
Mining Constrained Graphs:

The Case of Workflow Systems

Gianluigi Greco1, Antonella Guzzo2, Giuseppe Manco2, Luigi
Pontieri2, and Domenico Saccà2

Department of Mathematics1, University of Calabria, Italy
ICAR, CNR2, Italy

ggreco@mat.unical.it,{guzzo,manco,pontieri,sacca}@icar.cnr.it

Abstract. Constrained graphs are directed graphs describing the con-
trol flow of processes models. In such graphs, nodes represent activities
involved in the process, and edges the precedence relationship among
such activities. Typically, nodes and edges can specify some constraints,
which control the interaction among the activities. Faced with the above
features constrained graphs are widely used in the modelling and analysis
of Workflow processes. In this paper we overview two mining problems
related to the analysis of constrained graphs, namely the analysis of fre-
quent patterns of execution, and the induction of a constrained graph
from a set of execution traces. We discuss some complexity aspects re-
lated to the problem of reasoning and mining on constrained graphs, and
overview two algorithms for the mentioned problems.

1 Introduction

Graph-based models have been widely used in several contexts as an intuitive and
yet formal way of representing several kinds of data, like, e.g., web documents,
chemical compounds, process models, behavioral patterns. Graph structures can
be exploited both for representing a given application domain, and for modelling
relationships between the involved objects, by means of constraints over the un-
derlying graph structure. In this perspective, constrained graphs are a powerful
means for representing many classes of applications requiring complex modelling
structures, and can profitably support reasoning and mining tasks.

As an example, constrained graphs are used in the modelling of workflow
processes. In Workflow Management Systems, the structure of a process is com-
monly represented by a control graph, where nodes correspond to the involved
tasks while edges represent the potential flow of work, i.e., the precedence rela-
tionships defined among the tasks. An example constrained (control flow) graph
is shown in Figure 1, for modelling a toy (OrderManagement) process for han-
dling customers’ orders. Several constraints can be specified over the control
graph, expressing, e.g., conditions for the occurrence of some nodes in the graph
in any execution. For example, some constraints in figure are the following: (i)
exactly one of the outgoing edges of node b must appear in any (execution) in-
stance including b, and (ii) if node l occurs in an instance, both its incoming
edges must appear as well in the same instance.

authenticate

client

check

stock

ask
suppliers

validate

order plan
decline
order

accept
order

fidelity

discount

fast

dispatch

prepare
bill

a

b

c

f

i

d

g

h

l

m

o

n

client

reliability

receive

order
AND

XOR

XOR

XOR

XOR

AND

OR
OR

OR

register

client

XOR

OR

OR

XOR

Fig. 1. Control flow graph for OrderManagement process.

Thus, constraint graphs model the behavior of generic processes, whose ex-
ecutions can be traced and stored into database structures. In this context, a
challenging research direction is the definition of both suitable pattern domains
and mining techniques for the underlying data. Formally, the problem of mining
constrained graphs can be formulated as follows. We are given a graph schema
WS (i.e., a graph in which both nodes and edges must satisfy some specified
constraints). An instance of a graph schema is any subgraph of WS which sat-
isfies the constraints. An example is the subgraph containing nodes a, c, b, i, g
and h in Figure 1. The subgraph describes the processing of an order which is
declined due to a failure in the validation of the order plan. Hence, for a given
pattern language L, a set of instances F and a boolean inductive query Q, we
aim at finding the inductive theory T h(F ,L, Q) = {p ∈ L|Q(F , p)}.

In this paper we describe two different pattern domains. A first case, formerly
studied in [13], raises when patterns are subgraphs of the instances. Here, induc-
tive queries can be used to formulate frequent pattern discovery problems. In
particular, one can be interested in finding the discriminant factors which char-
acterize a desired workflow configuration: essentially, this means finding frequent
patterns containing some given portions of the workflow schema (i.e., finding all
the patterns p satisfying Qf(F , p)∧Q1(F , p)∧ . . .∧Qn(F , p), where Qf (F , p) is
true if p is frequent w.r.t. F , and Qi(F , p) is true if p contains a given subgraph
gi). For example, one could be interested in knowing which activities, among the
ones described in Figure 1, are included within the frequent paths of execution
which also include node h (representing the rejection of an order). Consider, e.g.,
the following toy instances:

a
c

d
g

b
f

i
h a

c
d

g

b i
h

Notice that both instances are subgraphs of the schema shown in Figure 1, and
satisfy the constraints specified there. In addition, both the instances comply
with the requirement of containing node h. Now, the subgraph

a c d g h

frequently occurs in both instances, and is characterized by the co-occurrence of
activities c,d, g. Essentially, this means that in the modelled OrderManagement
process, the rejection of an order is often characterized by the lack of availability
of supplies. In a business intelligence perspective, this would require a better
strategy for managing the store.

The challenge in the exemplified pattern domain is the generation of the de-
sired patterns by a smart exploration of the search space, which benefits from
the presence of schema constraints.

Another interesting situation occurs when the schema WS is not known a
priori, although some instances are available and can be examined. In such a
case, inductive queries can be used to formulate and solve the mining problem
of inducing the schema. An example in this setting is the Process mining prob-
lem [12], where data collected during the enactment of a process is exploited to
reconstruct the structure of the process. In more detail, we are given a set F of
instances, and a language of patterns L, modelling graph schemata. A boolean
inductive query QP (F , p) is satisfied whenever p is a process model for F , i.e.,
whenever each instance in F is also an instance of the graph schema represented
by p. Again, many variants of the QP problem can be defined, by requiring, e.g.,
that p contains a given subgraph, or that satisfies a given constraint.

