augments

has been performed. The experiments pointed out that BagCGPC and BoostCGPC out-

perform CGPC both in accuracy and execution time. More interestingly, higher accuracy

can be obtained by using a small sample, often only of size the 5% of the overall data set,

at a much lower computational cost. The approaches presented can thus deal with large

data sets that do not fit in main memory since each classifier can be trained on a subset

of the overall training data.

The paper is organized as follows. In section 2 the standard approach to data classification

through genetic programming is explained. In section 3 the cellular genetic programming method

is presented. Section 4 reviews the bagging and boosting techniques. Section 5 describes the

extension of cellular genetic programming with the Boosting technique. Section 6 describes the

extension of cellular genetic programming with the bagging algorithm. In section 7, finally, the

results of the method on some standard problems are presented.

4

overcast

falsetruenormalhigh

playdon’t playplaydon’t play

B
B
B
B
BB

£
£

£
£

££

£
£

£
£

££

B
B
B
B
BB

windyplayhumidity

outlook

rainsunny

HHHHHHHHHHH

©©©©©©©©©©

Figure 1: An example of decision tree with Terminal set={play, don′t play} and Function set =
{ foutlook(sunny, overcast, rain), fhumidity(high, normal), fwindy(true, false)}

2 Data Classification through Genetic Programming

Genetic programming [18], unlike other evolutionary strategies, is particularly apt to inductively

generate decision trees for the task of data classification. In fact, decision trees can be interpreted

as composition of functions where the function set is the set of attribute tests and the terminal

set are the classes. The function set can be obtained by converting each attribute into an

attribute-test function. Thus there are as many functions as attributes. For each attribute A, if

A1, . . . An are the possible values A can assume, the corresponding attribute-test function fA has

arity n, and if the value of A is Ai then fA(A1, . . . An) = Ai. When a tuple has to be evaluated,

the function at the root of the tree tests the corresponding attribute and then executes the

argument that outcomes from the test. If the argument is a terminal, then the class name for

that tuple is returned, otherwise the new function is executed.

Figure 1 shows a simple decision tree, well known in the literature [21], for deciding to play

tennis on the base of the weather conditions, with the corresponding terminal and function

sets. For example, if a tuple has the value of the attribute outlook equal to sunny and that of

humidity equal to normal, then it is classified as play. In order to evaluate the accuracy of the

decision tree, the standard measure used in the machine learning community is adopted that

computes the fraction of tuples classified into the correct class. Thus the fitness function [18] is

5

defined as the number of training examples classified into the correct class. Both crossover and

mutation must generate syntactically correct decision trees. This means that an attribute can

not be repeated more than once in any path from the root to a leaf node. In order to balance

the accuracy against the size of tree, the fitness is augmented with an optional parameter, the

parsimony, which measures the complexity of the individuals. Higher is the parsimony, simpler

is the tree, but accuracy diminishes.

Approaches to data classification based on genetic programming can be found in [22, 15, 20,

25, 11, 9].

In the next section the cellular genetic programming approach to data classification, intro-

duced in [11] is presented. The method uses cellular automata as a framework to enable a

fine-grained parallel implementation of GP through the diffusion model.

3 Data Classification using Cellular Genetic Programming

Approaches to data classification through genetic programming involve a lot of computation and

their performance may drastically degrade when applied to large problems because of the inten-

sive computation of fitness evaluation of each individual in the population. High performance

computing is an essential component for increasing the performance and to obtain large-scale

efficient classifiers. To this purpose, several approaches have been proposed. The different mod-

els used for distributing the computation and to easily parallelize genetic programming, cluster

around two main approaches [29]: the well-known island model and the cellular (diffusion)

model. In the island model several isolated subpopulations evolve in parallel by executing a

standard sequential evolutionary algorithm, and periodically exchanging by migration their best

individuals with the neighboring subpopulations. In the cellular model each individual has

a spatial location on a low-dimensional grid and the individuals interact locally within a small

neighborhood. The cellular model considers the population as a system of active individuals that

interact only with their direct neighbors. Different neighborhoods can be defined for the cells

and the fitness evaluation is done simultaneously for all the individuals. Selection, reproduction

and mating take place locally within the neighborhood.

6

Let pc, pm be crossover and mutation probability
for each point i in grid do in parallel

generate a random individual ti
evaluate the fitness of ti

end parallel for
while not MaxNumberOfGeneration do

for each point i in grid do in parallel
generate a random probability p
if (p < pc)

select the cell j, in the neighborhood of i,
such that tj has the best fitness
produce the offspring by crossing ti and tj
evaluate the fitness of the offspring
replace ti with the best of the two offspring
evaluate the fitness of the new ti

else
if (p < pm + pc) then

mutate the individual
evaluate the fitness of the new ti

else
copy the current individual in the population

end if
end if

end parallel for
end while

Figure 2: The algorithm CGPC

In [13] a comparison of cellular genetic programming with both canonical genetic program-

ming and the island model using benchmark problems of different complexity is presented and

the the superiority of the cellular approach is shown.

Cellular genetic programming (CGP) for data classification has been proposed in [11]. The

method uses cellular automata as a framework to enable a fine-grained parallel implementation

of GP through the diffusion model. The algorithm, in the following referred as CGPC (Cellular

Genetic Programming Classifier), is described in figure 2.

