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1 DEIS, University of Calabria, Via Pietro Bucci 41C, 87036 Rende, Italy
2 ICAR, CNR, Via Pietro Bucci 41C, 87036 Rende, Italy

{ggreco,guzzo}@si.deis.unical.it, {pontieri,sacca}@icar.cnr.it

Abstract. We propose a general framework for the process mining problem which
encompasses the assumption of workflow schema with local constraints only, for it
being applicable to more expressive specification languages, independently of the
particular syntax adopted. In fact, we provide an effective technique for process
mining based on the rather unexplored concept of clustering workflow executions,
in which clusters of executions sharing the same structure and the same unexpected
behavior (w.r.t. the local properties) are seen as a witness of the existence of global
constraints.
An interesting framework for assessing the similarity between the original model
and the discovered one is proposed, as well as some experimental results evidenc-
ing the validity of our approach.

1 Introduction

Even though workflow management systems (WfMS) are more and more utilized in
enterprises, their actual impact in automatizing complex process is still limited by the
difficulties encountered in the designing phase. In fact, processes have complex and often
unexpected dynamics, whose modelling requires expensive and long analysis which may
eventually result unviable under an economic viewpoint.

Recent research faced this problem, by exploiting some strategies, called process
mining techniques, for using the information collected during the enactment of a process
not yet supported by a WfMS, such as the transaction logs of ERP systems like SAP,
in order to derive a model explaining the events recorded. Then, the output of these
techniques, i.e., the “mined” synthetic model, can be profitably used to (re)design a
detailed workflow schema, capable of supporting automatic enactments of the process.

Several approaches for process mining have been proposed in the literature (see,
e.g., [1,16,4,12]), that aim at reconstructing the structure of the process, by exploiting
graphical models based on the notion of control flow graph. This is an intuitive way of
specifying a process through a directed graph, where nodes correspond to the activities
in the process and edges represent the potential flow of work, i.e., the relationships of
precedence among the activities.

However, despite its intuitiveness, the control flow completely lacks in the ability of
formalizing complex global constraints on the executions, which often occurs while
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modelling real scenarios, for it being able to prescribe only local constraints in terms of
relationships of precedence.

In this paper, we extend previous approaches to process mining, by proposing an
algorithm which is able to discover not only the control flow of a given process, but also
some interesting global constraints, in order provide the designer with a refined view of
the process. The main contribution are as follows.

In Section 2, we formalize the process model discovery problem, in a context in which
the target workflow schema may be enriched with some global constraints, denoted by
CG. In order to decouple the approach from the particular syntax adopted for expressing
CG, we exploit the observation that each global constraint leads to instances with a
specific structure (short. pattern); then, a workflow schema WS∨, accounting for global
constraints, is the union of several schemas WS1, ...,WSk (without global constraints),
each one supporting the execution of one pattern, only.

Different patterns of executions (and, hence, WS∨) are identified by means of an
algorithm for clustering workflow traces, presented in Section 3, which is based on the
projection of the traces on a suitable set of properly defined features. The approach is
similar in the spirit to the proposals of clustering sequences using frequent itemsets,
but technically more complex, for it deriving a hierarchical clustering. The theoretical
properties of the algorithm are investigated as well.

In Section 3.1, we propose a level-wise algorithm for the identification of the set of
features F for the clustering, and we study the problem of selecting the most ‘represen-
tative’ subset of F , by showing its intrinsic difficulty. Therefore, we propose a greedy
heuristic for quickly computing a set of features approximating the optimal solution.

Finally, we experiment an implementation of the proposed technique, by showing its
scalability. An interesting framework for assessing the similarity between the original
model and the discovered one is proposed in Section 4, thus, providing a quantitative
way for testing the validity of the approach.

2 Formal Framework

In this section we formalize the mining problem addressed in the paper, which can be
roughly described as the problem of (re)constructing a workflow model of an unknown
process P , on the basis of log data related to some executions of the process.

The control flow graph of a process P is a tuple CF(P ) = 〈A, E, a0, F 〉, where A is
a finite set of activities, E ⊆ (A − F ) × (A − {a0}) is a relation of precedences among
activities, a0 ∈ A is the starting activity, F ⊆ A is the set of final activities.

