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Abstract. Designing, analyzing and managing complex processes are
recently become crucial issues in most application contexts, such as e-
commerce, business process (re-)engineering, Web/grid computing. In
this paper, we propose a framework that supports the designer in the
definition and in the analysis of complex processes by means of several
facilities for reusing, customizing and generalizing existent process com-
ponents. To this aim we tightly integrate process models with a domain
ontology and an activity ontology, so providing a sematic vision of the
application context and of the processes themselves. A software archi-
tecture fully supporting our framework is also presented and discussed.
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1 Introduction

Process modelling has been addressed for decades and a lot of frameworks have
been proposed in several research fields, like Workflow Systems and Business
Processes. This topic is a subject of interest in novel and attractive areas (e.g.,
Web/grid computing, e-commerce and e-business [4, 6]), where customization
and reuse issues play a crucial role.

In this paper we devise a framework which supports designers in the defi-
nition, analysis and re-engineering of process models in complex and dynamic
contexts. The main goal of our approach is to exploit the experience gained by
designers over time, and somehow encoded in the process models defined so far.
In order to support reuse, customization and semantic consolidation, process
models are integrated in an ontological framework, which encompasses the de-
scription of the entities involved in the processes (e.g. activities and associated
input/output parameters). In particular, in order to make easier the exploitation
of design knowledge, we use specialization/inheritance relationships which allow
us to represent similarities among process models, and can sensibly reduce the
efforts for specifying a new process.

The exploitation of ontologies for describing process models and reasoning
on them is not new. For example, domain and task ontologies are extensively



used by Semantic Web Services approaches (see, e.g., [2]), which are mainly de-
voted to automatic execution issues, rather than to exploiting design knowledge.
Conversely, Business Engineering approaches (see, e.g., [10]) focus on design
knowledge structuring through process taxonomies, but typically give little at-
tention to the specification of their execution flows. Execution flows could be
effectively expressed, through, e.g., one of the formalisms adopted in Workflow
Management Systems (WFMS). Interestingly, inheritance of workflow models
is investigated in [11], but principally with respect to adaptiveness and dynamic
change issues, involving, e.g., the migration of executions produced by several
variants a given workflow. As a consequence, the approach relies on a formal
notion of inheritance, focused on behavioral features and specifically defined for
workflow models represented in terms of a class of Petri nets.

By contrast, as we are mainly interested in structuring and exploiting design
knowledge, in our approach the definition of specialization between process mod-
els is not necessarily bound to a rigid notion of behavioral inheritance, so leaving
more freedom to the designer about the meaning of all the concepts and relation-
ships in the knowledge base. In a sense, our framework tries to take advantage
of ideas from all the above mentioned process modelling perspectives, in order
to provide a complete and effective support to designers.

The formal framework for process modelling has been implemented in a pro-
totype system that can assist the user in both design and analysis tasks, by
providing a rich and integrated set of modelling, querying and reasoning facili-
ties. In the paper, we discuss the system architecture and focus on some of its
advanced functionalities, such as consistency checking and interactive ontology
navigation. We devote particular emphasis to the description of a module for the
automatic (re)discovering of process models. To this purpose, some process min-
ing techniques [1, 5] have been recently introduced, which can derive a model for
a given process based on its execution logs. Here, we extend such an approach to
extracting hierarchical process models, which can be profitably integrated into
our ontological framework.

2 Process Modelling Framework

In this section, we present a modelling framework, where process models can
be specified in terms of ontology concepts, and then can be related among each
others, to facilitate the reuse and consolidation of design knowledge.

2.1 Process Schemata

The basis for a semantic view of a process model is the ontological description
of the activities and domain concepts which it involves.

Let A be a set of activities. An activity ontology OA for A is a tuple
〈ISA, PARTOF〉 such that ISA ⊆ A × A and PARTOF ⊆ 2A × A, where 2A de-
notes the set of all the subset of activities, such that for each a ∈ A, there exists
no A′ ∈ 2A with a ∈ A′ and A′

PARTOFA. Roughly speaking, the relation a ISA b,



for two activities a and b indicates that a is a refinement of b, while A′
PARTOF a

for A′ ⊂ A specifies that a consists in the execution of all the “finer” activities
in A′. Hence, we say that a ∈ A is a complex activity if there exists A′ ⊂ A such
that A′

PARTOF a; otherwise, a is said simple.