At the beginning, for each cell, an individual (i.e. a tree) is randomly generated and its

fitness is evaluated. Then, at each generation every tree undergoes one of the genetic operators

(reproduction, crossover, mutation) depending on a probability test, i.e. a random number in the

7

interval [0,1] is generated and compared with crossover and mutation probability. If crossover

is applied, the mate of the current individual is selected by picking the neighbor having the

best fitness. Then one random point in each parent is selected as the crossover point, and the

subtrees rooted at these points are exchanged to generate the offspring. The current tree is

replaced by the best of the two offspring if the fitness of the latter is better than that of the

former. If mutation is applied, a random point in the tree is selected, and the subtree rooted

at that point is substituted by a newly generated subtree. After the execution of the number of

generations defined by the user, the individual with the best fitness represents the classifier.

In the CGPC algorithm two types of parallelism can be exploited: inter-individual paral-

lelism, that refers to the ability of evaluating the fitness of the individuals of the population

simultaneously, and intra-individual parallelism, that enables the computation of the fitness of

each individual by handling the data in parallel. The majority of the parallel evolutionary algo-

rithms exploit only the inter-individual parallelism because they are designed to solve problems

which are more CPU-bound rather than than I/O bound. In these cases, a typical solution

adopted is to divide the population into P subpopulations and to assign each subpopulation to

a different node of the parallel machine. In this way, different subsets of individuals have their

fitness computed in parallel by different processors. In the data mining context, however, appli-

cations are data-intensive, thus inter-individual parallelism does not give good results because of

the size of the data sets, which are very large. In this case, data should be managed in parallel

by exploiting intra-individual parallelism that distributes the partitions of the data being mined

across the processors.

An efficient implementation of the CGPC algorithm that realizes both these types of par-

allelism is shown in figure 3. The parallel implementation of the algorithm has been done by

using a partitioning technique based upon a domain (in our case the population) decomposition

in conjunction with the Single-Program-Multiple-Data (SPMD) programming model (i.e. all

the processors use the same program, though each has its own data) to support coarse-grain

inter-individual parallelism and a Parallel File System (PFS) that realizes the intra-individual

parallelism and provides fast, reliable data access from all the nodes in an homogenous or het-

8

Figure 3: Software architecture of CGPC

erogeneous cluster of processors. PFS enables parallel applications to simultaneously access a

set of files (or a single file) from any node that has the PFS file system mounted. The PFS

solution allows to partition data being mined on the processors and guarantees to meet the

needs of data-intensive applications in terms of scalability and performance. The parallelization

scheme is based on a subdivision of the population in P subpopulations, each having the same

number of individuals and a partitioning of the data being mined in P parts. The population

is divided among the P processors by taking slices on the x-direction. The number of columns

in the x-direction must be divisible by the number of the processing elements (PEs), in order

to balance the computational load among the processors and ensuring that the size of each

subpopulation (SPi) be greater than a threshold determined from the granularity supported by

the processor. On each PE, a slice process is allocated. It executes the CGPC algorithm by

using its own subpopulation SPi and the overall training set to compute the fitness. Each slice

process accesses to the partitioned data through the PFS, that transfers the data set into the

computer memory in blocks. In this way all the individuals of the subpopulations can operate on

the training data more efficiently. Slice processes can be imagined as islands where each island

is structured as a grid of individuals interacting locally. To take advantage of the cellular model

of genetic programming, subpopulations are not independently evolved, but they exchange the

individuals on the borders in an asynchronous way. Each slice process updates the individuals

9

belonging to its subpopulation sequentially and exchanges asynchronously the outermost indi-

viduals with the neighbors. In our implementation, the slice processes form a logical ring and

each process determines its right- and left-processes.

Although CGPC allows the construction of accurate decision trees, the performance of the

algorithm strongly depends on the size of the training set. Moreover, also the use of PFS

introduces overheads and limits the performance and the scalability of the algorithm because of

the necessity of each processing node to access data contained on the others nodes, through the

PFS, to evaluate the fitness of the individuals. One approach to improve the performance of

the model is to build an ensemble of classifiers, where each classifier works locally on a different

subset of the training data set and then combines them together to classify the test set.

In the following we first present the most known ensemble approaches in the literature. Then

we show how we extended CGPC to generate ensemble of classifiers by bagging and boosting

techniques. According to this approach, the classifiers of each subpopulation are trained by

using CGPC on a different subset of the overall data and, finally, combined together to classify

new tuples by applying a majority voting scheme.

4 Ensemble techniques

Let S = {(xi, yi)|i = 1, . . . , N} be a training set where xi, called example, is an attribute vector

with m attributes and yi is the class label associated with xi. A predictor, given a new example,

has the task to predict the class label for it. Ensemble techniques build T predictors, each on a

different subset of the training set, then combine them together to classify the test set.