The main challenge here is devising efficient techniques to produce accurate
and yet intuitive process models. As a matter of fact, since many models, in
principle, could support a given set F of instances, a criterion could be devised
to single the ones with satisfactory modelling features. For example, it is reason-
able to require that, besides representing all the instances in F , the discovered
model has a limited description size and admits a minimal number of “spurious”
execution paths, which do not have any correspondence in F .

Objectives. In this paper, we elaborate the above described issues, by defining
a formal model for mining constrained graphs, and by illustrating some efficient
techniques for extracting patterns from graph-based data. In more detail, the
contribution of the paper can be summarized as follows. In section 2, we in-
troduce a formal framework for representing graph-based data, and classes of
constraints over such data. We discuss some complexity results in reasoning on
constrained graphs. Next, we state two mining problems, namely the mining of
constrained subgraphs in section 3, and the induction of graph-based models in
section 4. We discuss some approaches to the solution of the proposed mining
problems, and show that they can be effectively exploited to support reasoning
on constrained graphs. Throughout the paper, we exploit workflow management
as a relevant application context for constrained graphs, and show that the pro-
posed solutions suitably apply to the problem of workflow modelling.

Related Work. Mining workflow pattern is emerging as a novel field of research,
promising interesting research issues and raising challenges in workflow appli-
cations. Since it is a pioneering study, techniques for workflow mining can be

preliminary compared with several approaches proposed to mine patterns for
structured or sequential data [2, 14, 3, 25, 24]. Moreover, they have also a strong
relation with mining of graph structured data, occurring in several practical
domains such as biology, chemistry and communication networking.

Many papers on graph mining have been proposed in the last years. A first
category of studies applies greedy search to find subgraph patterns [4, 33]. These
approaches avoid the high complexity of the graph isomorphism problem, by
mining an incomplete set of characteristic subgraphs. Conversely, a complete
search for frequent subgraphs is guaranteed in WARMR, an ILP-based algo-
rithm proposed by Dehaspe and Toivonen [9]. They formulated the problem of
carcinogenesis prediction of chemical compounds with a set of grounded first or-
der predicates representing graphs and they resolved this problem by combining
ILP method with Apriori-like level wise search. Other approaches performing ei-
ther level-wise search or projection methods to mine a complete set of subgraphs
were proposed as well [17, 19, 31, 32].

In principle, many of the above approaches could be used to mine constrained
graphs. However, the adaptation of the above mentioned methods to workflow
mining is a challenging task, and it results unpractical from both the expres-
siveness and the efficiency viewpoint. Indeed, generation of patterns with such
traditional approaches does not benefit from the exploitation of the executions’
constraints imposed by the workflow schema, such as precedences among activ-
ities, synchronization and parallel executions of activities (see, e.g, [18, 29]).

In this setting, more sophisticated techniques have been successfully applied,
in order to derive formal graph models from graph instances. The first example
in the context of Workflow mining is in [1], where the main objective is the
induction of a directed graph model exhibiting a limited number of control flow
constructs.

Other more sophisticated approaches have been devised, relying, e.g., on the
notion of grammar inference [23, 5–7], or Petri Nets [29, 27, 28, 30, 8]. Starting
from workflow logs, i.e., collections of linearized graph instances, the mentioned
approaches propose algorithms for inducing complex control flow constraints.
Further approaches have been devised in [15, 16] and [26], where richer repre-
sentation languages are adopted to discover more complex graph structures. In
particular, the former approaches are devoted to the detection of redundancies in
the workflow model, while the latter discover hierarchically structured workflow
processes.

2 An Abstract Model for Constrained Graphs

A significant amount of research has been done in the specification of mecha-
nisms for modelling processes; in particular, several formalisms have been pro-
posed in the area of process modelling for software engineering (see, e.g. [10]
for an overview of different proposals). The most widely adopted formalism is
the control flow graph, in which a process is represented by a labelled directed
graph whose nodes correspond to the tasks to be performed, and whose arcs de-

scribe the precedences among them. More specifically, the control flow graph of
a process P is a tuple CF(P) = 〈A, E, a0, F 〉, where A is a finite set of activities,
E ⊆ (A − F) × (A − {a0}) is a relation of precedences among activities, a0 ∈ A
is the starting activity, F ⊆ A is the set of final activities.

Any connected subgraph I = 〈AI , EI〉 of the control flow graph, such that
a0 ∈ AI and AI∩F �= ∅ is a potential instance of P . In order to model restrictions
on the possible instances, the description of a constrained graph is often enriched
with local and global constraints, which express further relationships among the
activities appearing in the control graph.

In particular, local constraints specify local properties of a given activity, with
respect to its adjacents. For instance, possible local constraints are that an ac-
tivity either can be executed only after all its predecessors are completed.