Any connected subgraph I = 〈AI , EI〉 of the control flow graph, such that a0 ∈ AI

and AI ∩ F �= ∅ is a potential instance of P . In order to model restrictions on the
possible instances, the description of the process is often enriched with some additional
local or global constraints, requiring, e.g., that an activity must (or may not) directly (or
indirectly) follow the execution of a number of other activities.

For instance, local constraints are that an and-join activity can be executed only after
all its predecessors are completed, and that an or-join activity can be executed as soon
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as one of its predecessors is completed. Other examples are than an and-split activity
activates all of its successor activities, while a xor-split activates exactly one of its
outgoing arcs.

Global constraints are, instead, richer in nature and their representation strongly de-
pends on the particular application domain of the modelled process. Thus, they are often
expressed using other complex formalisms, mainly based on a suitable logic with an
associated clear semantics.

Let P be a process. A workflow schema for P , denoted by WS(P ), is a tuple
〈CF(P ), CL(P ), CG(P )〉, where CF(P ) is the control flow graph of P , and CL(P )
and CG(P ) are sets of local and global constraints, respectively. Given a subgraph I of
CF(P ) and a constraint c in CL(P ) ∪ CG(P ), we write I |= c whenever I satisfies c in
the associated semantics. Moreover, if I |= c for all c in CL(P ) ∪ CG(P ), I is called an
instance of WS(P ), denoted by I |= WS(P ). When the process P is clear from the
context, a workflow schema will be simply denoted by WS = 〈CF , CL, CG〉.

2.1 The Process Model Discovery Problem

Let AP be the set of task identifiers for the process P . We assume the actual workflow
schema WS(P ) for P to be unknown, and we consider the problem of properly identi-
fying it, in the set of all the possible workflow schemas having AP as set of nodes. In
order to formalize this problem we need some preliminarily definitions and notations.

A workflow trace s over AP is a string in A∗
P , representing a task sequence. Given a

trace s, we denote by s[i] the i-th task in the corresponding sequence, and by lenght(s)
the length of s. The set of all the tasks in s is denoted by tasks(s) =

⋃
1≤i≤lenght(s) s[i].

Finally, a workflow log for P , denoted by LP , is a bag of traces over ΣP : LP = [ s | s ∈
A∗

P ] and is the only input from which inferring the schema WS(P ).
In order to substantiate the problem of mining WS(P ), one must specify which

language is to be adopted for expressing the global constraints in CG. In order to devise
a general approach, it is convenient to find an alternative (syntax-independent) way for
evidencing global constraints. The solution adopted in this paper is to replace a unique
target schema WS(P ) with a variety of alternative schemata having no global constraints
but directly modelling the various execution patterns prescribed by global constraints.
The basic idea is to first derive from the trace logs an initial workflow schema whose
global constraints are left unexpressed and, then, to stepwise refine it into a number of
specific schemas, each one modelling a class of traces having the same characteristics
w.r.t. global constraints.

Definition 1. Let P be a process. A disjunctive workflow schema for P , denoted by
WS∨(P ), is a a set {WS1, ...,WSm} of workflow schemata for P , with WSj =
〈CFj , Cj

L, ∅〉, for 1 ≤ j ≤ m. The size of WS∨(P ), denoted by |WS∨(P )|, is the
number of workflow schemata it contains. An instance of any WSj is also an instance
of WS∨, denoted by I |= WS∨. 
�

Given LP , we aim at discovering a disjunctive schema WS∨ as “close” as possible
to the actual unknown schema WS(P ) that had generated the logs. This intuition can
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be formalized by accounting for two criteria, namely completeness and soundness, con-
straining the discovered workflow to admit exactly the traces of the log. Obviously, we
preliminary need some mechanisms for deciding whether a given trace in LP can be
actually derived from a real instantiation of a workflow WS∨. Ideally, we might exploit
the following definition.