Bagging (bootstrap aggregating) was introduced by Breiman in [2] and it is based on bootstrap

samples (replicates) of the same size of the training set S. Each bootstrap sample is created by

uniformly sampling instances from S with replacement, thus some examples may appear more

than once while others may not appear in it. T bags B1, . . . , BT are generated and T classifiers

C1, . . . , CT are built on each bag Bi. The number T of predictors is an input parameter. A final

classifier classifies an example by giving as output the class predicted most often by C1, . . . , CT ,

with ties solved arbitrarily.

10

Boosting was introduced by Schapire [26] and Freund [27] for boosting the performance of

any “weak” learning algorithm, i.e. an algorithm that “generates classifiers which need only

be a little bit better than random guessing” [16]. The boosting algorithm, called AdaBoost,

adaptively changes the distribution of the sample depending on how difficult each example is

to classify. Given the number T of trials to execute, T weighted training set S1, S2, . . . , ST are

sequentially generated and T classifiers C1, . . . , CT are built to compute a weak hypothesis ht.

Let wt
i denote the weight of example xi at trial t. At the beginning w1

i = 1/n for each xi. At each

trial t = 1, . . . , T , a weak learner Ct, whose error εt is bounded to a value strictly less than 1/2,

is built and the weights of the next trial are obtained by multiplying the weight of the correctly

classified examples by βt = εt/(1− εt) and renormalizing the weights so that Σiw
t+1
i = 1. Thus

“easy” examples get a lower weight, while “hard” examples, that tend to be misclassified, get

higher weights. This induces AdaBoost to focus on examples that are hardest to classify. The

boosted classifier gives the class label y that maximizes the sum of the weights of the weak

hypotheses predicting that label, where the weight is defined as ln(1/βt). Freund and Schapire

[16] showed theoretically that AdaBoost can decrease the error of any weak learning algorithm

and introduced two versions of the method, AdaBoost.M1 and AdaBoost.M2. AdaBoost.M1,

when the number of classes is two, requires that the prediction be just slightly better than

random guessing. However, when the number of classes is more than 2, a more sophisticated

error-measure, called pseudo-loss, is introduced. In this case the boosting algorithm can focus

the weak learner not only on the hard-to-classify examples, but also on the the incorrect labels

that are hardest to discriminate. In the next section we present the extension of GP by using

AdaBoost.M2.

More complex techniques such as arching [3] adaptively change the distribution of the sample

depending on how difficult each example is to classify. Bagging, boosting and variants have been

studied and compared, and shown to be successful in improving the accuracy of predictors [8, 1].

These techniques, however, requires that the entire data sets be stored in main memory. When

applied to large data sets this kind of approach could be impractical.

Breiman in [4] suggested that, when the data sets are too large to fit into main memory, a

11

possible approach is to partition the data in small pieces, build a predictor on each piece and

then paste these predictors together. Breiman obtained classifiers of accuracy comparable if all

the data set had been used. Similar results were found by Chan and Stolfo in [6]. In [7], Chawla

et al. on a very large data set with a committee of eight classifiers trained on different partitions

of the data attained accuracy higher than one classifier trained on the entire data set.

Regarding the application of ensemble techniques in Genetic Programming, Iba in [17] pro-

posed to extend Genetic Programming to deal with bagging and boosting. A population is

divided in a set of subpopulations and each subpopulation is evolved on a training set sampled

with replacement from the original data. Best individuals of each subpopulation participate to

voting to give a prediction on the testing data. Experiments on some standard problems using

ten subpopulations showed the effectiveness of the approach.

Soule [28] demonstrated that evolving teams that cooperate by voting on the solution found

by each separate member can improve the GP’s performance on problems than normally do not

require a cooperation approach to be solved, like the even-7-parity problem.

Langdon and Buxton [19] studied the combination of classifiers to produce one classifier

which is better than each. The performance of a classifier is measured by computing the ROC

curve and experiments on three benchmarks show that GP compared with different classifiers

can automatically do better than these.

Cantu-Paz and Kamath [5] applied evolutionary algorithms to the induction of oblique de-

cision trees and combined such trees to build ensembles of evolutionary trees. They found that

oblique trees obtained with evolutionary techniques show better accuracy than those obtained

by using traditional methods and that ensembles of oblique trees have better accuracy than

a single tree. Furthermore, some of the ensembles created by using a sample of the data set

instead of the overall one had higher accuracy than the single tree obtained by using the overall

data set.

In the next two sections we present the parallel algorithms that implement the boosting and

bagging techniques through cellular genetic programming.

12

Given S = {(x1, y1), . . . (xN , yN)}, xi ∈ X
with labels yi ∈ Y = {1, 2, . . . , k}, and a population Q of size q
Let B = {(i, y), i ∈ {1, 2, . . . , k}, y 6= yi}
For j = 1, 2, . . ., P (for each processor in parallel)

Draw a sample Sj with size n for processor j
Initialize the weights w1

i,y = 1
|B| for i = 1, . . . , n, y ∈ Y ,

where n is the number of training examples on each processor j.
Initialize the subpopulation Qi, for i = 1, . . . , P
with random individuals

end parallel for
For t = 1,2,3, . . ., T

For j = 1, 2, . . ., P (for each processor in parallel)
Train CGPC on the sample Sj using a weighted
fitness according to the distribution wt

