
Mining Hierarchies of Models: From Abstract
Views to Concrete Specifications

Gianluigi Greco1, Antonella Guzzo2, and Luigi Pontieri2

Dept. of Mathematics1, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy
ICAR-CNR2, Via P. Bucci 41C, 87036 Rende, Italy

{ggreco}@mat.unical.it, {guzzo,pontieri}@icar.cnr.it

Abstract. Process mining techniques have been receiving great atten-
tion in the literature for their ability to automatically support process
(re)design. The output of these techniques is a concrete workflow schema
that models all the possible execution scenarios registered in the logs,
and that can be profitably used to support further-coming enactments.
In this paper, we face process mining in a slightly different perspective.
Indeed, we propose an approach to process mining that combines novel
discovery strategies with abstraction methods, with the aim of producing
hierarchical views of the process that satisfactorily capture its behavior
at different level of details. Therefore, at the highest level of detail, the
mined model can support the design of concrete workflows; at lower levels
of detail, the views can be used in advanced business process platforms
to support monitoring and analysis. Our approach consists of several al-
gorithms which have been integrated into a systems architecture whose
description is accounted for in the paper as well.

1 Introduction

The difficulties encountered in the design of complex workflows have recently
stimulated the development of process mining techniques [1–8], whose aim is
to automatically derive a model for the process at hand, based on log data
collected during its past enactments. Notably, when a large number of activities
and complex behavioral patterns are involved in the analysis, process mining
may be a rather trickish task, and the discovered model might fail in representing
the process in a clear and concise manner. Indeed, process mining algorithms
are generally designed to maximize the accuracy of the mined model, i.e., they
equip the model with as many variants as they are required to support all the
registered logs; therefore, the resultant schema is well-suited for supporting the
enactment, but is less useful for a business user who wants to monitor and
analyze the business operation at some appropriate level of abstraction.

To overcome this limitation, we propose an approach to process mining that
produces a hierarchical process model which satisfactorily captures the behavior
of the process at hand, by providing different views at different level of details.
Roughly speaking, the model is essentially a tree such that the root encodes the
most abstract view, which has no pretension of being an executable workflow,

whereas any level of internal nodes encodes a refinement of such an abstract
model, in which some specific details are introduced.

The capability of discovering a modular and expressive description for a pro-
cess can be a valid help in designing, monitoring, and analyzing process models,
and can pave the way for effectively reusing, customizing and semantically con-
solidating process knowledge. And, in fact, the need and the usefulness of process
hierarchies/taxonomies has already emerged in several applicative contexts, and
process abstraction is currently supported in some advanced platforms for busi-
ness management (e.g, iBOM [9], ARIS [10]), in which the designer can manually
define the relationships among the abstract and the actual process.

In the literature, the definition of process hierarchies was first consid-
ered in [11], envisaging a repository of process descriptions for supporting
both design and sharing of process models. The notion of process special-
ization/generalization (w.r.t some suitable behavioral semantics) has been in-
vestigated for different modelling formalisms, such as Object Behavior Dia-
grams [12], UML diagrams [13], process-algebra specifications and Petri-nets [14,
3], DataFlow diagrams [15]. Recently, some abstraction techniques aiming at
summarizing complex processes have been proposed in [9, 16].

The main distinguishing feature of our approach with respect to the pro-
posals cited above is the combination of mining and abstraction methods for
automatically producing a hierarchical process model. This entails that no sub-
stantial human intervention is required while abstracting process schemas, so
that software modules implementing the algorithms described in the paper rep-
resent a valuable add on for advanced process management platforms. In more
details, the contribution of the paper is as follows:

– In Section 3, we introduce a top-down clustering algorithm that generates a
hierarchy of workflow schemas, by inducing each of them from a homogeneous
cluster of traces. Since, at each step, the algorithm greedily splits the cluster
equipped with the least sound schema, schemas at the leaves of the hierarchy
effectively model different usage-scenarios for the process.

– The whole hierarchy build by means of clustering is of great value in struc-
turing different execution classes into an effective taxonomical view. In Sec-
tion 4, we propose an algorithm for obtaining a taxonomy of schemas, by
producing, for each non-leaf node of the hierarchy, an abstract schema gen-
eralizing all those associated with the children.

– In Section 5, we present an abstraction algorithm and some associated met-
rics, which are meant to support the above generalization algorithm by prop-
erly replacing groups of “specific” activities with “higher-level” activities.

– Finally, in Section 6, we sketch the architecture of a system implementing
the whole approach, and discuss some concluding remarks and future works.