Definition 2. Let s be a trace in LP , WS∨ be a disjunctive workflow schema, and
I = 〈AI , EI〉 be an instance of it. Then, s is compliant with WS∨ through I , denoted
by s |=I WS∨, if s is a topological sort of I , i.e., s is an ordering of the activities in AI

s.t. for each (a, b) ∈ EI , i < j where s[i] = a and s[j] = b. Moreover, s is simply said
to be compliant with WS∨, denoted by s |= WS∨, if there exists I with s |=I WS∨. �

We are now ready to introduce, for a disjunctive workflow schema and for a trace log,
the notions of soundness (i.e., every instance must be witnessed by some trace in the
log) and of completeness (all traces are compliant with some instance). As the schema
is not given but discovered from the analysis of the trace log, the two notions are given
with a certain amount of uncertainty.

Definition 3. Let WS∨ be a disjunctive workflow model, and LP be a log for process
P . We define:

– soundness(WS∨, LP ) = |{I|I|=WS∨∧�∃s∈LP s.t. s|=IWS∨}|
|{I|I|=WS∨}| , i.e., the percentage

of instances having no corresponding traces in the log;

– completeness(WS∨, LP ) = |{s|s∈LP ∧s|=WS∨}|
|{s|s∈LP }| , i.e., the percentage of traces that

are compliant with some trace in the log.

Given two real numbers α and σ between 0 and 1 (typically α is small whereas σ is
close to 1) we say that WS∨ is

– α-sound w.r.t. LP , if soundness(WS∨, LP ) ≤ α, i.e. the smaller the sounder;
– σ-complete w.r.t. LP , if completeness(WS∨, LP ) ≥ σ, i.e., the larger the more

complete. �

We want to discover a disjunctive schema WS∨ for a given process P which is
α-sound and σ-complete, for some given α and σ. However, it is easy to see that a
trivial schema satisfying the above conditions always exists, consisting in the union of
exactly one workflow (without global constraints) modelling each of the instances in
LP . However, such model would be not a syntectic view of the process P , for its size
being |WS∨| = |LP |, where |LP | = |{s | s ∈ L}|. We therefore introduce a bound on
the size of WS∨.

Definition 4. (Minimal Process Discovery) LetLP be a workflow log for the processP .
Given a real number σ and a natural number m, the Minimal Process Discovery problem,
denoted by MPD(P ,σ, m), consists in finding a σ-complete disjunctive workflow schema
WS∨, such that |WS∨| ≤ m and soundness(WS∨, LP ) is minimal. 
�

The problem is obviously solvable as one may sacrifice enough portions of soundness
to get a result. But, as it is shown next, the problem is untractable. W.l.o.g., let us assume
that the values representing soundness are suitably discretized as positive integers so
that we can represent MPD as an NP optimization problem.
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Theorem 1. MPD(P ,σ,m) is an NP-complete optimization problem whose set of feasible
solution is not empty.

Armed with the above result, we turn to the problem PD(P ,σ,m) of greedily finding a
suitable approximation, that is a σ-complete workflow schema WS∨, with |WS∨| ≤ m,
which is as sound as possible. In the rest, we shall propose an efficient technique for
solving this problem.

3 Clustering Workflow Traces

In order to mine the underlying workflow schema of the process P (problem PD(P ,σ,m))
we exploit the idea of iteratively and incrementally refining a schema, by mining some
global constraints which are then used for discriminating the possible executions, starting
with a preliminary disjunctive model WS∨, which only accounts for the dependencies
among the activities in P .

The algorithm ProcessDiscover, shown in Figure 1, which computes WS∨ through
a hierarchical clustering, first mines a control flow CFσ , according to the threshold
σ1, through the procedure minePrecedences, which mainly exploits techniques already
presented in the literature (see, e.g., [1,18], and, therefore, it is not illustrated in more
details. Each workflow schema WSj

i , eventually inserted in WS∨, is identified by the
number i of refinements needed, and an index j for distinguishing the schemas at the
same refinement level. Moreover, we denote by L(WSj

i ) the set of traces in the cluster
defined by WSj

i . Notice that preliminarily WS1
0, containing all the logs in LP , is inserted

in WS∨, and in Step 3 we refine the model by mining some local constraints, too.