Compute a weak hypothesis hj,t : X × Y → [0, 1]
Exchange the hypotheses hj,t among the P processors
Compute the error εt

j = 1
2

∑
(i,y)inB wt

i,y · (1− hj,t(xi, yi) + hj,t(xi, y))
if εt

j ≥ 1/2 break loop
Set βt

j = εt
j/(1− εt

j),

Update the weights wt : wt+1
i,y =

wt
i,y

Zt
· β(1

2
)·(1+hj,t(xi,yi)−hj,t(xi,y))

where Zt is a normalization constant (chosen so that wt
i,y will be a distribution)

end parallel for
end for t
output the hypothesis :

hf = arg max (
∑p

j

∑T
t log(1

βt
j
)hj,t(x, y))

Figure 4: The algorithm parallel BoostCGPC version AdaBoost.M2

5 BoostCGPC

Boost Cellular Genetic Programming Classifier, is described in figure 4. Given the training set

S = {(x1, y1), . . . (xN , yN)} and the number P of processors to use to run the algorithm, we

partition the population of classifiers in P subpopulations, one for each processor and draw P

sets of tuples of size n < N , by uniformly sampling instances from S with replacement. Each

subpopulation is evolved for k generations and trained on its local sample by running CGPC.

After k generations, the individual with the best fitness is selected for participating to vote.

In fact the P individuals of each subpopulation having the best fitness are exchanged among

the P subpopulations and constitute the ensemble of predictors that will determine the weights

13

Figure 5: Implementation of BoostCGPC on a distributed memory parallel computer.

of the examples for the next round.

Figure 5 illustrates the basic framework for the parallel implementation of the BoostCGPC

algorithm on a distributed memory parallel computer. We assume that each training sample

Si, i = 1, . . . , P resides on a different processor within the parallel computer. We use the diffusion

model of GP to parallelize in a natural way the implementation of BoostCGPC. The size of each

subpopulation Qi, i = 1, . . . , P present on a node, must be greater than a threshold determined

from the granularity supported by the processor. Each processor, using a training sample Si

and a subpopulation Qi implements a classifier process CGPCi as a learning algorithm and

generates a classifier.

During the boosting rounds, each classifier process maintains the local vector of the weights

that directly reflect the prediction accuracy on that site. At every boosting round the hypotheses

generated by each of these classifiers (CGPCi in Figure 5) are combined to produce the ensemble

of predictors. Then, the ensemble is broadcasted to each classifier process to locally recalculate

the new vector of the weights and a copy of the ensemble is stored in a repository. After the

execution of the fixed number T of boosting rounds, the classifiers stored in the repository are

used to evaluate the accuracy of the classification algorithm. Note that, the algorithm can also be

used to classify distributed data which cannot be merged together, for example, in applications

that deal with proprietary, privacy sensitive data, where it is not permitted moving raw data

14

Given S = {(x1, y1), . . . (xN , yN)}, xi ∈ X
with labels yi ∈ Y = {1, 2, . . . , k}, and a population Q of size q
For j = 1, 2, . . ., P (for each processor in parallel)

Draw a sample Sj with size n for processor j
where n is the number of training examples on each processor j.
Initialize the subpopulation Qi, for i = 1, . . . , P
with random individuals

Train CGPC on the sample Sj

Compute a weak hypothesis hj : X → Y
Exchange the hypotheses hj among the P processors

end parallel for
output the hypothesis :

hf = arg max (
∑p

j Dj)
where Dj = 1 if hj(xi) = yi, 0 otherwise

Figure 6: The algorithm parallel BagCGPC

from different sites to a single central location for mining.

6 BagCGPC

Bag Cellular Genetic Programming Classifier, adopts the same parallelization strategy of BoostCGPC

and it is described in figure 6. In such a case, given the training set S = {(x1, y1), . . . (xN , yN)}
and the number P of processors to use, we partition the population in P subpopulations, one for

each processor and we draw P samples from S of size n < N . Each subpopulation is evolved for

k generations, trained on its local sample by running CGPC and generates a classifier working

on a sample of the training data instead of using all the training set. The single classifier is al-

ways represented by the tree with the best fitness in the subpopulation. With P subpopulations

we obtain P classifiers that constitute our ensemble. The output is the class predicted most

often by the P classifiers.

Notice that our approach substantially differs from Iba’s scheme [17] that extends genetic

programming with bagging and boosting, since we use a parallel genetic programming model,

we make cooperate the subpopulations to generate the classifiers and each subpopulation does

not use the overall training set.

15

7 Experimental Results

In this section we compare BagCGPC, BoostCGPC and CGPC by using 8 data sets. Two

of them (Census and Covtype) are from the UCI KDD Archive1, four (Pendigit, Segment,

Satimage, and Adult) are taken from the UCI Machine Learning Repository 2, one (Phoneme)

is from the ELENA project 3, and one (Mammography) is a research data set used by [7] . The

size and class distribution of these data sets are described in table 1. They present different

characteristics in the number and type (continuous and nominal) of attributes, two classes versus

multiple classes and number of tuples. In particular, Cens and CovType are real large data

sets. The Cens data set contains weighted census data extracted from the 1994 and 1995 current

population surveys conducted by the U.S. Census Bureau. The CovType data set comprises

data representing the prediction of forest cover type from cartographic variables determined

from US Forest Service and US Geological Survey. The Pendigit data set regards pen-based

recognition of handwritten digits. The Segment data set contains image data described by

high-level numeric-valued attributes. The Satimage data set is generated from Landsat Multi-

Spectral Scanner image data. Each sample contains 36 pixel values and a number indicating one

of the six class categories of the central pixel. The Adult data set describes data classified with

respect to their income exceeding 50K/yr based on census data. The Phoneme data set contains

data distinguishing between nasal and oral sounds. Finally, the Mammography data set contains

information about mammography analysis and the classification attribute discriminates tuples

with respect to the presence of calcifications in the tissues. This data set is very skewed since

there are only 260 tuples among the 11183 having calcifications.