2 Formal Framework

In this section, we introduce the basic notions and notation for formally repre-
senting workflow models, which will be exploited in the rest of the paper. The

authenticate

client

check

stock

confirm
supplies

validate

order plan
decline
order

accept
order

fidelity

discount

fast

dispatch

prepare
bill

a

b

c

f

i

p

g

h

l

m

o

n

client

reliability

receive

order
AND

XOR

XOR

XOR

XOR

AND

OROR

OR

register

client

XOR

OR

OR

XORe

check previous

orders

ask
suppliers

d

Fig. 1. Workflow schema for the sample OrderManagement process.

control flow graph of a process P is a tuple 〈A,E, a0, F 〉, where: A is a finite set
of activities, E ⊆ (A−F)× (A−{a0}) is a relation of precedences among activi-
ties, a0 ∈ A is the starting activity, F ⊆ A is the set of final activities. A control
flow graph defines the potential orderings according to which the activities of
P can be executed; it is often enriched with some kind of constraints impos-
ing further restrictions on the executions.1 For any a activity of the workflow
schema, the split constraint for a is: (S.i) AND-split if a activates all of its suc-
cessor activities, once completed; (S.ii) OR-split, if a may activate any number
(non-deterministically chosen) of its successor activities, once completed; (S.iii)
XOR-split if a activates exactly one out of all its successor activities, once com-
pleted. The join constraint for a is: (J.i) AND-join if a can be executed only
after all of its predecessors have notified a to start; (J.ii) OR-join, if a can be
executed as soon as one of its predecessors notifies a to start.

Let P be a process. A workflow schema for P , denoted by W(P), is a tuple
〈A,E, a0, F, C〉, where 〈A,E, a0, F 〉 is a control flow graph for P , and C is a set of
constraints for the activities in A. Fig. 1 shows a possible workflow schema for the
OrderManagement process of handling customers’ orders in a business company.
Constraints are drawn by means of labels beside the tasks – e.g., accept order
is an and-join activity as it must be notified by its predecessors that both the
client is reliable and the order can be supplied correctly.

Each time a workflow is enacted in a workflow management system, it pro-
duces an instance, i.e., a suitable subgraph of the schema, containing both ini-
tial and final activity, that satisfies all the constraints. Actually, many process-
oriented commercial systems store partial information about the various in-
stances of a process, by tracing some events related to the execution of its ac-
tivities. In particular, the logs kept by most of such systems simply consist of
sequences of event occurrences, which, in general, cannot allow to reconstruct
the structure of all workflow instances. Let AP be the set of task identifiers for
the process P ; then, a workflow trace s over AP is a string in A∗

P , representing
a task sequence. For instance, in our running example, a trace can be encoded
1 We do not refer to any specific syntax proposed for expressing constraints; rather,

we deal with some basic features occurring in the most typical workflow systems.

by the string acbgih. A workflow log for P , denoted by LP , is a bag of traces
over AP , i.e., LP = [s | s ∈ A∗

P].
We next formalize the relationship between traces and instances. Let I be an

instance of a workflow schema W, and s be a trace in LP . Then, s is compliant
with W through I, denoted by s |=I W, if the last activity of s is a final activity
w.r.t. to W and there exists a topological sort s′ of I such that s is a prefix of
s′. Furthermore, s is simply said to be compliant with W, denoted by s |= W, if
there exists an instance I such that s |=I W.

Finally, the following functions allow to evaluate the degree of conformance
of W w.r.t. a given log LP : (i) soundness(W,LP), expressing the percent-
age of instances of W which have some corresponding traces in LP , and (ii)
completeness(W,LP), which measures the percentage of traces in LP that are
compliant with W. It is worth noticing that both soundness and completeness
should be considered during the process mining task, in order to discover a
schema that satisfactorily model the input traces.

3 Mining Hierarchies of Workflow Schemas

Our approach to discover expressive process models at different level of de-
tails is articulated in two phases. First, we mine a hierarchy of workflow
schemas, by means of a hierarchical top-down clustering algorithm, called
HierarchyDiscovery. Then, we visit the mined model in a bottom-up way, i.e.,
from the leaves to the root, and we restructure it at several levels of abstrac-
tion, by means of the algorithm BuildTaxonomy. Details on the former phase are
reported in this section, whereas details on the latter are reported in Section 4.

3.1 Algorithm HierarchyDiscovery

A process mining technique that is specifically tailored for complex process,
involving lots of activities and exhibiting different variants has been presented in
[8]. It relies on the idea of explicitly representing all the possible usage scenarios
by means of a collection of different, specific, workflow schemas, in order to
obtain a modular representation of the process itself, which is yet sounder than
a single workflow schema mixing all of them. We here propose a new algorithm
that extends the one presented in [8] by allowing the computation of hierarchical
process models rather than simple collections of workflow schemas. The mined
model is now meant to be a hierarchy of workflow schemas that collectively
represent the process at different levels of granularity and abstraction: the set
of schemas corresponding to children of any node v represents the same set of
execution as v, but in a more detailed and sounder way, as different subclass of
executions are separately described. We next formalize the notion of hierarchical
model.

Definition 1. Let LP be a set of log traces for a process P . Then, a schema
hierarchy for P is a tuple H = 〈WS, T, λ〉, such that:

Input: A set of log traces LP , two natural numbers maxSize and k, a threshold γ.
Output: A schema hierarchy for P .
Method: Perform the following steps:

1 W0 :=mineWFschema(LP);
2 WS := {W0};
3 Traces[W0] := LP ; // Traces[Wi] refers to the log traces modelled by Wi, ∀Wi ∈ WS
4 T := 〈{ v0}, ∅, v0 〉;
5 λ(v0) := W0;

6 while |WS| ≤ maxSize and soundness(〈WS, T, λ〉,LP) < γ do
7 let Wq be the least sound “leaf” schema a and vq=λ−1(Wq) be its associated node in T ;
8 let n=|WS| be the number of schemas currently stored in WS;
9 〈Ln+1, ..., Ln+k〉 := partition-FB(Traces[Wq];