Running Example. In order to make clear our approach, we shall use the following
example throughout the paper. Assume that a process model has to be designed
to handle customers’ orders in a company. The first step is to define the activities
that must be carried out in the business cases. To this aim the ontology OA

includes the Order Management activity, which, in turn, consists of the following
ones: (a) receive an order, (b) authenticate the client, (c) check the product
availability, (d) ship the product, (e) send an invoice. Practically the relation
PARTOF describe how a process can be broken down (or “decomposed”) into sub-
activities. Moreover, the relation ISA allows the designer to specialize a given
activity. Some major issues related to the specialization of complex activities are
discussed in the next subsection. 2

Let D be the domain of our application, and let OD be a domain ontology.
The interface of an activity a in D is a pairIa = 〈InPorta, OutPorta〉 of set of
concepts in D, where OutPort

a specifies the result of the enactment of a, while
InPort

a specifies what is required for enabling a.

In general, the input concepts required by a sub-activity either are produced
by other activities in the process or are (external) inputs of the process itself.
Similarly, the outputs of an activity can be delivered within or outside of the
process. A more detailed description of the structure of a complex activity, in-
cluding the input/output dependencies between the involved sub-activities, can
be obtained by the following notion of Process Schema.

Definition 1 (Process Schema). Let OA be an activity ontology, OD be a
domain ontology. Let a be an activity in A. A process schema PSa for a is a
tuple 〈I, T, a0, F, CF , IN, OUTmin, OUTmax〉, where:

– I is the interface of a (i.e., I = Ia = 〈InPorta, OutPorta〉);
– T is a set of activities s.t. T PARTOF a is asserted in OA;
– a0 ∈ A is the starting activity and F ⊆ A is the set of final activities;
– CF , referred to as control flow graph of PSa, is a relation of precedences

among activities s.t. CF ⊆ (A − F ) × (A − {a0}) and E ⊆ CF+ is s.t.
• (x, y) ∈ E implies that InPorty ∩ OutPort

x 6= ∅, and
• for each y ∈ T and for each c ∈ InPort

y, either (i) c ∈ InPort
a or (i)

there exists (z, y) ∈ E s.t. c ∈ OutPort
z

• for each c ∈ OutPort
a, there exists x ∈ T s.t. c ∈ OutPort

x.
– IN, OUTmin, and OUTmax are three functions assigning to each activity in

Aa a natural number such that (i) IN(a0) = 0, ∀a ∈ F , (ii) OUTmin(a) =
OUTmax(a) = 0, and (iii) ∀x ∈ Aa, 0 < IN(x) ≤ InDegree(x) and 0 <

OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a)

where CF+ denotes the transitive closure of CF , InDegree(x) is |{e = (y, x) |
e ∈ CF}| and OutDegree(x) is |{e = (x, z) | e ∈ CF}|. ⊓⊔



Intuitively, a process schema allow us to define the involved sub-activities,
with their mutual information flow, for any activity having a significant level of
complexity. For instance, the process schema for the Order Management activity
is shown in Figure 1. Receive Order is the starting activity while Send Invoice is
a final one. The values for the functions IN and OUTmin are also reported, while
all OUTmax values are assumed to coincide with the activity out-degree.

The informal semantics of a process schema is as follows. An activity a can
start as soon as at least IN(a) of its predecessor activities are completed. Two
typical cases are: (i) if IN(a) = InDegree(a) then a is an and-join activity,
for it can be executed only after all of its predecessors are completed, and
(ii) if IN(a) = 1 is called or-join activity, for it can be executed as soon as
one predecessor is completed. As commonly assumed in the literature, we con-
sider only and-join and or-join activities: Indeed, by means of these two ele-
mentary types of nodes, it is possible to simulate the behavior of any activity
a such that 1 < IN(a) < InDegree(a). Once finished, an activity a activates
any non-empty subset of its outgoing arcs with cardinality between OUTmin(a)
and OUTmax(a). If OUTmax(a) = OutDegree(a) then a is a full fork and if also
OUTmin(a) = OUTmax(a) then a is a deterministic fork, as it activates all of its
successors. Finally, if OUTmax(a) = 1 then a is an exclusive fork (also called
XOR-fork), for it activates exactly one of its outgoing arcs.