The algorithm is also guided by a greedy heuristic that at each step selects a schema
WSj

i ∈ WS∨, for being refined with the function refineWorkflow, by preferring the
schema which can be most profitably refined. In practice, we refine the the least sound
schema among the ones already discovered; however, some experiments have been also
conduced refining the schema WSj

i with the maximum value of |L(WSj
i )|.

In order to reuse well know clustering methods, and specifically in our implementation
the k-means algorithm, the procedure refineWorkflow translates the logs L(WSj

i ) to
relational data with the procedures identifyRelevantFeatures and project, which will be
discussed in the next section. Then, if more than one feature is identified, it computes
the clusters WSj+1

i+1 , ...,WSj+k
i+1 , where j is the maximum index of the schemas already

inserted in WS∨ at the level i + 1, by applying the k -means algorithm on the traces
in L(WSj

i ), and put inserts them into the disjunctive schema WS∨. Finally, for each
schema inserted WS∨ the procedure mineLocalConstraint is applied, in order to identify
local constraints as well.

The algorithm ProcessDiscover converges in at most m steps (see Step 4), and
exploits the following interesting property of the procedure refineWorkflow. We observe
that at each step of workflow refinement the value of soundness decreases, thus the
algorithm gets closer to the optimal solution.

1 Roughly, the edges in CFσ represent a minimal set of precedences with at least a given support
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Input: Problem PD(P ,σ,m), natural number maxFeatures.
Output: A process model.
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp); //See Section 3.1

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0); //See Section 3.1
3 WS∨ := WS1

0; //Start clustering with the dependency graph only
4 while |WS∨| < m do
5 WSj

i :=leastSound(WS∨);
6 WS∨ := WS∨ − {WSj

i };
7 refineWorkflow(i,j);
8 end while
9 return WS∨;

Procedure refineWorkflow(i: step, j: schema);
1 F :=identifyRelevantFeatures(L(WSj

i ), σ, maxFeatures, CFσ); //See Section 4.1
2 R(WSj

i ) :=project(L(WSj
i ), F); //See Section 4.2

3 k := |F|;
4 if k > 1 then
5 j := max{j | WSj

i+1 ∈ WS∨};

6 〈WSj+1
i+1 , ..., WSj+k

i+1 〉 := k -means(R(WSj
i ));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));
10 mineLocalConstraints(WSh

i+1);
11 end for
12 else //Leave of the tree
13 WS∨ = WS∨ ∪ {WSj

i }; //See Theorem 2.2
14 end if ;

Fig. 1. Algorithm ProcessDiscover

Theorem 2. Given a disjunctive schema WS∨, with WSj
i ∈ WS∨, the disjunctive

workflow schema WS∨
+, obtained by refining WS∨ − {WSj

i} with the procedure
refineWorkflow(i,j), is such that soundness(WS∨

+) ≤ soundness(WS∨) .

A main point of the algorithm is fixing the number k of new schemata to be added
at each refinement step. The range of k goes from a minimum of 2, which will require
several steps for the computation, to an unbounded value, which will return the result
in only one step. One could then expect that the latter case is most efficient. This is
not necessarily true: the clustering algorithm could run slower with a larger number of
classes thus loosing the advantage of a smaller number of iterations. In contrast, there
is an important point in favor of a small value for k: the representation of the various
schemata can be optimized by preserving the tree structure and storing for each node only
the differences w.r.t. the schema of the father node. The tree representation is relevant
not only because of the space reduction but also because it give more insights on the
properties of the modelled workflow instances and provides an intuitive and expressive
description of global constraints.

3.1 Dealing with Relevant Features

The crucial point of the algorithm for clustering workflow traces lies in the formalization
of the procedures identifyRelevantFeatures and project. Roughly, the former identifies a
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set F of relevant features [10,11,14], whereas the latter projects the traces into a vectorial
space whose components are, in fact, these features.

Some works addressing the problem of clustering complex data considered the most
frequent common structures (see e.g. [2,3,7]), also called frequent patterns, to be the
relevant features for the clustering. Since we are interested in features that witness some
kind of global constraints, we instead exploit the more involved notion of unexpected
(w.r.t. the local properties) frequent rules.