10 if k > 1 then
11 for h = 1..k do
12 Wn+h := mineWFschema(Ln+h);
13 WS := WS ∪ {Wn+h};
14 Traces[Wn+h] := Ln+h;
15 T.V := T.V ∪ {vn+h}; T.E := T.E ∪ {(vq, vn+h)};
16 λ(vn+h) := Wn+h;
17 end for
18 end if
19 end while
20 return 〈WS, T, λ〉;

a
i.e., Wq = argminW∈WS{soundness(W, traces(W)) | λ−1(W) is a leaf of T}

Fig. 2. Algorithm HierarchyDiscovery

– WS is a set of workflow schemas for P ;
– T = 〈V,E, v0〉 is a tree, where V (resp. E) denotes the set of vertices (resp.

edges), and v0 ∈ V is the root;
– λ : V �→ WS is a bijective function associating each vertex v ∈ V with a

workflow schema λ(v) in WS;

Soundness and completeness of H are defined as follows: (i)
soundness(H,LP) is the percentage of the instances modelled by the schemas
associated with the leaves of T that have some corresponding trace in LP , (ii)
completeness(H,LP) is the percentage of traces in LP that are compliant with
at least one schema associated with a leaf of T . ��

Notice that for each vertex v in V , the set Sv of the schemas associated with
the children of v, i.e., Sv = {λ(vc

i) | (v, vc
i) ∈ E}, is essentially meant to model

the same set of instances modelled by λ(v), but in a sounder way. Therefore, the
union of all the schemas associated with the leaves constitute, as a whole, the
soundest model for the process.

Given a log LP , we can discover a schema hierarchy for P by recursively
partitioning the traces in LP into clusters, according to the different behavioral
patterns they exhibit, and building a schema for each of these clusters. This
is accomplished by the algorithm HierarchyDiscovery (see Fig. 2), where the
function mineWFschema is exploited for discovering each single workflow schema
in the hierarchy. Some possible implementations of mineWFschema are discussed
in [1–8], and essentially consist in discovering precedence relationships and con-
straints that involve the activities.

The meaning of the other input parameters is as follows: γ is a (lower) thresh-
old for the soundness of the mined hierarchy H, while maxSize and k bound the
total number of nodes in H and their out-degrees, respectively. Notice that we
here assume that the discovered model must have maximal completeness. Ob-
viously, we can straightforwardly extend the approach to discovering not fully
complete models, e.g., by introducing a threshold for completeness and using
some implementation of mineWFschema taking account for such a threshold.

The algorithm starts by building a workflow schema W0 (Line 1) which is
a first attempt to represent the behavior captured in the log traces, and which
will be the only component of WS (Line 2). The schema WS0 is associated
with the whole log via the auxiliary structure Traces (Line 3), which enables for
recording the set of traces each discovered schema was derived from. Moreover,
the tree T is initialized with a single node (its root) v0, which is associated with
W0 by properly setting the function λ (Lines 4-5).

In order to produce a more accurate model, we greedily chose to refine the
least sound schema Wq in WS and to derive a set of more refined schemas
(Lines 7-18) as children of node corresponding to Wq. To this purpose, the set of
traces modelled by the selected schema Wq is partitioned through the procedure
partition-FB (Line 9) into a set of clusters which, in a sense, are more homo-
geneous from a behavioral viewpoint. Roughly speaking, the procedure mainly
relies on the discovery of frequent rules representing behavioral patterns that
were unexpected with respect to Wq. Such rules are then used to map the traces
into a feature space, where classical clustering methods can be applied (see [8]
for more details).

For each new cluster Li+h a specific workflow schema Wi+h is extracted, by
using again function mineWFschema, and added to WS (Lines 10-11). Moreover,
Wi+h is associated with the cluster Li+h it was induced from, and with a new
node in the tree, which is a child of the node corresponding to the refined schema
Wq (Lines 14-16). The whole process of refining a schema can then be iterated
in a recursive way, by selecting again the least sound leaf schema in the current
hierarchy, until the desired value γ of soundness has been achieved or too many
schemas (i.e., maxSize or more) are already in WS (Line 6).

Example 1. In order to provide some insight on how the algorithm works, we
report a few notes on its behavior when used to mine a synthesized log. To this
purpose 100, 000 traces for the workflow schema shown in Fig. 1 were randomly
generated by means of the generator described in [17]. Notably, in the generation
of the log, we also required that task m could not occur in any execution trace
containing f , and that task o could not appear in any trace containing d and
p, thereby modelling the intuitive restriction that a fidelity discount in never
applied to a new customer, and that a fast dispatching procedure cannot be
performed whenever some external supplies were asked for. These additional
constraints allow us to simulate the presence of different usage scenarios that
cannot be captured by a simple workflow schema.