Most of the approaches proposed in the literature, even though with possibly
different syntaxes, assume that the local constraints can be expressed in terms of
three functions IN, OUTmin, and OUTmax assigning to each node a natural number
(A 	→ N) as follows:

– ∀a ∈ A − {a0}, 0 < IN(a) ≤ InDegree(a);
– ∀a ∈ A − F , 0 < OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a);
– IN(a0) = 0, and ∀a ∈ F , OUTmin(a) = OUTmax(a) = 0.

where InDegree(a) = |{e = (b, a)}|,OutDegree(a) = |{e = (a, b)}| and e ∈ E.
As for the semantics, an activity a can start as soon as at least IN(a) of its

predecessor activities have been completed. Two typical cases are: (i) if IN(a) =
InDegree(a) then a is an and-join activity, for it can be executed only after all of
its predecessors are completed, and (ii) if IN(a) = 1 then a is an or-join activity,
for it can be executed as soon as one of its predecessors is completed. Once
finished, an activity a activates one non-empty subset of its outgoing arcs with
cardinality between OUTmin(a) and OUTmax(a). If OUTmax(a) = OutDegree(a)
then a is a full fork and if also OUTmin(a) = OUTmax(a) then a is a deterministic
fork (also known as ”and-split”), for it activates all of its successor activities.
Finally, if OUTmax(a) = 1 then a is an exclusive fork (also called xor-split in the
literature), for it activates exactly one of its outgoing arcs. Figure 1 shows an
example schema containing the above mentioned constraints.

Global constraints specify relationships among not necessarily connected ac-
tivities. Such constraints are richer in nature and their representation strongly
depends on the particular application domain of the modelled process. Thus,
they are often expressed using complex formalisms. Here, we assume that global
constraints are propositional formulas expressing relationships among the nodes
in A and edges in E. As an example, the constraint f → ¬m states that whenever
activity f occurs, activity m cannot occur. This constraint, referred to Figure 1,
has the intuitive meaning that fidelity discounts cannot be applied to new clients.

For a generic process P , a workflow schema for P , denoted by WS(P), is a
tuple 〈CF(P), CL(P), CG(P)〉, where CF(P) is the control flow graph of P , and
CL(P) and CG(P) are sets of local and global constraints, respectively.

Given a subgraph I of CF(P) and a constraint c in CL(P) ∪ CG(P), we write
I |= c whenever I satisfies c in the associated semantics. Moreover, if I |= c for

all c in CL(P) ∪ CG(P) and contains both the starting activity a0 and a final
activity in F , then I is called an instance of WS(P), denoted by I |= WS(P).
When the process P is clear from the context, a workflow schema will be simply
denoted by WS = 〈CF , CL, CG〉.

Example 1. The following is an example instance of the workflow process WS
shown in Figure 1.

a
c

d
g

b
f

i

h

Notice how each node appearing within the instance satisfies the constraints
specified by WS. �

Checking whether a workflow schema admits a successful execution is in-
tractable.

Proposition 1 ([13]). Let WS = 〈CF , CL, CG〉 be a workflow schema. Then,
deciding whether there exists an instance I is NP-complete, but the problem
becomes P-complete if all nodes are full-forks. ��

The above proposition has a strong negative impact: we cannot statically
induce relevant properties of a workflow schema. This justifies the adoption
of data mining techniques, which in principle allow to dynamically induce the
desired properties from the instances resulting from past executions. Precisely,
we assume that each instance is properly stored by the workflow management
system in the log file, which can be seen as a set F = {I1, ..., In} such that
WS |= Ii, for each 1 ≤ i ≤ n. In the following, we denote by I(WS) the set of
all the instances of a given workflow WS.

Deciding whether a subgraph is an instance of WS is tractable although de-
ciding the existence of an instance (i.e., whether I(WS) �= ∅) is not because of
Proposition 1.

Proposition 2 ([13]). Let WS = 〈CF , CL, CG〉 be a workflow schema and I be
a subgraph of CF. Then, deciding whether I is an instance of WS can be done
in polynomial time in the size of E. ��

Usually, logs are stored by means of traces. A workflow trace s over A is a
string in A∗, representing an instance . Given a trace s, we denote by s[i] the i-th
task in the corresponding sequence, and by lenght(s) the length of s. The set of
all the tasks in s is denoted by tasks(s) =

⋃
1≤i≤lenght(s) s[i]. Hence, a workflow

log for WS(P), denoted by LP , is a multiset of traces: LP = [s | s ∈ A∗].
Let s be a trace in LP , WS be a workflow schema, and I = 〈AI , EI〉 be an

instance of WS. Then, s is compliant with WS through I, denoted by WS |=I s,
if s is a topological sort of I, i.e., s is an ordering of the activities in AI s.t. for

each (a, b) ∈ EI , i < j where s[i] = a and s[j] = b. Moreover, s is compliant with
WS, denoted by WS |= s, if there exists I with WS |=I s. Finally, a weaker
notion of compliance, which does not rely on the existence of an instance I, can
be defined as WS � s. The latter holds whenever the order of appearance of the
activities in s is compatible with the constraints specified in WS.

Example 2. The following table reports example log traces for the process WS
shown in Figure 1.

s1 : acdbfgih s5 : abicglmn s9 : abficgln s13 : abcidglmn

s2 : abficdgh s6 : acbiglon s10 : acgbfilon s14 : acdbiglmn

s3 : acgbfih s7 : acbgilomn s11 : abcfdigln s15 : abcdgilmn

s4 : abcgiln s8 : abcfgilon s12 : acdbfigln s16 : acbidgln

By considering the instance I of example 1, we can observe that WS |=I s1. �

Proposition 3. Let WS = 〈CF , CL, CG〉 be a workflow schema and s be a trace
of CF . Then, deciding whether WS |= s is NP-complete, but deciding whether
WS � s and, given an instance I, whether WS |=I s can be done in polynomial
time in the size of E.