The experiments have been performed on a Linux cluster with 16 dual-processor 1,133 Ghz

Pentium III nodes having 2 Gbytes of memory connected by Myrinet and running Red Hat v7.2.

The main objectives of the experiments have been the following:

• to investigate the influence of the training set size on the accuracy of the methods; to
1http://kdd.ics.uci.edu/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3ftp.dice.ucl.ac.be in the directory pub/neural/ELENA/databases

16

Table 1: Data sets used in the experiments

Dataset Attr. Tuples Classes
Adult 14 48842 2
Census 41 299285 2
Covtype 54 581012 7

Mammography 10 11183 2
Pendigits 16 10992 10
Phoneme 5 5404 2
Segment 19 2310 7
Satimage 36 6435 6

Table 2: Main parameters used in the experiments

Name Value
max depth for new trees 6
max depth after crossover 17

max mutant depth 2
grow method RAMPED

crossover func pt fraction 0.7
crossover any pt fraction 0.1
fitness prop repro fraction 0.1

parsimony factor 0

17

this end BagCGPC, BoostCGPC and CGPC were executed by using the 5%, 10%, 20%,

50%, and 100% of the training data, and an ensemble of 50 predictors.

• To study how the accuracy of BagCGPC and BoostCGPC varies when both the number

of classifiers and the sample sizes are increased; the error rates obtained are compared

with that produced by CGPC running on all the data set.

• To perform a speedup study when the size of the data set augments and the number of

processors is fixed.

The parameters used for the experiments are shown in table 2. We used a replacement policy

called greedy that replaces the current individual with the fittest of the two offspring only if the

latter has a fitness value better that the former. All results were obtained by averaging 10-fold

cross-validation runs, where at each run the 90% of the training set is used for training and the

10% remaining for testing. In order to do a fair comparison among CGPC, BagCGPC, and

BoostCGPC we used 10 processors for all the three algorithms, population size 1000 and number

of generations 500 for CGPC. To obtain the same parameters, BagCGPC was executed 5 times

on ten processors in parallel, with population size 100 on each processor (for a total size of 100

× 10=1000) and number of generations 100 (for a total number of generations 100 × 5=500),

thus generating 50 classifiers. On the other hand, the number T of rounds of BoostCGPC was

5, again on 10 processors, population size 100 on each processor, number of generations 100 for

each round, thus generating the same total population size, number of generations, and number

of classifiers, i.e. 500, 500, and 50, respectively.

In table 3 we report the mean error rate over the 10-fold-cross-validations, execution time in

seconds, and average size of the classifiers using a training set of size 5%, 10%, 20%, 50%, and

100% of the overall training set. The values in bold of the columns Error for BagCGPC and

BoostCGPC highlights the percentage of training set needed by these two algorithms to obtain

an error lower than that obtained by CGPC using the overall data set. Thus, for example,

for the Adult data set, BagCGPC has an error of 16.41 with only the 5% of the data set,

BoostCGPC has an error of 16.56 with the 20% of the data set, while the error obtained by

18

Table 3: Error, execution time and tree length of BagCGPC, BoostCGPC, and CGPC.

BagCGPC BoostCGPC CGPC
Error Time Length Error Time Length Error Time Length

5% 16.41 269.44 357.08 18.03 278.46 395.69 18.45 388.55 574.97
10% 15.74 385.08 332.27 17.20 340.11 300.56 17.86 595.10 903.66

Adult 20% 15.33 710.64 334.21 16.56 631.63 262.34 16.92 881.84 700.39
50% 15.23 1257.11 310.09 16.06 1178.034 221.73 16.83 1635.47 780.25
100% 15.13 2561.16 303.48 15.57 2066.30 214.93 16.75 3349.51 856.01

5% 5.13 2231.67 3162.88 6.44 1378.46 1163.9 5.55 1890.27 2546.47
10% 5.05 3482.59 3082.84 6.15 2273.12 1048.3 5.37 2782.82 2490.08

Census 20% 5.01 5272.48 3059.85 5.42 4001.08 1021.80 5.29 5009.13 2322.44
50% 4.98 10971.92 3023.12 5.21 7695.10 949.5 5.24 9879.22 2225.28
100% 4.97 19790.31 3005.86 5.21 14127.65 936.6 5.22 19010.27 2166.27

5% 34.164 2871.63 76.47 33.983 2854.7 79.13 37.023 3145.23 224.42
Covtyped 10% 33.962 5432.73 78.18 33.379 5593.5 84.05 36.653 7147.48 196.03