The output of HierarchyDiscovery, for maxSize = 5 and γ = 0.85, is the
schema hierarchy reported in Fig. 3.(a), where each node logically corresponds

v0v0

v
1

v
3

v
4

v
2

(a) Tree

a

b

c g h

i l

m

n
AND

AND

XOR

XOR

OR

OR

XOR

p

x2

d

e

(b) Workflow schema W2 for node v2

a

b

c g h

i l

n

o

AND

AND

XOR

XOR

OR

OR
XOR

f

(c) Workflow schema W3 for node v3

a

b

c
p

f

g h

i l
n

AND

AND

XOR

XOR

ORx1

d

(d) Workflow schema W4 for
node v4

Fig. 3. Hierarchy generated by HierarchyDiscovery (details for leaf schemas only).

to both a cluster of traces and a workflow schema induced from that cluster by
means of traditional algorithms for process mining. Thus, node v0 corresponds
to the whole set of traces and to an associated (mined) workflow. Actually, the
algorithm HierarchyDiscovery finds that the schema of v0 is not as sound as
required by the user, and therefore partitions the traces by means of a clustering
algorithm (k-means in the implementation). In the example, we fix k = 2 and
the algorithm generates two children v1 and v2; then, v2 is not further refined
(due to its high soundness), while traces associated with v1 are split again into
v3 and v4. At the end, the schemas associated with the leaves of the tree are
those shown in the Figure. As a matter of fact, schemas W0 and W1 (associated
with v0 and v1, respectively) are only preliminary attempts to model executions
that are, indeed, modelled in a sounder way by the leaf schemas. Nevertheless,
the whole hierarchy is an important result as well, for it somehow structures
the discovered execution classes, and is a basis for deriving a schema taxonomy
representing the process at different abstraction levels, as it will be discussed in
Section 4. �

4 Restructuring Schema Hierarchies

In the second phase of our approach, we exploit the schema hierarchy produced
by HierarchyDiscovery, in order to restructure it for producing a description of
the process at different levels of details. Intuitively, leaf nodes stand for concrete
usage scenarios, whereas non-leaf nodes are meant to represent suitable general-

izations of the different process models corresponding to their children. Relations
among activities are next formalized by means of abstraction dictionaries.

4.1 Abstraction Relationships

Let A be a set activities. An abstraction dictionary for A is a tuple D =
〈Isa,PartOf 〉, such that D.Isa ⊆ A × A, D.PartOf ⊆ A × A and, for each
a ∈ A, (a, a) 	∈ D.PartOf and (a, a) 	∈ D.Isa. Roughly speaking, for two ac-
tivities a and b, (b, a) ∈ D.Isa indicates that b is a refinement of a; conversely,
(b, a) ∈ D.PartOf indicates that b is a component of a.

Given two activities a and a′, we say that a generalizes a′ w.r.t. a given
abstraction dictionary D, denoted by a ↑D a′, if there is a sequence of activities
a0, a1, .., an such that a0=a′, an=a and (ai, ai−1) ∈ D.Isa for each i = 1..n;
we call such a sequence a genpath from a′ to a with length n. Moreover, the
generalization distance between a and a′ w.r.t. D, denoted by distDG, is the
minimal length of the genpaths connecting a′ to a, or vice-versa. As a special
case, we assume that distDG(a, a) = 0 for any activity a. Finally, the most specific
generalization of two activities x and y w.r.t. D, denoted by msgD(x, y), is the
closest activity, if there exists one, that generalizes them both, i.e., msgD(x, y) =
argminz{distDG(x, z) + distDG(y, z) | z ↑D x and z ↑D y}.

Given two activities a and a′ and an abstraction dictionary D, we say that a
implies a′ w.r.t. D, denoted by a −→D a′, if (a′, a) ∈ D.Isa or (a′, a) ∈ D.PartOf
or, recursively, there exists an activity x such that a −→D x and x −→D a′. The
set of activities implied by a w.r.t. D is referred to as implD(a), i.e., implD(a)
= {a′ | a −→D a′}. An activity a is then said to be complex if there exists at
least one activity x such that a −→D x; otherwise, a is a basic activity. In other
words, complex activities represent higher level concepts defined by aggregating
or generalizing basics activities actually occurring in real process executions.

The above relationship between activities is a basic block for building tax-
onomies that can significantly reduce the efforts for comprehending and reusing
process models, for they structuring process knowledge into different abstraction
levels. Let W1 and W2 be two workflow schemas over the sets of activities A1

and A2, respectively. Then, we say that W2 specializes W1 (W1 generalizes W2)
w.r.t. a given abstraction dictionary D, denoted by W2 ≺D W1, if (i) for each
activity a2 in A2 there exists at least one activity a1 in A1 such that a1 −→D a2,
and (ii) there is no activity b1 in A1 such that a2 −→D b1.

The output of the restructuring of a schema hierarchy is an abstraction dic-
tionary and a schema taxonomy as for formalized below.

Definition 2. Let D be an abstraction dictionary for the activities of a given
process P , and H = 〈WS, T, λ〉 be a schema hierarchy for P . Then, H is a
schema taxonomy for P w.r.t. D if for any pair of nodes v and vc in V such that
(v, vc) ∈ T.E (i.e., vc is a child of v) λ(v) ≺D λ(vc). ��

4.2 Algorithm BuildTaxonomy

In Fig. 4 we illustrate an algorithm, called BuildTaxonomy, for restructuring
a schema hierarchy into a schema taxonomy, representing the process at hand
at several abstraction levels. The algorithms takes in input a schema hierarchy
H and produces a taxonomy G and an abstraction dictionary D, which G has
been build according to. Roughly speaking, the basic task allowing for such a
generalization consists in replacing groups of “specific” activities, appearing in
the schemas to be generalized, with new “virtual” activities which represent
them at a higher level of abstraction. In this way, a more compact description
of the process is obtained, where portion of the actual workflow are represented
at a lower level of granularity. Indeed, during such a restructuring process, the
abstraction dictionary D is required to maintain the relationships between the
activities that were abstracted and the new higher-level concepts replacing them.