Proof. We first show that deciding whether WS |= s is NP-complete. Mem-
bership in NP is trivial. For the hardness, recall that, given a Boolean formula
Φ over variables X1, ..., Xm the problem of deciding whether Φ is satisfiable is
NP-complete. W.l.o.g. assume Φ to be in conjunctive normal form. Then, we
define a workflow schema WS(Φ) = 〈CF , CL, CG〉, where CF = 〈A, E, ao, {Sat}〉,
such that A consists of an initial activity a0, of the activities Xi, TXi, FXi, Bi

for each 0 < i ≤ m, of the activities Cj for each distinct clause j of Φ, and the
activity B, and of a final state Sat . The set of local constraints CL and depen-
dencies in E is defined as follows. Let IN(Sat) = n (where n is the number of
clauses contained in Φ), and IN(a) = 1 for any other activity a �= a0. Moreover:

– For each Xi, (Xi, TXi), (Xi, FXi), (Bi, TXi), (Bi, FXi), (TXi, B), and
(FXi, B) are in E, with constraints OUTmin(Xi) = OUTmax(Xi) = 1 and
OUTmin(Bi) = OUTmax(Bi) = 1. Thus, each time either the activity Xi or Bi

is executed, it is required to make a choice between its possible successors;
note that in our encoding, TXi means that Xi is true, while FXi means that
Xi is false. Finally the arcs (a0, Xi) and (ao, Bi) are in E, and constraints
OUTmin(a) = OUTmax(a) = m + m are added.

– For each Cj , we have that (Cj ,Sat) is in E, with constraints OUTmin(Sat) =
OUTmax(Sat) = 1. Moreover, we have (TXi, Cj) ∈ E in the case Xj appears
in the clause Cj , while we have (FXi, Cj) ∈ E in the case Xi appears negated
in the clause Cj . Finally, for each node a ∈ {TXi, FXi}, OUTmin(a) = 1 and
OUTmax(a) = OutDegree(a) − 1.

Global constraints in CG are defined as follows. For each pair of activities of
the form Xi and Bi, there is a constraint stating that the arc (Bi, TXi) (resp.
(Bi, FXi)) cannot occur in the same execution with the arc (Xi, TXi) (resp.

(Xi, FXi)). Moreover, for each activity of the form Xi, there is a constraint
stating that arcs of the form (TXi, Cj) (resp. (FXi, Cj)) cannot occur in the
same execution with arcs (TXi, B) (resp. (FXi, B)); finally, for each activity Xi,
there is a constraint stating that an arc of the form (Bi, TXi) (resp. (Bi, FXi))
implies the activation of the arc (TXi, B) (resp. (FXi, B)).

Consider now a trace s(Φ) = a0B1, ..., BmX1...XmBC1...CmSat . Then, it is
easy to see that WS |= s if and only if Φ is satisfiable.

To conclude the proof observe that (1) in order to decide whether WS � s it is
sufficient to tests the topological relationships locally induced by s, and that (2)
in order to decide whether WS |=I s it is sufficient to simulate the enactment
of I. Both the above tasks are feasible in polynomial time. ��

3 Mining Frequent Patterns

In this section we address the problem of mining connected frequent patterns
(i.e., subgraphs) in workflow instances. Let us assume that a workflow schema
WS = 〈CF , CL, CG〉 and a multiset of instances F = {I1, ..., In} are given. A
graph p = 〈Ap, Ep〉 ⊆ CF is a F-pattern (cf. F |= p) if there exists I = 〈AI , EI〉 ∈
F such that Ap ⊆ AI and p is the subgraph of I induced by the nodes in Ap. In
the case F = I(WS), the subgraph is simply said to be a pattern.

Let supp(p) = |{I ∈ F|I |= p}|/|F|, be the support of a F -pattern p. Then,
given a real number σ, we consider the following problem:

FCPD(σ): Frequent Connected Pattern Discovery, i.e., finding all the connected
patterns whose support is greater than σ.

A naive algorithm for mining frequent patterns can generate directly connected
subgraphs, and then test in polynomial time whether it is indeed an instance of
WS. A different approach is based on the idea of reducing the number of patterns
to generate. To achieve this aim, we can only consider connected subgraphs p
which are “closed” w.r.t. local and global constraints, i.e., such that p |= c for all
c ∈ CL ∪ CG. We shall denote such graphs weak patterns, or simply w -patterns.

Example 3. Let us consider the workflow graph of Figure 1, and the following
subgraphs.

a c

p1

a

b

c

p2

l

p3

g

i l

p4

p1 and p3 are not w -pattern: indeed, a is a deterministic fork (thus triggering the
occurrence of node b), whereas l is an and-join (thus triggering the occurrence
of both i and g). Notice that both p2 and p4 are instead w -patterns, since each
constraint involving the contained nodes is satisfied. �

The following proposition characterizes the complexity of recognition for the
three notions of pattern; in particular, it states that testing whether a graph is
a w -pattern can be done very efficiently in deterministic logarithmic space on
the size of the graph WS.

Proposition 4 ([13]). Let p ⊆ CF . Then

1. deciding whether p is a pattern is NP-complete.
2. given a multiset F of instances, deciding whether p is an F-pattern or

whether p is a w-pattern is computable in polynomial time in the size of
F . ��

It turns out that the notion of weak pattern is the most appropriate from the
computational point of view. Moreover, working with w -patterns rather than
F -patterns is not an actual limitation, since each frequent F -pattern is bounded
by w -patterns, as the following result states.

Lemma 1. Let p be a frequent F -pattern. Then i) there exist a frequent w -
pattern p′ such p ⊆ p′, and ii) each weak pattern p′ ⊆ p is a frequent F -pattern.