2.2 Process Schema Inheritance

Specialization/inheritance relationships are a mean for structuring process
knowledge into different levels of abstraction. Indeed, they allow for organizing a
set of related process schemata into a taxonomy, i.e. an acyclic graph where each
node corresponds to a concept more general than the ones associated with its
children. Undoubtedly, such a structure, for it representing similarities and dif-
ferences among process models, allows to effectively exploit the design knowledge
they encode.

A key point here is what is the meaning of specialization for process schemata.
Diverse notions of specialization were defined in the literature, in several con-
texts, e.g., OO Design/Programming [9, 4], Enterprise Modelling [10, 14], and
Workflow Modelling [12]. The question is particularly intriguing if one look at
the behavioral feature a process schema expresses, as it implicitly represents a
finite set of possible executions patterns. An interesting property which a “safe”
notion of specialization should have is that all the execution instances of a pro-

Fig. 1. Process schema for the Order Management activity.



cess schema are also be seen as instances of any schema which generalizes it.
A behavioral notion of inheritance is adopted in [14], which concerns dataflow
models, and in [3], where four variants of inheritance are introduced w.r.t. a
special kind of workflow models (a class of Petri Nets, called WF-nets).

Notice that in our approach, we prefer not to force the designer to adopt a
specific kind of specialization, so leaving her free of refining a process model in
different ways. Nonetheless, our framework provides mechanisms for building (or
restructuring) a process taxonomy according to the chosen notion of inheritance.
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Fig. 2. An example of the inheritance in the specialization hierarchy

For example, the user could obtain derived models by specializing functional
and/or behavioral features (e.g., input, output, activities, dependencies and con-
straints on activities) of one or more existing models. More in detail, some pos-
sible ways of specializing a given process schema are the followings:

– Specializing an activity involved in the original schema. Let WS be a process
schema. The WS1 is said a specialization of WS, if it is obtained from
WS by replacing an activity A of WS with an activity A1 representing a
specialization of A in the ontology OA. Note that the inverse derivation is
not allowed, that is no activity of WS can be a specialization of some activity
in WS1.

– Deleting an activity involved in the original schema. Let WS a process
schema. The WS1 is said a specialization of WS, if it is obtained from WS

by deleting an activity A of WS in WS1. Removing an activity corresponds
to exclude any process execution involving it, or, equivalently, to introduce
further constraints on the process schema. Obviously, such an operation is
legal only if both the initial activity and at least one of the final activities
are left.



Fig. 3. System Architecture (right) and a screen-shot of the user interface (left).

– Adding an activity to the original schema. Let WS a process schema. Then,
WS1 is said a specialization of WS if it is obtained from WS by adding to
WS an activity A1. Such an operation corresponds to extend the original
schema, more than to specialize it, since it could allow some behaviors which
were not captured by that schema. Therefore, in such a case the system will
warn the designer, who can make use of the restructuring facilities to recover
the consistency of the schema w.r.t. some notion of behavioral inheritance.

– Specializing the execution either by adding further links between the activi-
ties (and/or constraints over them), or by removing links (and/or weakening
some constraints). Notice that the latter operation implies again an “unsafe”
specialization, which could be handled in a way similar to that discussed in
the previous case.

– Specializing the interface of the activity associated with the original schema.

Different examples of specialization for the sample process Order Management
are depicted in figure 2, where: the process Order without shipment is obtained
by deleting the “ship product” activity; the process Order with credit card is
obtained by adding the “insert term of payment” activity at the more general
process; and finally, the “client authentication” activity is replaced with a more
specific one (“credit card authentication”) in the Order with credit card.