Input: A schema hierarchy H = 〈WS, T, λ〉;
Output: A schema taxonomy G, an abstraction dictionary D;
Method: Perform the following steps:

1 let T = 〈V, E, v0〉, and let D := ∅;
2 Done := { v ∈ V |
 ∃v′ ∈ V s.t. (v, v′) ∈ E }; // Done initially contains the leaves of T ;
3 while ∃v ∈ V such that v
∈ Done, and {c | (c, v) ∈ E} ⊆ Done do
4 let ChildSchs = { λ(c) | v ∈ V and (v, c) ∈ E }, i.e., the schemas of all v’s children;
5 λ′(v) := generalizeSchemas(ChildSchs,D);
6 Done := Done ∪ {v};
7 end while
8 G := 〈WS, T, λ′〉;
9 normalizeDictionary(G,D);

10 return (G,D);

Procedure generalizeSchemas(WS = {W1, ..., Wn}: set of workflow schemas,
var D: abstraction dictionary): workflow schema;

g1 let Wh = 〈Ah, Eh, a0
h, Fh, Ch〉 for h = 1..n;

g2 let I =
⋂n

i=1
Ai;

g4 W :=
〈 ⋃n

i=1
Ai,

⋃n

i=1
Ei,

⋃n

i=1
a0

i ,
⋃n

i=1
Fi, ∅

〉
;

g5 mergeConstraints(W , {Ch | h = 1..n});
g6 for each i = 1..n do

g7 abstractActivities(Ai-I, W , D);
g8 end for

g9 abstractActivities(W.A-I, W , D);

g10 return W ;

Fig. 4. Algorithm BuildTaxonomy

The algorithm works in a bottom-up fashion (Line 2-7): starting from the
leaves of the input hierarchy, it produces, for each non-leaf node v, a novel
workflow schema that generalizes all the schemas associated with the children
of v. Notably, such a schema is meant to accurately represents only the features
that are shared by all the subsets of executions corresponding to the children of
v, while abstracting from specific activities, which are actually merged into new
high-level (i.e., complex) activities. Such a generalization task is carried out by
providing the procedure generalizeSchemas with the schemas associated with
the children of v, along with the abstraction dictionary D, initially empty (Line

5). As a result, a new generalized schema is computed and assigned to v through
the function λ′; moreover, D is updated to suitably relate the activities that were
abstracted with the complex ones replacing them in the generalized schema.

As a final step, after the schema taxonomy G has been computed, the al-
gorithm also restructures the abstraction dictionary D by using the procedure
normalizeDictionary (Line 9), which actually removes all “superfluous” ac-
tivities that were created during the generalization. In particular, this step will
eliminate any complex activity a not appearing in any schema of G, which can
be abstracted into another, higher-level, complex activity b, provided that this
latter can suitably abstract all the activities implied by a.

Clearly enough, the effectiveness of the technique depends on the way the
generalization of the activities and the updating of the dictionary are carried out.
Procedure generalizeSchemas (reported in Fig. 4 as well) first merges all the
input workflow schemas into a preliminary workflow schema W (Line g4), which
represents all the possible flow links in the input workflows by roughly performing
the union of their corresponding control flow graphs. Subsequently, the set of con-
straints of W (initially empty) is populated by suitably combining the constraints
specified in the input schemas, by means of procedure mergeConstraints (Line
g5); as a matter of fact, this latter procedure derives a split (resp., join) con-
dition for each activity a of W , based on the split (resp., join) conditions a is
associated with in each input schema, yet taking into account all the control flow
relationships a takes part to, in the involved schemas.

The main task in the generalization process is performed by repeatedly ap-
plying the procedure abstractActivities, which transforms W by merging
activities in the reference set it receives as the first parameter, and by updating
the associated constraints and the abstraction dictionary D as well. In particu-
lar, abstractActivities is first applied for merging only activities that derived
from the same input schema – at step i only activities coming from the i-th
schema can be merged (Line g7). A further application of abstractActivities
is then performed to possibly abstract any non-shared activity in the current
schema, independently of its origin. Due to its relevance to the generalization
algorithm, abstractActivities is illustrated in details in Section 5; however,
we conclude this description by providing an intuition on its behavior.