20% 33.402 10432.06 78.33 32.637 10821.3 85.50 36.322 13490.67 185.87
50% 32.956 20614.39 77.01 32.526 21480.6 84.56 36.185 25584.08 180.69
100% 32.872 42832.13 76.57 32.186 43859.5 83.00 35.922 51063.77 173.42

5% 2.01 54.88 42.87 2.37 65.21 79.89 2.82 62.85 64.06
10% 1.75 69.30 46.64 2.16 96.93 94.67 2.35 87.91 81.24

Mammography 20% 1.68 111.30 52.64 2.07 156.65 118.94 2.28 149.94 91.81
50% 1.59 205.51 57.122 1.93 296.86 133.89 1.99 274.11 103.72
100% 1.57 401.16 61.04 1.93 479.43 108.53 1.94 482.93 118.92

5% 18.57 343.46 704.44 18.46 355.15 800.62 40.07 358.53 887.30
10% 18.33 398.98 725.90 17.88 407.32 820.91 39.04 450.53 891.22

Pendigits 20% 17.61 503.12 780.38 17.30 407.33 590.70 37.83 543.13 865.99
50% 17.10 787.03 750.57 16.97 624.88 428.21 36.08 875.00 887.00
100% 16.98 1410.59 734.34 16.84 1138.34 386.29 33.26 1564.61 1049.52

5% 18.23 112.23 116.99 19.89 128.08 204.73 27.87 143.25 254.51
10% 17.66 140.27 127.93 19.124 144.62 212.67 24.37 173.46 279.43

Phoneme 20% 17.24 186.28 134.95 18.74 181.08 197.31 22.11 229.40 295.17
50% 17.05 248.19 145.60 18.07 234.12 152.51 20.80 330.58 312.76
100% 16.95 343.90 158.45 17.96 293.93 141.47 19.70 449.76 324.53

5% 22.24 78.12 125.85 19.86 136.45 300.31 27.81 149.28 318.25
10% 21.00 105.02 135.31 17.98 172.33 339.10 26.49 202.43 392.09

Satimage 20% 20.78 153.59 127.33 17.16 225.98 354.22 23.33 260.12 397.27
50% 20.70 240.84 126.57 16.80 309.59 281.27 22.24 429.66 441.77
100% 20.65 418.55 136.34 16.66 574.05 243.14 22.02 745.04 411.98

5% 16.26 57.97 104.45 13.95 94.70 164.98 25.46 86.98 167.99
10% 13.93 62.42 93.07 11.07 116.23 207.53 19.25 112.81 211.67

Segment 20% 12.24 78.86 88.98 9.14 131.09 213.61 14.39 126.36 199.24
50% 11.81 129.34 91.90 8.57 181.51 227.67 13.38 243.17 297.75
100% 11.54 209.26 90.64 8.47 227.51 235.82 12.36 317.58 276.73

CGPC with all the data set is 16.75. The same behavior can be observed for all the data sets.

BagCGPC and BoostCGPC achieve a better accuracy with respect to CGPC with at most

the 20% of the data set, except for BoostCGPC on the Mammography and Census data sets,

that needs the 50% of the data to attain a lower error than CGPC. In any case BagCGPC

19

and BoostCGPC obtain always a lower error than CGPC that, in some cases, like Pendigit, is

remarkable.

The table also points out that BagCGPC achieves better results of almost 10% on two-

class data sets with respect to BoostCGPC, but this improvement smooths as soon as the data

set size increases. On the contrary BoostCGPC works much better on multi-class data sets,

and this gain on accuracy remains constant when the data set size increases. Furthermore, the

execution time and the average length of the trees of BoostCGPC are almost always less than

those of BagCGPC.

The next experiment aimed at determining the minimum number of classifiers and the min-

imum sample size necessary to obtain an error rate lower than CGPC running on the overall

data set. Thus figures 7, 8, 9, 10, 11, 12, 13, 14 show how the error rate of BagCGPC and

BoostCGPC diminishes when both the number of classifiers and the sample sizes are increased;

the error rates obtained are compared with those produced by CGPC running on all the data

set, but with an increasing population size.

To this end we run CGPC with the overall data set, while BagCGPC and BoostCGPC

were executed with 5%, 10%, and 20% of the tuples for 5 rounds, each round using an increasing

number of classifiers, from 1 to 20, implying thus ensemble constituted by 5, 10, 15, 20, . . .,

100 classifiers. The parameters used are the same of the previous experiments. CGPC used a

population size equal to 100 × number of classifiers of the ensemble.

Figures 7(a), 8(a), 11(a), and 12(a) show that BagCGPC on the data sets Adult, Census,

Pendigits and Phoneme has an error lower than CGPC for any number of classifiers, even with

a sample of only the 5%. Figures 9(a), 10(a), 13(a), and 14(a), show that BagCGPC begins to

overcome CGPC, on the Covtype data set, when 2 classifiers per round (that is an ensemble of

10 classifiers) and a sample of 20% are used; on the Mammography data set, when 3 classifiers

per round (that is an ensemble of 15 classifiers) and a sample of 10% are used, or when the

ensemble contains 10 classifiers (2 classifiers per round) and the size of the sample is 10%; on

the Satimage data set when 2 classifiers per round (that is an ensemble of 10 classifiers) and a

sample of 5% are used; and, finally, on the Segment data set when 10 classifiers per round (that

20

(a) (b)

Figure 7: Mean error for different sample sizes of the training set vs number of classifiers for
round (Adult dataset). (a) BagCGPC (b) BoostCGPC.

is an ensemble of 50 classifiers) and a sample of 20% are used.