��

We stress that a weak pattern is not necessarily an F -pattern nor even a
pattern. We shall use weak patterns to optimize the search space. The algorithm
exploited uses a levelwise theory. Roughly speaking, we incrementally construct
frequent weak patterns, by starting from frequent “elementary” weak patterns
(defined below), and by extending each frequent weak pattern using two basic
operations: adding a frequent arc and merging with another frequent elementary
weak pattern. The correctness follows from the results of Proposition 1, and from
the observation that the space of all connected weak patterns constitutes a lower
semi-lattice, with a particular precedence relation ≺, defined next.

The elementary weak patterns, from which we start the construction of fre-
quent patterns, are obtained as the deterministic closure of single nodes. A pat-
tern is an elementary w -pattern (cf. ew -pattern) for a node a if it is the minimal
(w.r.t. set inclusion) w -pattern containing a. The set of all ew -patterns is de-
noted by EW. Moreover, let p be a weak pattern, then EWp denotes the set of
the elementary weak patterns contained in p. Note that given an ew -pattern e,
EWe is not necessarily a singleton, for it may contain other ew -patterns. More-
over, given a set E′ ⊆ EW, Compl (E′) = EW −

⋃
e∈E′ EWe contains all the

elementary patterns which are neither in E′ nor contained in some element of
E′.

We now introduce a precedence relation ≺ among connected weak patterns.
First of all, let us denote by E⊆ the subset of arcs in WS whose source is not
a deterministic fork, i.e., E⊆ = {(a, b) ∈ E | OUTmin(a) < OutDegree(a)}. Given
two connected w -patterns, say p = 〈Ap, Ep〉 and p′ = 〈Ap′ , Ep′〉, p ≺ p′ if and
only if:

a) Ap = Ap′ and Ep′ = Ep ∪ {(a, b)}, where (a, b) ∈ E⊆ −Ep and OUTmax(a) >
OutDegreep(a) (i.e., p′ can be obtained from p by adding an arc), or

b) there exists p′′ ∈ Compl (EWp) such that p′ = p ∪ p′′ ∪X , where X is either
empty if p and p′′ are connected or contains exactly an edge in E⊆ with
endpoints in p and p′′ (i.e., p′ is obtained from p by adding an elementary
weak pattern and possibly a connecting arc).

Note that ⊥≺ e, for each e ∈ EW.

Example 4. With reference to the workflow graph of Figure 1, let us consider
the subgraphs shown below:

g
p1

h
p2

g
i l

p3

g
i l

h
p4

The subgraphs p1, p2 and p3 are elementary patterns: indeed, p1 is the deter-
ministic closure of g and p2 is the deterministic closure of h, whereas p3 can be
obtained from l. Also, notice that p1 ⊂ p3. p4 is not an elementary pattern, as no
node can generate it. Notice that p2 ≺ p4 and p3 ≺ p4, since p4 = p2∪p3∪{(g, h)}.

�

It can be shown that all the connected weak patterns of a given workflow
schema can be constructed by means of a chain over the ≺ relation. As a con-
sequence, it turns out that the space of all connected weak patterns is a lower
semi-lattice w.r.t. the precedence relation ≺. The algorithm w-find, reported in
Figure 2, exploits an apriori-like exploration of this lower semi-lattice.

At each stage, the computation of Lk+1 (steps 5-14) is carried out by extending
any pattern p generated at the previous stage (p ∈ Lk), in two ways: by adding
frequent edges in E⊆ (addFrequentArc function); or by adding an elementary
weak patterns (addEWFrequentPattern function).

4 Mining Process Models

In this section we address the problem of inducing a model for a given process,
based on data related to past executions. Let us assume that a workflow log
LP is given for a process P . In general, a process mining task consists in dis-
covering a workflow schema WS(P), expressed through a suitable constrained
graph, which describes the traces in LP . We are interested in devising a general
approach which is independent of the particular syntax adopted for representing
the global constraints. The solution we propose consists in discovering a set of
alternative schemata having no global constraints, but collectively modelling the
different behavioral patterns, instead of a single schema with global constraints
explicitly expressed. To this purpose, we introduce the notion of disjunctive
workflow schema.

A disjunctive workflow schema for a given process P , denoted by WS∨(P),
is a set {WS1, ...,WSm} of workflow schemata for P , with WSj = 〈CF j , Cj

L, ∅〉,
for 1 ≤ j ≤ m. The size of WS∨(P), denoted by |WS∨(P)|, is the number of

Input: A workflow Graph WS, a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 L0 := {e|e ∈ EW , e is frequent w.r.t. F};
2 k := 0, R := L0;
3 FrequentArcs := {(a, b)|(a, b) ∈ E⊆, 〈{a, b}, {(a, b)}〉 is frequent w.r.t. F};
4 E⊆

f := E⊆ ∩ FrequentArcs;

5 repeat
6 U := ∅;
7 forall p ∈ Lk do begin
8 U := U ∪ addFrequentArc(p);
9 forall e ∈ Compl(EW p) ∩ L0 do
10 U := U ∪ addFrequentEWPattern(p, e);
11 end
12 Lk+1 := {p|p ∈ U, p is frequent w.r.t. F};
13 R := R ∪ Lk+1;
14 until Lk+1 = ∅;
15 return R;

Function addFrequentEWPattern(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;
p′ := 〈Ap ∪ Ae, Ep ∪ Ee〉;
if p′ is connected , then return p′ else return addFrequentConnection(p′, p, e);