3 System Architecture

This section illustrates the main features of a software system (implemented in
JAVA), intended to support the design, analysis and usage of process models.
From a conceptual point of view, the architecture of the system, sketched in
the right side of Figure 3, is centered upon a rich knowledge base, which stores
a semantic description of the processes, according to the modelling framework
presented above. Moreover, a rich set of modelling, querying and reasoning tools
is provided, which allow to build and extend this knowledge base, as well as to
make advantage of it in several tasks of a process model’s life cycle, such as (i)
defining or re-engineering a process model and its components, (ii) specializing
or generalizing existing models, (iii) checking the workflow schema of a process
and (iv) analyzing its behavior. The main modules in the architecture are as
follows:



The XML repository represents the core of the system knowledge base. It
is a native XML database managing the representation of process schemata and
execution instances, both encoded in an XML-based format. Notably, all the
semantic relationships relating schemata, activities and other domain entities
are explicitly stored in the repository.

The Ontology I/O module offers mechanisms for connecting to, browsing
and importing parts of an external ontology, provided that this exposes itself in
the Web Ontology Language (OWL) [15], a semantic markup language by the
World Wide Web Consortium. In addition, the module allows to make available
contents of the knowledge base to the outside of the system as an ontology, still
adopting the standard OWL format.

The WF I/O module provides the ability of translating a given process
schema into an executable specification to give to a suitable enactment engine. In
the current implementation of the system, Business Process Execution Language
(BPEL) [8] has been chosen as such a specification language, mainly because
this XML-based language represents a widely accepted notation for describing
processes, fully integrated with the Web Services technology, while run-time
environments supporting it are become available.

The Consistency Checker is in an early stage of development, and is in-
tended to provide a number of facilities for the analysis of the defined process
schemata. Currently, the module allows the user to assess the syntactic and se-
mantic correctness of a designed process model, by providing automatic support
to consistency check and schema validation analysis regarding both the static
features of a model and its dynamic behavior. Nonetheless, we intend to give fur-
ther support to the analysis of process behaviors, by developing a Simulation
engine to simulate the execution of a given process in various situations. Some
interesting applications of such a tool might be the investigation of the process
model by means of “what if” scenarios and the comparison of alternative design
choices. Details on the techniques we plan to exploit in the development of such
an engine can be found in a previous work [7].

The User Interface, a screen-shot of which is shown on the left side of
Figure 3, enables the system to be used in an easy and effective way. Notably,
the whole content of the knowledge base is can be accessed by users through
a general-purpose query engine associated with the XML repository, which is
indeed based upon a native XML database. Moreover, the exploration of such
data is made easier by exploiting the taxonomical structures in which the various
kinds of concepts are organized, according to the specialization and partonomy
relationships which relate them (look at the tree-like structure on the left side
of the screen-shot).

The Process Miner module is substantially devoted to enable the automatic
derivation of process models, conforming to our framework, based on induction
techniques. Therefore, it can be of great value to the design of process models,
specially when complex and heterogenous behaviors are to be modelled. It is
composed of two separate components, i.e., Restructuring and Clustering mod-



ules, whose functionalities will be described in the next section, since this is the
key module paving the way for an effective usage of the whole approach.

3.1 Building and Using a Process Model Knowledge Base

In this section we carefully describe the techniques implemented in the Process
Miner module of our system architecture. These techniques can be profitably
used in the re-design and analysis of process models and, hence, might help the
workflow designer to model complex processes according to the formal framework
we introduced in the paper. Indeed, even though workflow management systems
(WfMS) are more and more utilized in enterprises, their actual impact in au-
tomatizing complex process is still limited by the difficulties encountered in the
designing phase. In fact, processes have complex and often unexpected dynam-
ics, whose modelling requires expensive and long analysis which may eventually
result unviable under an economic viewpoint.

To this aim, our approach exploits a sample of process executions to build a
hierarchy of process schemata conforming to our framework, which model the
behaviors of the underlying process at different levels of refinement.

In order to better explain our approach, we introduce some definitions and
notation. Let AP be the set of identifiers which denote the activities involved
in the process P . A workflow trace s over AP is a string in A∗

P , representing
a sequence of activities, while a workflow log for P , denoted by LP , is a bag
of traces over AP . Then, a set of traces produced by past enactments of the
process P is examined to induce a hierarchy of process schemata representing
the behavior of P at different levels of refinement.