The behavior of BoostCGPC, however, is different. On the two data sets Census and

Mammography, it is not able to beat CGPC with these sizes of the training set, as figures

8(b) and 10(b) point out. In fact, table 3 shows that BoostCGPC needs the 50% of the data

in order to overcome CGPC on these two data sets. As regard the others, Figure 7(b) shows

that for the Adult data set BoostCGPC needs 50 classifiers and 20% of the data set, Figure

9(b) shows that for the Covtype data set it needs 10 classifiers and 10% of the data set, Figure

11(b) shows that BoostCGPC is always better than CGPC on Pendigits, Figure 12(b) shows

that BoostCGPC on Phoneme needs at least the 10% of the data and 10 × 5 classifiers to be

better than CGPC, Figure 13(b) shows that for the Satimage data set it needs 10 classifiers

and 10% of the data set, finally, Figure 14(b) shows that BoostCGPC on Segment needs at

least the 20% of the data and 2 × 5 classifiers. These experiments ulteriorly emphasize that the

ensemble techniques can obtain better accuracy than their base classifiers even with a moderate

number of predictors and a small training set.

Finally figure 15 shows for the Covtype data set how the CGPC, BagCGPC, and BoostCGPC

behave when running on 20 processors an increasing number of tuples, that is 5%, 20%, 50%, and

100%. The figure points out that the speedup obtained is nearly linear for all the three methods,

21

(a) (b)

Figure 8: Mean error for different sample sizes of the training set vs number of classifiers for
round (Census dataset). (a) BagCGPC (b) BoostCGPC.

(a) (b)

Figure 9: Mean error for different sample sizes of the training set vs number of classifiers for
round (Covtype dataset). (a) BagCGPC (b) BoostCGPC.

22

(a) (b)

Figure 10: Mean error for different sample sizes of the training set vs number of classifiers for
round (Mammography dataset). (a) BagCGPC (b) BoostCGPC.

(a) (b)

Figure 11: Mean error for different sample sizes of the training set vs number of classifiers for
round (Pendigits dataset). (a) BagCGPC (b) BoostCGPC.

23

(a) (b)

Figure 12: Mean error for different sample sizes of the training set vs number of classifiers for
round (Phoneme dataset). (a) BagCGPC (b) BoostCGPC.

(a) (b)

Figure 13: Mean error for different sample sizes of the training set vs number of classifiers for
round (Satimage dataset). (a) BagCGPC (b) BoostCGPC.

24

(a) (b)

Figure 14: Mean error for different sample sizes of the training set vs number of classifiers for
round (Phoneme dataset). (a) BagCGPC (b) BoostCGPC.

though that of CGPC is slightly better than that of BagCGPC and BoostCGPC. This is mainly

due to the greater communication among the processors to exchange information in the latter two

algorithms. However, it is worth noting that the execution time of BagCGPC and BoostCGPC

is always lower than that of CGPC. For example, if we use the 20% of the tuples, CGPC

needs 13490.67 seconds, while BagCGPC requires 10432.06 seconds and BoostCGPC 10821.3

seconds. The lower computation time is a direct consequence of the size of the trees generated

by BagCGPC and BoostCGPC with respect to that of the trees generated by CGPC. In fact

in the former case these sizes are much smaller, thus the application of ensemble techniques

in Genetic Programming, as already observed by Iba, has the positive result of controlling the

bloating problem, common in GP.

8 Conclusions

An extension of Cellular Genetic Programming for data classification to induce an ensemble of

predictors that uses voting classification schemes based on bagging and boosting techniques has

been presented. Experiments showed that the extension of CGPC with these voting algorithms

reduces the size of the trees, enhances both accuracy and execution time and that higher accuracy

can be obtained by using a small subset of the training set at a much lower computational cost.

25

Figure 15: Speedup of CGPC, BagCGPC, and BoostCGPC

The approach is thus able to deal with large data sets that do not fit in main memory since each

classifier is trained on a subset of the overall training data. The algorithm could also be used

to classify distributed data which cannot be merged together. For example, in applications that

deal with proprietary, privacy sensitive data, where it is not permitted moving raw data from

different sites to a single central location for mining.

References

[1] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms:

Bagging, boosting, and variants. Machine Learning, (36):105–139, 1999.

[2] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[3] Leo Breiman. Arcing classifiers. Annals of Statistics, 26:801–824, 1998.

[4] Leo Breiman. Pasting small votes for classification in large databases and on-line. Machine

Learning, 36(1,2):85–103, 1999.

[5] E. Cantú-Paz and C. Kamath. Inducing oblique decision trees with evolutionary algorithms.

IEEE Transaction on Evolutionary Computation, 7(1):54–68, February 2003.