Function addFrequentConnection(p′ = 〈Ap′ , Ep′ 〉, p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

S := ∅
forall frequent (a, b) ∈ E⊆

f − Ep s.t. (a ∈ Ap, b ∈ Ae) ∨ (a ∈ Ae, b ∈ Ap) do begin

q :=
�
Ap′ , Ep′ ∪ (a, b)

�
;

if WS |= q then S := S ∪ {q};
end
return S

Function addFrequentArc(p = 〈Ap, Ep〉): pattern;
S := ∅
forall frequent (a, b) ∈ E⊆

f − Ep s.t. a ∈ Ap, b ∈ Ap do begin

p′ := 〈Ap, Ep ∪ (a, b)〉
if WS |= p′ then S := S ∪ {p′};

end
return S

Fig. 2. Algorithm w-find(F ,WS)

workflow schemata it contains. An instance of any WSj is also an instance of
WS∨, denoted by WS∨ |= I. Moreover, a trace s which is compliant with any
WSj is also compliant with WS∨, denoted by WS∨ |= s.

Hence, givenLP , we aim at discovering a disjunctive schema WS∨ as “close” as
possible to the actual unknown schema WS(P) that generated the log, according
to the following soundness and completeness notions. We define soundness of
WS∨ w.r.t. LP , the percentage of instances having corresponding traces in the
log, i.e.,

soundness(WS∨,LP) =
|{I | WS∨ |= I ∧ ∃s ∈ LP s.t. WS∨ |=I s}|

|{I | WS∨ |= I}|

The completeness of WS∨ w.r.t. LP , is instead the percentage of traces that are
compliant with some trace in the log, ie.,

completeness(WS∨,LP) =
|{s | s ∈ LP ∧WS∨ � s}|

|{s | s ∈ LP }|

Thus, given two real numbers, namely α and σ, between 0 and 1, we say an in-
duced schema WS∨ is α-sound w.r.t. LP , if soundness(WS∨,LP) ≤ α, whereas
WS∨ is σ-complete w.r.t. LP , if completeness(WS∨,LP) ≥ σ.

Notice that, for any value of α and σ, there always exists a trivial α-sound
and σ-complete disjunctive schema WS∨, consisting in the union of exactly one
workflow (without global constraints) modelling each of the instances in LP .
However, such model is not a syntectic view of the process P , for its size being
|WS∨| = |LP |. We thus introduce a bound on the size of WS∨.

Then, given a workflow log LP for the process P , a real number σ and a
natural number m, we consider the following problem:

MPD(P, σ, m): Maximal Process Discovery, i.e., find a σ-complete disjunctive work-
flow schema WS∨, s.t. |WS∨| ≤ m and soundness(WS∨,LP) is maximal.

Proposition 5 ([11]). MPD(P ,σ,m) is an NP-complete optimization problem
whose set of feasible solutions is not empty. ��

Due to the above intractability result, the MPD problem is tackled with a
greedy approach: in practice, we consider the variant PD problem, which con-
sists in finding a σ-complete disjunctive schema with |WS∨| ≤ m, which is as
sound as possible (i.e., a local optimum). In the rest of the section, we propose
an efficient approach for solving the PD problem. The approach mainly relies
on performing an iterative partitioning of the traces in the log, in order to find
clusters of executions with a similar and unexpected (w.r.t. the local properties)
behavior. Starting with a preliminary schema, which only accounts for the de-
pendencies among the activities of P , the model is iteratively and incrementally
refined by computing a specific workflow schema for each new cluster of traces.
The schemata so obtained constitute a disjunctive workflow schema, which in-
creases its soundness at each refinement step, still preserving its completeness.
The algorithm exploits a “flat”, relational representation of the traces obtained
by projecting the instances on a suitable set of properly defined features.

The approach is encoded in the algorithm ProcessDiscover, shown in Fig-
ure 3, which computes a disjunctive schema WS∨, taking as input a log L and
three thresholds m, σ and maxFeatures (which is an upper bound to the number
of features that can be induced at each refinement step).

Notice that for the preliminary schema a control flow graph CFσ, expressing a
minimal set of precedences with at least a given support σ, is computed through
the procedure minePrecedences [1, 28]. Each workflow schema WSj

i , eventually
inserted in WS∨, is identified by the number i of refinements needed, and an
index j distinguishing the schemata at the same refinement level. Moreover, we
denote by L(WSj

i) the set of traces in the cluster defined by WSj
i . Notice that

initially WS1
0, containing all the traces in LP , is put in WS∨, and in Step 3 we

refine the model by mining some local constraints, too.
At each step, function refineWorkflow is applied to a schema WSj

i ∈ WS∨,
chosen according a greedy heuristic: WSj

i is the least sound schemata among
the ones already discovered.