The algorithm ProcessDiscover, shown in Figure 4, starts with a preliminary
model WS1

0, which only accounts for the dependencies among the activities in P .
Then it refines the current schema in iterative and incremental way, by exploiting
a suitable set of features, which can discriminate different behavioral patterns.

The model WS1
0 is computed by mining a control flow CFσ, according to the

threshold σ specifying the minimum support, through the procedure minePrece-
dences, which mainly exploits techniques already presented in the literature (see,
e.g., [1, 13]). Finally, such a model is inserted as the (unique) child of WS1

1 and
the algorithm starts partitioning this schema.

After the initialization described above, the algorithm performs two separate
phases. First, it constructs the taxonomy of schemata by means of a top-down
refinement of each schema, implemented by means of the recursive procedure
partition. Each workflow schema WSj

i is identified by the number i of refinements
needed, and an index j for distinguishing the schemas at the same refinement

level. Hence, schemas WSj′

i+1, for different values of j′, are refinements of the

schema WSj
i , according to the framework described in the previous section.

The procedure partition relies on identifying different patterns of executions
by means of an algorithm for clustering the process traces L(WSj

i ) associated to
each element in the hierarchy. It is based on the projection of these traces on a
suitable set of properly defined features. Thus, in order to reuse well know clus-



Input: A set of logs Lp, a threshold σ, and a natural number m.
Output: A taxonomy of process models.
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp);

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0);
4 WS1

1 := {WS1
0};

5 refineWorkflow(1,1);
6 return WS1

1;

Procedure partition(i: step, j: schema);

1 if |L(WSj

i
)| > m do

2 for each WSj′

i+1
∈ WSj

i
do //recursive processing

3 WSj′

i+1
:=partition(i + 1,j′);

4 refineWorkflow(i + 1,j′);
5 end for

6 WSj

i
:=generalizeSchemas({WSj′

i+1
|WSj′

i+1
∈ WSj

i
});

7 end if

8 return WSj

i
;

Procedure refineWorkflow(i: step, j: schema);

1 F :=identifyRelevantFeatures(L(WSj

i
), σ, maxFeatures, CFσ);

2 R(WSj

i
) :=project(L(WSj

i
),F);

3 k := |F|;
4 if k > 1 then

5 j′ := max{j′ | WSj′

i+1
∈ WSj

i
};

6 〈WSj′+1

i+1
, ...,WSj′+k

i+1
〉 := k-means(R(WSj

i
));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));

10 mineLocalConstraints(WSh
i+1);

11 end for

12 else //Leave of the tree
14 end if ;

Fig. 4. Algorithm ProcessDiscover

tering methods, and specifically in our implementation the k-means algorithm,
the procedure refineWorkflow translates the logs L(WSj

i ) to relational data with
the procedures identifyRelevantFeatures and project. Then, if more than one
feature is identified, it computes the clusters WSj+1

i+1 , ...,WSj+k
i+1 , where j is the

maximum index of the schemata already computed for the level i + 1, by apply-
ing the k -means algorithm on the traces in L(WSj

i ). Finally, for each schema
inserted in the taxonomy the procedure mineLocalConstraint is applied, in order
to identify local constraints as well.

The second phase of the algorithm ProcessDiscover is instead a bottom-up
one, in which the different schemas previously computed are merged and gener-
alized by means of the procedure generalizeSchemas, which is implemented in
Restructuring module of the system. This latter procedure, which we do not fully
for lack of space, allows to produce a generalized process schema from a given
set of schemata, substantially by modelling only their common features, while
abstracting from details. The resulting schema will then represent a more general
process (possibly abstract, i.e., not executable) than the processes modelled by
the input schemata.



4 Conclusions

We have proposed a formal framework that supports the designer in the defi-
nition and in the analysis of complex and highly dynamic processes by several
facilities for reusing, customizing and generalizing existent process components.
The model can be used for specifying process at the desired level of details as
well as to semantically characterize them by capturing both concepts of the busi-
ness domain and relationships among them. The model is actually supported by
means of a software architecture comprising several useful components that may
be profitably exploited for designing complex processes. Among them, we have
described in details the process miner module which implements an algorithm
for automatically discovering an unknown process model for a given collection
of log. As a further research, we plan to extend our system for also supporting
advanced reasoning facilities useful for simulation purposes.
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