Let L be a set of traces, CFσ be a mined control flow, for threshold σ, and Eσ be the
edge set of CFσ . Then a sequence [a1...ah] of tasks is σ-frequent in L if |{s ∈ L | a1 =
s[i1], ..., ah = s[ih] ∧ i1 < ... < ih}|/|L| ≥ σ. We say that [a1...ah] σ-precedes a in L,
denoted by [a1...ah] →σ a, if both [a1...ah] and [a1...aha] are σ-frequent in L.

Definition 5 (Discriminant Rules). A discriminant rule (feature) φ is an expression
of the form [a1...ah] ����σ a, s.t. (i) [a1...ah] is σ-frequent in L, (ii) (ah, a) ∈ Eσ ,
and (iii) [a1...ah] →σ a does not hold. Moreover, φ is minimal if (iv) there is no b, s.t.
[a1...ah] ����σ b and [b] →σ a, and (v) there is no j, s.t. j > 1 and [aj ...ah] ����σ a. 
�

The identification of discriminant rules can be carried out by means of the level-wise
algorithm shown in Figure 2. At each step k of the computation, we store in Lk all the
σ-frequent sequences whose size is k. Specifically, in the Steps 5–9, the set of potential
sequences M to be included in Lk+1 are obtained by combining those in Lk with the
relationships of precedences in L2 — notice that Step 7 prevents the computation of not
minimal unexpected rules. Then, only σ-frequent pattern in M are included in Lk+1
(Step 11), while all the others will determine unexpected rules (Step 12). The process is
repeated until no other frequent traces are found. The correctness of the algorithm can
be easily proven.

Theorem 3. In the algorithm of Figure 2, before its termination (Step 16):

1. the set R contains exactly all the σ-frequent sequences of tasks, and
2. the set F contains exactly all the minimal discriminant rules.

Notice that the algorithm IdentifyRelevantFeatures does not directly output F , but
call the procedure mostDiscriminantFeatures, whose aim is to find a proper subset of F
which better discriminates the traces in the log.

This intuition can be formalized as follows. Let φ be a discriminant rule of the form
[ai, ..., aj ] ����σ b, then the witness of φ in L, denoted by w(φ, L), is the set of logs in
which the pattern [ai, ..., aj ] occurs.

Moreover, given a set of rules R, then the witness of R in L is
⋃

φ∈R w(φ, L). For
a fixed k, R is the most discriminant k-set of features if |R| = k and there exists
no R′ with |w(R′, L)| > |w(R, L)|, and |R′| = k. Notice that the most discriminant
k-set of features can be computed in polynomial time by considering all the possible
combinations of features of R, with k element.

The minimum k, for which the most discriminant k-set of features, say S, covers all
the logs, i.e., w(S, L) = L, is called dimension of L, whereas S is the most discriminant
set of features.
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Input: A log L, a threshold σ, the max nr. of features maxFeatures, the control flow graph CFσ , with edge set Eσ .
Output: A set of minimal discriminant rules.
Method: Perform the following steps:

1 L2 := {[ab] | (a, b) ∈ Eσ};
2 k := 1, R := L2, F := ∅;
3 repeat
4 M := ∅; k := k + 1;
5 forall [ai...aj ] ∈ Lk do
6 forall [ajb] ∈ L2 do
7 if [ai+1...aj ] ����σ b is not in F then
8 M := M ∪ [ai...ajb];
9 end for
10 forall p ∈ M of the form [ai...ajb] do
11 if p is σ-frequent in L then Lk+1 := {p};
12 else F := F ∪ {[ai...aj ] ����σ b}; //See Theorem 3.2
13 end for
14 R := R ∪ Lk+1; //See Theorem 3.1
15 until Lk+1 = ∅;
16 return mostDiscriminant(F );

Procedure mostDiscriminantFeatures(F : set of unexpected rules): set of unexpected rules;
1 S′ := L; F ′ := ∅;
2 do
3 let φ = argmaxφ′∈F |w(φ′, S′)|;
4 F ′ := F ′ ∪ {φ};
5 S′ := S′ − w(φ, S′);
6 while (|S′|/|LP | > σ) and (F ′ < maxFeatures);
7 return F ′;

Fig. 2. Algorithm IdentifyRelevantFeatures

Theorem 4. Let L be a set of traces, n be the size of L (i.e., the sum of the lengths of
all the traces in L), and F be a set of features. Then, computing any most discriminant
set of features is NP hard.