Example 2. Consider again the schema hierarchy shown in Fig. 3. Then, algo-
rithm BuildTaxonomy starts generalizing from the leafs, thus first processing
the schemas W3 and W4 associated with v3 and v4, respectively. The result of
this generalization is the schema W 1 shown in Fig. 5.(a), which is obtained by
first merging all the activities and flow links contained in either W3 or W4, and
by then performing a series of abstractions steps over all non-shared activities,
namely o, d and p. As we shall formalize in Section 5, in general, we iteratively
abstract a pair of activities into a complex one, trying to minimize the num-
ber of spurious flow links that their merging introduces between the remaining
activities, and yet considering their mutual similarity w.r.t. the contents of the
abstraction dictionary. When deriving the schema W 1, only the activities d and
p are abstracted, by aggregating them both into the new complex activity x1;

a

b

c

f

g h

i l

AND

AND
XOR

XOR
OR

x1

n

o

OR
XOR

(a) Workflow schema W 1 for node v1

a

b

c g h

i l

m

n

o

AND

AND

XOR

XOR

OR

OR

OR

XOR XOR

f

x4

x1

e

XOR OR

x3

(b) Workflow schema W 0 for node
v0

Fig. 5. Generalized workflow schemas in the resulting taxonomy.

consequently, d and p are replaced with x1, while the pairs (d, x1) and (p, x1)
are inserted in the PartOf relationship. The schema W 1 is then merged with
the schema W2 associated with v2, and a new generalized schema, shown in
Fig. 5.(b), is derived for the root v0. In fact, when abstracting activities coming
from W2, d and p are aggregated again together, into a new complex activ-
ity x2; however, in a subsequent step x2 is incorporated into x1, as these two
complex activities have the same set of sub-activities and the same control flow
links. Furthermore, the activities e and f are aggregated into the complex ac-
tivity x3, while m and o are aggregated into x4. As a consequence, the pairs
(e, x3), (f, x3), (m,x4) and (o, x4) are added to the PartOf relationship. �

5 Abstracting Workflow Activities

In this section, we discuss the implementation of the abstractActivities pro-
cedure. To this aim, we preliminary introduce some metrics that we exploit for
singling out those activities that can be safely abstracted into higher-level ones.

5.1 Matching Activities for Abstraction Purposes

We next describe a series of functions which are meant to provide different ways
for evaluating how much two activities are suitable to being abstracted by a
single higher-level activity. Roughly speaking, simD

P and simD
G aims at capturing

semantical affinities based on the contents of a given abstraction dictionary D;
on the contrary, simE just compares two activities from a topological viewpoint
according to a set E of control flow edges.

While merging tasks in a workflow schema, a major concern is to limit the
creation of spurious control flow paths among the remaining activities in the
workflow schema, yet admitting to lose some precedence relationships involving
the abstracted ones. In this respect, we focus on two cases that can lead to a
meaningful merging without upsetting the topology of the control flow graph,
as formalized in the following definition.

Definition 3. Given a set of edges E , we say that an (unordered) pair of
activities (x, y) is merge-safe if one of the following conditions holds:

a) x and y are directly linked by some edges in E and after removing these
edges no other path exists connecting x and y, i.e., {(x, y), (y, x)} ∩ E 	= ∅
and {(x, y), (y, x)} ∩ (E − {(x, y), (y, x)})∗ = ∅

b) there is no path in E connecting x and y, i.e., {(x, y), (y, x)} ∩ E∗ = ∅
where E∗ denotes the transitive closure of E. ��

Notably, only in the case (b) of Definition 3 the merging of x and y may
lead to spurious dependencies among other activities in the schema. Indeed, this
happens when there are two other activities z and w such that (z, w) 	∈ E∗, and
either {(z, x), (y, w)} ⊆ E or {(z, y), (x,w)} ⊆ E.

By the way, a straight way for preventing this problem, consists in requiring
that at least one of the following conditions holds: (i) Px = Py, (ii) Sx = Sy,
(iii) Px ⊆ Py and Sx ⊆ Sy, (iv) Py ⊆ Px and Sy ⊆ Sx, where Pa (resp. Sa)
denotes the set of predecessors (resp. successors) of activity a, according to the
arcs in E. Actually, in order to also deal with the presence of complex activities
in the set of predecessors (resp., successors), we extend the above expressions by
replacing Pa (resp., S) with P+

a (resp., S+
a), defined as follows:

P+
a =

⋃
b∈Pa

impl(b) S+
a =

⋃
b∈Sa

impl(b)

However, the above requirements on the flow relationships of two activities
could not allow for an appreciable level of abstraction. Therefore, we somehow
incorporate them, in a smoothed way, into the function simE(x, y), reported
below, which is meant to evaluate a pair of activities according to the number
of spurious flows that would be generated when merging them, in an inverse
manner (i.e, the more spurious flows are introduced, the lower is the score):

simE(x, y) =
α(P+

x ,P+
y) × α(S+

x ,S+
y) + β(P+

x ,P+
y) × β(S+

x ,S+
y)

2

where, for any two sets B and C, α(B,C) = |B∩C|
min(|B|,|C|) and β(B,C) = |B∩C|

|B∪C| .
As a matter of facts, simE produces a maximal value whenever one of the

“strong” conditions discussed before holds, and, in general, tends to attribute
high similarity to activities matching in most of their predecessors (successors).