Input: A log LP , a real number σ, two natural numbers m and mF
Output: A disjunctive workflow schema WS∨ (a solution of PD(P ,σ,m)
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp);

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0);
3 WS∨ := WS1

0; //Start clustering with the dependency graph only
4 while |WS∨| < m do

5 WSj
i :=leastSound(WS∨);

6 WS∨ := WS∨ − {WSj
i};

7 refineWorkflow(i,j);
8 end while
9 return WS∨;

Procedure refineWorkflow(i: step, j: schema);

1 F :=identifyRelevantFeatures(L(WSj
i), σ, mF, CFσ);

2 R(WSj
i) :=project(L(WSj

i),F);
3 k := |F|;
4 if k > 1 then

5 j := max{j | WSj
i+1 ∈ WS∨};

6 〈WSj+1
i+1 , ...,WSj+k

i+1 〉 := k -means(R(WSj
i));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));

10 mineLocalConstraints(WSh
i+1);

11 end for
12 else //Leaf of the tree

13 WS∨ = WS∨ ∪ {WSj
i};

14 end if ;
Function identifyRelevantFeatures(L: log, σ: threshold, mF : max nr. of features, CFσ : control flow graph):

a set of minimal discriminant rules
1 L2 := {[ab] | (a, b) ∈ Eσ};
2 k := 1, R := L2, F := ∅;
3 repeat
4 M := ∅; k := k + 1;
5 forall [ai...aj] ∈ Lk do
6 forall [ajb] ∈ L2 do
7 if [ai+1...aj] ����σ b is not in F then
8 M := M ∪ [ai...ajb];
9 end for
10 forall p ∈ M of the form [ai...ajb] do
11 if p is σ-frequent in L then Lk+1 := {p};
12 else F := F ∪ {[ai...aj] ����σ b};
14 F := {[ai...aj] ����σ b};
15 end if
13 end for
14 R := R ∪ Lk+1;
15 until Lk+1 = ∅;
16 return mostDiscriminant(F ,mF);

Function mostDiscriminantFeatures(F : set of discriminant rules, mF : max nr. of features): set of discriminant
rules;

1 S′ := L; F ′ := ∅;
2 do
3 let φ = argmaxφ′∈F |w(φ′, S′)|;
4 F ′ := F ′ ∪ {φ};
5 S′ := S′ − w(φ, S′);
6 while (|S′|/|LP | > σ) and (F ′ < mF);
7 return F ′;

Fig. 3. Algorithm ProcessDiscover

The function splits the traces of WSj
i into k clusters, which are assigned to

k distinct new schemata, WSj+1
i+1 , ...,WSj+k

i+1 (where j is the maximum index of
the schemata in WS∨ with level i + 1), which are put in WS∨. For each schema

a control flow graph and a set of local constraints are derived, which suitably
model the associated traces.

The algorithm ProcessDiscover converges in at most m steps, and exhibits
the following interesting property.

Lemma 2. Given a disjunctive schema WS∨, with WSj
i ∈ WS∨, the disjunc-

tive workflow schema WS∨
+, obtained by refining WSj

i through refineWorkflow(i,j),
is such that soundness(WS∨

+) ≥ soundness(WS∨). ��

The clustering of the log traces strongly relies on the procedures identifyRel-
evantFeatures and project. The former finds a set F of relevant features [21, 20,
22], whereas the latter projects the traces into a vectorial space whose compo-
nents are, in fact, the mined features.

We formalize the key concept of relevant feature through the notion of discrim-
inant rule. Let L be a set of traces, CFσ be a mined control flow, for threshold σ,
and Eσ be the edge set of CFσ. Then a sequence [a1...ah] of tasks is σ-frequent
in L if |{s ∈ L | a1 = s[i1], ..., ah = s[ih] ∧ i1 < ... < ih}|/|L| ≥ σ. We say
that [a1...ah] σ-precedes a in L, denoted by [a1...ah] →σ a, if both [a1...ah] and
[a1...aha] are σ-frequent in L.

A discriminant rule (feature) φ is an expression of the form [a1...ah] ����σ a,
s.t. (i) [a1...ah] is σ-frequent in L, (ii) (ah, a) ∈ Eσ, and (iii) [a1...ah] →σ a does
not hold. Moreover, φ is minimal if (iv) there is no b, s.t. [a1...ah] ����σ b and
[b] →σ a, and (v) there is no j, s.t. j > 1 and [aj ...ah] ����σ a.

Example 5. In process OrderManagament, [fil] ����.3 m is a minimal discrimi-
nant rule, prescribing that fidelity discounts are never applied for new clients.
Notice that [dgl] ����.3 o is a minimal discriminant rule as well. �

Again, the identification of the set F of discriminant rules can be carried out
by a level-wise algorithm, as described in Figure 3.

The algorithm selects an optimal subset of features, with cardinality less or
equal to maxFeatures, by exploiting the mostDiscriminantFeatures function,
which works as follows. Let φ be a discriminant rule of the form [ai, ..., aj] ����σ b,
then the witness of φ in L, denoted by w(φ,L), is the set of logs in which
the pattern [ai, ..., aj] occurs. Then, the set of the most discriminant feature
is computed through the heuristics of greedily selecting a feature φ covering
the maximum number of traces, among the ones (S′) not covered by previous
selections.

5 Conclusions

In this paper we have introduced the problem of mining constrained graphs,
with particular reference to the case of workflow systems. From an application
viewpoint, the analysis of such models of execution can help in providing facilities
for the human system administrator to monitor the actual behavior of many
process models.

The paper proposes two distinct mining problems, and an overview of suitable
solutions for such problems. In the context of inductive databases, the proposed
problems raise interesting challenges, since the pattern languages introduced are
worth even more complex mining tasks in which sophisticated constraints on
the mining results can be specified. For example, one could be interested which
discriminant factors characterize the failure or the success in the executions, or
which is the choice that more frequently had led to a desired final configuration
(e.g., to the acceptance of the order).