Due to the intrinsic difficulty of the problem, we turn to the computation of a suitable
approximation. In fact, the procedure mostDiscriminantFeatures, actually implemented
in the algorithm for identifying relevant features, computes a set F ′ of discriminant
rules, guided by the heuristics of greedily selecting a feature φ covering the maximum
number of traces, among the ones (S′) not covered by previous selections.

Finally, the set of relevant features F , can be used for representing each trace s as
a point in the vectorial space R

|F|, denoted by −→s . Then, the procedure project maps
traces in R

|F|, where k-means algorithm can operate. Due to its simplicity we do not
report the code here.

4 Experiments

In this section we study the behavior of the ProcessDiscover algorithm for evaluating
both its effectiveness and its scalability, with the help of a number of tests performed on
synthetic data. The generation of such data can be tuned according to: (i) the size of WS,
(ii) the size of LP , (iii) the number of global constraints in CG, and (iv) the probability p
of choosing any successor edge, in the case of nondeterministic fork activities. The ideas
adopted in generating synthetic data are essentially inspired by [3], and the generator
we exploited is an extension of the one described in [6].
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Fig. 3. Fixed Schema. Left: Soundness w.r.t. levels. Right: Scaling w.r.t. number of traces.

Fig. 4. Variable Workflow Schema. Left: Soundness w.r.t. k. Right: Scalability w.r.t. k.

Test Procedure. In order to asses the effectiveness of the technique, we adopted the
following test procedure. Let WS(I) be a workflow schema for the input process I , and
LI a log produced with the generator. The quality of any workflow WS∨(O), extracted
by providing the mining algorithm with LI , is evaluated, w.r.t. the original one WS(I),
essentially by comparing two random samples of the traces they respectively admit. This
allow us to compute an estimate of the actual soundness and completeness. Moreover,
in order to avoid statistical fluctuations in our results, we generate a number of different
training logs, and hence, whenever relevant, we report for each measure its mean value
together with the associated standard deviation. In the test described here, we focus on
the influence of two major parameters of the method: (i) the branching factor k and
(ii) the maximum number (maxLevels) of levels in the resulting disjunctive scheme.
Notice that the case k = 1 coincides with traditional algorithms which do not account
for global constraints. All the tests have been conduced on a 1600MHz/256MB Pentium
IV machine running Windows XP Professional.

Results. In a first set of experiments we considered a fixed workflow schema and
some randomly generated instances. Figure 3 (on the left) reports the mean value and
the standard deviation of the soundness of the mined model, for increasing values of |LI |
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by varying the factor k. Notice that for k = 1, the algorithm degenerates in computing a
unique schema, and in fact, the soundness is not affected by the parameter maxLevel —
this is the case of any algorithm accounting of local constraints only. Instead, for k > 1,
we can even rediscover exactly the underlying schema, after a number of iterations.
These experiments have been conduced on an input log of 1000 instances. Then, on the
right, we report the scaling of the approach at the varying of the number of logs in LI .

In a second set of experiments we also consider variable schemas. In Figure 4 we
report the results for four different workflow schemas. Observe (on the left) that for a
fixed value of k, the soundness of the mined schema tends to be low at the increasing of
the complexity of the schemas, consisting of many nodes and possibly many constraints.
This witness the fact that on real processes, traditional approaches (with k = 1) performs
poorly, and that for having an effective reconstruction of the process it is necessary not
only to fix k > 1, but also to deal with several levels of refinements. Obviously, for
complex schemas, the algorithm takes more time, as shown in the same figure on the
right.

5 Conclusions

In this paper, we have continued on the way of the investigation of data mining techniques
for process mining, by providing a method for discovering global constraints, in terms of
the patterns of executions they impose. This is achieved through a hierarchical clustering
of the logs, in which each trace is seen as a point of a properly identified space of features.
The precise complexity of the task of constructing this space is provided, as well as a
practical efficient algorithm for its solution.
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