On the contrary, function simD
P provides a way for measuring “semantical”

similarities between two activities x and y, based on the implied activities they
actually share. It is defined as:

simD
P (x, y) = β(implD(x) ∪ {x}, implD(y) ∪ {y})

Moreover, function simD
G, which is instead devoted to compare two activities

based on the generalization relationships recorded in D.Isa, is defined as follows:

simD
G(x, y) = 1 − distDG(x,msgD(x, y)) + distDG(y,msgD(x, y))

max{distDG(a, b) | a, b ∈ A and b ↑D a}
Finally, an overall score can be assigned to each pair of activities in order to

rank them for abstraction purposes, as follows:

scoreD,E(x, y) =
{

0, if (x, y) is not a merge-safe pair of activities
max{simE(x, y), simD

P (x, y), simD
G(x, y)}, otherwise

5.2 Abstracting Activities

Fig. 6 provides a detailed description of procedure abstractActivities, that
is meant to merge activities in S for a given schema W̄ and to abstract them via
higher-level, complex, activities. To this aim, besides W̄ and S, the procedure
takes in input an abstraction dictionary D. As a result, it transforms W̄ by re-
placing the abstracted activities with the associated complex ones, and modifies
D in order to suitably record the performed abstraction transformations.

Procedure abstractActivities(S: set of activities; var W̄ = 〈A, E, a0, F, C〉: a workflow schema;
var D = 〈PartOf , Isa〉: abstraction dictionary;)

1 let E′ = {(x, y) ∈ E s.t. x ∈ S and y ∈ S};
2 〈m1, m2, p, mode〉 :=getBestAbstraction(S, E′,D);
3 while p
= ε do
4 let ActuallyAbstracted = {m1, m2} − {p};
5 if mode = ISA then
6 Isa := Isa ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
7 else
8 PartOf := PartOf ∪ {(x, p) s.t. x ∈ ActuallyAbstracted};
9 end if

10 deriveConstraints(C, m1, m2, p, E);
11 arrangeEdges(E, ActuallyAbstracted, p);
12 A := A − ActuallyAbstracted ∪ {p};
13 S := S − ActuallyAbstracted ∪ {p};
14 〈p, m1, m2〉 :=getBestAbstraction(S, E′,D);
15 end while

Procedure getBestAbstraction(S: set of activities; E: set of activity pairs;
D: abstraction dictionary): a tuple in S × S × {Isa,PartOf , ε} × A; a

b1 if |S| < 2 then
b2 return 〈ε, ε, ε, ε〉;
b3 else

b4 let a and b be two activities s.t. score(a, b) = max{scoreD,E(x, y) | x, y ∈ S};
b5 if scoreD,E(a, b) < ρ then return 〈ε, ε, ε, ε〉;
b6 else if simD

G(a, b) ≥ ρs then return 〈a, b, Isa, msgD(a, b)〉;
b7 else if implD(b) ⊆ implD(a) then return 〈a, b,PartOf , a〉;
b8 else if implD(a) ⊆ implD(b) then return 〈a, b,PartOf , b〉;
b9 else if simD

P (a, b) ≥ ρs then return 〈a, b, Isa, a new activity〉;
b10 else return 〈a, b,PartOf , a new activity〉;
b11 end if
b12 end if

a
in any tuple 〈m1, m2, M, p〉 the procedure returns, m1 and m2 are the abstracted activity, p is the
abstracting one, and M indicates the abstraction mode – A denotes the universe of all activities.

Fig. 6. Procedure abstractActivities

The procedure abstractActivities works in a pairwise fashion by repeat-
edly abstracting two activities m1 and m2, both taken from S, by means of a
complex activity p. All such activities are identified with the help of the function
getBestAbstraction that returns a tuple indicating, besides p, m1 and m2, the
kind of abstraction relationship to be used, i.e., PartOf or Isa. As a special
case, procedure getBestAbstraction will return the tuple 〈ε, ε, ε, ε〉 if there is
no pair of activities in S that can be suitably abstracted. In such a case the con-
dition p = ε will hold, thus causing the termination of the abstraction procedure.
Otherwise, in the resulting tuple 〈m1,m2,mode, p〉, m1 and m2 denote the two
activities to abstract, and p is the complex activity which will replace them both,
while mode denotes which kind of abstraction must be stored in D: aggregation,
via the PartOf relationship, or specialization, via the Isa relationship.

Procedure getBestAbstraction, still shown in Figure 6, essentially relies on
the matching measures defined in Section 5.1. In more detail, the procedure takes
as input a set S of activities and an associated set E of control flow edges, along
with an abstraction dictionary D. If there is no merge-safe pair in S that receives
a sufficient score (w.r.t. a threshold ρ), then getBestAbstraction returns the
tuple 〈ε, ε, ε, ε〉 (Lines b2 and b5), simply meaning that no abstraction can be
performed over the activities in S. Otherwise, the procedure computes a tuple
whose elements, respectively, specify the two activities to be abstracted, the kind
of abstraction relationship to be used (i.e., PartOf or Isa), and the complex
activity which will abstract both of them. As a matter of facts, the choice of the
abstracting activity and of the abstraction mode is based again on the similarity
values computed via simD

P and simD
G. In principle, if either of these measures is

above the threshold ρS , the two activities are deemed similar enough to be looked
at as two variants of some activity that generalizes them both. In particular, if
simG > ρS such an activity already exists: that is msgD(m1,m2), which is indeed
returned in the resulting tuple (Line b6). Before considering the creation of a
new activity for generalizing m1 and m2 (Line b9), we check whether one of them
implies the other: in such a case the implied activity can be abstracted by the
other via an aggregation relationship (Lines b7-b8); we can, indeed, exclude that
the implied activity is a specialization of the other, since such a condition was
tested previously (Line b6). If none of the above cases applies, the two activities
are eventually abstracted by a new activity via aggregation (Line b10).