Interestingly, the techniques discussed in the previous sections are the adap-
tation of traditional learning techniques to a more structured domain in which
background knowledge is available, and can be exploited for a smarter explo-
ration of the search space. Indeed, frequent pattern discovery is essentially the
adaptation of the apriori algorithm [2] to the case of workflow systems. More-
over, the Process Mining problem can be seen as a special case of inductive logic
programming, in which the task is the mining of a set of consistent and com-
plete clauses modelling the positive cases, and the latter correspond to log traces.
Both the approaches presented in this paper have been extensively studied from
an experimental point of view in [13, 12], thus demonstrating their effectiveness
w.r.t. traditional approaches which do not properly exploit the available domain
knowledge.

In this context, a challenging research direction is to extend the proposed
techniques in a full multirelational setting. Indeed, the proposed model is essen-
tially a propositional model, for it assumes a simplification of the constrained
graphs in which many real-life details are omitted. However, we believe that
the model can be easily updated to cope with more complex constraints, such
as time constraints, pre-conditions and post-conditions, and rules for exception
handling.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In Proc. 6th Int. Conf. on Extending Database Technology (EDBT’98), pages
469–483, 1998.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of the 20th Int’l Conference on Very Large Databases, pages 487–499, 1994.

3. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int. Conf.
on Data Engineering (ICDE95), pages 3–14, 1995.

4. D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description
Length and Background Knowledge. Journal of Artificial Intelligence Research,
1(1):231–255, 1994.

5. J.E. Cook and A.L. Wolf. Automating process discovery through event-data analy-
sis. In Proc. 17th Int. Conf. on Software Engineering (ICSE’95), pages 73–82, 1995.

6. J.E. Cook and A.L. Wolf. Event-based detection of concurrency. In Proc. 6th Int.
Symposium on the Foundations of Software Engineering (FSE’98), pages 35–45,
1998.

7. J.E. Cook and A.L. Wolf. Software process validation: quantitatively measuring
the correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol.,
8(2):147–176, 1999.

8. A.K.A de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process mining: Extending the a-algorithm to mine short loops. Technical
report, University of Technology, Eindhoven, 2004. BETA Working Paper Series,
WP 113.

9. L. Dehaspe and H. Toivonen. Discovery of Frequent DATALOG Patterns. Data
Mining and Knowledge Discovery, 3(1):7–36, 1999.

10. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2):119–153, 1995.

11. G.Greco, A.Guzzo, G.Manco, and D. Saccà. Mining frequent instances on work-
flows. In Proc. 7th Pacific-Asia Conference (PAKDD’03), pages 209–221, 2003.

12. G.Greco, A.Guzzo, L.Pontieri, and D. Saccà. Mining expressive process models
by clustering workflow traces. In Proc. 8th Pacific-Asia Conference (PAKDD’04),
pages 52–62, 2004.

13. G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and reasoning on workflows.
IEEE Trans. on Data and Knowledge Eng., 17(4):519–534, 2005.

14. J. Han, J. Pei, and Y. Yi. Mining frequent patterns without candidate generation.
In Proc. Int. ACM Conf. on Management of Data (SIGMOD’00), pages 1–12, 2000.

15. J. Herbst. Dealing with concurrency in work?ow induction. In Procs. European
Concurrent Engineering Conference, 2000.

16. J. Herbst and D. Karagiannis. Integrating machine learning and workflow man-
agement to support acquisition and adaptation of workflow models. Journal of
Intelligent Systems in Accounting, Finance and Management, 9:67–92, 2000.

17. A. Inokuchi, T. Washi, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. 4th European Conf. on Principles
of Data Mining and Knowledge Discovery, pages 13–23, 2000.

18. P. Koksal, S.N. Arpinar, and A. Dogac. Workflow history management. SIGMOD
Recod, 27(1):67–75, 1998.

19. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. IEEE Int.
Conf. on Data Mining (ICDM’01), pages 313–320, 2001.

20. H. Motoda and H. Liu. Data reduction: feature selection. Handbook of data mining
and knowledge discovery, pages 208–213, 2002.

21. N.Lesh, M.J. Zaki, and M.Ogihara. Mining features for sequence classification.
In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD’00), pages 342–346, 1999.

22. B. Padmanabhan and A. Tuzhilin. Small is beautiful: discovering the minimal
set of unexpected patterns. In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD’00), pages 54–63, 2000.

23. R. Parekh and V. Honavar. Grammar Inference, Automata Induction and Lan-
guage Acquisition. In Handbook of Natural Language Processing. Marcel Dekker,
2000.

24. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-structure
mining of frequent patterns in large databases. In Proc. IEEE Int. Conf. on Data
Mining (ICDM’01), pages 441–448, 2001.

25. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Pre-
fixspan: Mining sequential patterns by prefix-projected growth. In Proc. IEEE Int.
Conf. on Data Engineering (ICDE’2001), pages 215–224, 2001.

26. Guido Schimm. Mining most specific workflow models from event-based data.
Business Process Management, pages 25–40, 2003.

27. W.M.P. van der Aalst and B.F. van Dongen. Discovering workflow performance
models from timed logs. In Proc. Int. Conf. on Engineering and Deployment of
Cooperative Information Systems (EDCIS 2002), pages 45–63, 2002.

28. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G.Schimm, and
A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

29. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

30. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering (TKDE). To appear.

31. X. Yan and J. Han. gSpan: Graph-based substructure pattern pining. In Proc.
IEEE Int. Conf. on Data Mining (ICDM’02), 2001. An extended version appeared
as UIUC-CS Tech. Report: R-2002-2296.

32. X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc.
ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD’03), pages 286–
295, 2003.

33. K. Yoshida, H. Motoda, and N. Indurkhya. Graph- based induction as a unified
learning framework. Journal of Applied Intel., 4:297–328, 1994.