26

[6] P. K. Chan and S.J. Stolfo. A comparative evaluation of voting and meta-learning on

partitioned data. In International Conference on Machine Learning ICML95, pages 90–98,

1995.

[7] N. Chawla, T.E. Moore, W. Bowyer K, L.O. Hall, C. Springer, and P. Kegelmeyer. Bagging-

like effects for decision trees and neural nets in protein secondary structure prediction. In

BIOKDD01: Workshop on Data mining in Bioinformatics (SIGKDD01), 2001.

[8] Thomas G. Dietterich. An experimental comparison of three methods for costructing ensem-

bles of decision trees: Bagging, boosting, and randomization. Machine Learning, (40):139–

157, 2000.

[9] J. Eggermont, J. N. Kok, and W.A. Kosters. Genetic programming for data classification:

Partitioning the search space. In Proceedings of ACM Symposium on Applied Computing,

SAC’04, pages 1001–1005. ACM Press, 2004.

[10] U.M. Fayyad, G. Piatesky-Shapiro, and P. Smith. From data mining to knowledge discovery:

an overview. In U.M. Fayyad & al. (Eds), editor, Advances in Knowledge Discovery and

Data Mining, pages 1–34. AAAI/MIT Press, 1996.

[11] G. Folino, C. Pizzuti, and G. Spezzano. A cellular genetic programming approach to clas-

sification. In Proc. Of the Genetic and Evolutionary Computation Conference GECCO99,

pages 1015–1020, Orlando, Florida, July 1999. Morgan Kaufmann.

[12] G. Folino, C. Pizzuti, and G. Spezzano. Ensemble techniques for parallel genetic program-

ming based classifiers. In E. Costa C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, editor,

Proceedings of the Sixth European Conference on Genetic Programming (EuroGP-2003),

volume 2610 of LNCS, pages 59–69, Essex, UK, 2003. Springer Verlag.

[13] G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of parallel ge-

netic programming. IEEE Transaction on Evolutionary Computation, 7(1):37–53, February

2003.

27

[14] G. Folino, C. Pizzuti, and G. Spezzano. Boosting technique for combining cellular gp classi-

fiers. In M. Keijzer, U. O’Reilly, S.M: Lucas, E. Costa, and T. Soule, editors, Proceedings of

the Seventh European Conference on Genetic Programming (EuroGP-2004), volume 3003

of LNCS, pages 47–56, Coimbra, Portugal, 2004. Springer Verlag.

[15] A.A. Freitas. A genetic programming framework for two data mining tasks: Classifica-

tion and generalised rule induction. In Proceedings of the 2nd Int. Conference on Genetic

Programming, pages 96–101. Stanford University, CA, USA, 1997.

[16] Y. Freund and R. Scapire. Experiments with a new boosting algorithm. In Proceedings of

the 13th Int. Conference on Machine Learning, pages 148–156, 1996.

[17] Hitoshi Iba. Bagging, boosting, and bloating in genetic programming. In Proc. Of the

Genetic and Evolutionary Computation Conference GECCO99, pages 1053–1060, Orlando,

Florida, July 1999. Morgan Kaufmann.

[18] J. R. Koza. Genetic Programming: On the Programming of Computers by means of Natural

Selection. MIT Press, Cambridge, MA, 1992.

[19] W.B. Langdon and B.F. Buxton. Genetic programming for combining classifiers. In Proc.

Of the Genetic and Evolutionary Computation Conference GECCO’2001, pages 66–73, San

Francisco, CA, July 2001. Morgan Kaufmann.

[20] R.E. Marmelstein and G.B. Lamont. Pattern classification using a hybbrid genetic pro-

gram - decision tree approach. In Proceedings of the Third Annual Conference on Genetic

Programming, Morgan Kaufmann, 1998.

[21] Tom M. Mitchell. Machine Learning. McGraw-Hill Internaltional Edition, 1997.

[22] N.I. Nikolaev and V. Slavov. Inductive genetic programming with decision trees. In Pro-

ceedings of the 9th International Conference on Machine Learning, Prague, Czech Republic,

1997.

[23] J. Ross Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo,

Calif., 1993.

28

[24] J. Ross Quinlan. Bagging, boosting, and c4.5. In Proceedings of the 13th National Confer-

ence on Artificial Intelligence AAAI96, pages 725–730. Mit Press, 1996.

[25] M.D. Ryan and V.J. Rayward-Smith. The evolution of decision trees. In Proceedings of the

Third Annual Conference on Genetic Programming, Morgan Kaufmann, 1998.

[26] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

[27] R. E. Schapire. Boosting a weak learning by maiority. Information and Computation,

121(2):256–285, 1996.

[28] Terence Soule. Voting teams: A cooperative approach to non-typical problems using ge-

netic programming. In Proc. Of the Genetic and Evolutionary Computation Conference

GECCO99, pages 916–922, Orlando, Florida, July 1999. Morgan Kaufmann.

[29] M. Tomassini. Parallel and distributed evolutionary algorithms: A review. In P. Neittaan-

mki K. Miettinen, M. Mkel and J. Periaux, editors, Evolutionary Algorithms in Engineering

and Computer Science, J. Wiley and Sons, Chichester, 1999.

29