As concerning the remainder of procedure abstractActivities, since either
m1 or m2 might coincide with p, the set ActuallyAbstracted is used to keep trace
of which of them should be really abstracted, for it actually being distinct from p
(Line 4). Procedure deriveConstraints (see Line 20) is then applied to suitably
derive the split and join conditions for p, based on those of the activities m1 and
m2 that are being merged into it. Notice that, in principle, a looser join (resp.,
split) condition might be computed for p than those associated with m1 and m2,
whenever these latter activities do not exactly match in their predecessor (resp.,
successor) nodes and in their join (resp., split) conditions. For space reasons, we
skip here a detailed description of this procedure. In order to properly replace
the abstracted activities, the control flow graph is properly settled by using

Log
Repository

User Interface

Process M ining
Gateway

Schem a Taxonom y

Log extraction request

Fetched log traces
Log

Handler

Fetched
traces

mineCFG

Log request

Clustering
param eters

Abstraction
Dictionary

Generalized
Control Flow

(Prelim inary) Generalized
W orklow Schem aUpdate Dictionary

Schem a
Taxonom y
Repository

Schem a Taxonom y
Taxon.
Handler

Update Dictionary

Adm inistration
Suite

Schem a
Hierarchy

Hierachy
Discovery

Build
Taxonomy

partition-FB

abstractActivities

mergeConstraints

normalizeDictionary

Trace
Clusters

generalizeSchemas

Generalized
W F Schem a

Taxonom y
Schem as

Taxonom y storage request

Discovered
W orkflow Schem as

mineWFSchema

Schem a
Repository Original

Constraints

Fig. 7. System Architecture.

procedure arrangeEdges, which simply transfers the edges of the abstracted
activities to p (Line 11). Finally, m1 and m2 are removed from both A and the
reference set S (Lines 12-13), and a novel activity pair is searched for, in order
to reiterate the whole abstraction procedure.

6 Discussion and Conclusions

We proposed a process mining approach that is meant to discover a hierarchical
model representing the analyzed process through different views, at different ab-
straction levels. The approach consists of several mining and abstraction tech-
niques, which are exploited in an integrated way. In particular, a preliminary
schema hierarchy, accurately modelling the process at hand, is first discovered,
by using a divisive clustering algorithm; the hierarchy is then restructured into
a taxonomy, by equipping each non leaf node with an abstract schema that
generalizes all the different schemas in the corresponding subtree.

The algorithms proposed in the paper have been implemented in JAVA and
integrated into a stand-alone system architecture that is sketched in Fig. 7.
For the sake of clarity and conciseness, major modules in the architecture are
labelled with the names of the algorithms and procedures previously presented in
the paper. Notably, different repositories are exploited to specifically manage the
main kinds of information involved in the process mining task: log data, schema
taxonomies, and abstraction relationships. Actually, a separate administration
suite allows for effectively browsing and exploiting all such data. By the way, two
further, “internal”, repositories are used to maintain and share data on the trace

clusters produced by the clustering algorithm and, respectively, the schemas
generated during both the mining phase and the restructuring one. Currently,
in order to offer the functionalities presented to a larger community of users, we
are working at integrating the architecture into the ProM [18] process mining
framework. At the time of writing, the hierarchical clustering module is already
available as an additional, plug-in, component for ProM.

References

1. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 16 (2004) 1128–1142

2. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., G.Schimm, Weijters,
A.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 47 (2003) 237–267

3. van der Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze
workflow graphs. In: Proc. 14th Int. Conf. on Advanced Information Systems En-
gineering. (2002) 534–552

4. van der Aalst, W., van Dongen, B.: Discovering workflow performance models from
timed logs. In: Proc. Int. Conf. on Engineering and Deployment of Cooperative
Information Systems (EDCIS 2002). (2002) 45–63

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proc. 6th Int. Conf. on Extending Database Technology (EDBT’98). (1998)
469–483

6. Cook, J., Wolf, A.: Automating process discovery through event-data analysis. In:
Proc. 17th Int. Conf. on Software Engineering (ICSE’95). (1995) 73–82

7. Muth, P., Weifenfels, J., M.Gillmann, Weikum, G.: Integrating light-weight workflow
management systems within existing business environments. In: Proc. 15th IEEE
Int. Conf. on Data Engineering (ICDE’99). (1999) 286–293

8. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Mining expressive process models
by clustering workflow traces. In: Proc. 8th Pacific-Asia Conference (PAKDD’04).
(2004) 52–62

9. Castellanos, M., Casati, F., Dayal, U., Shan, M.C.: ibom: A platform for business
operation management. In: Proc. Intl. Conf. on Data Engineering (ICDE05). (2005)

10. IDS Prof. Scheer, G.: (Aris-tool set. version 2.0 manual.) Saarbrcken 1994.
11. Malone, T.W., et al.: Tools for inventing organizations: Toward a handbook of

organizational processes. Management Science 45 (1999) 425–443
12. Stumptner, M., Schrefl, M.: Behavior consistent refinement of object life cycles.

ACM Transactions on Software Engineering and Methodology 11 (2002) 92–148
13. Stumptner, M., Schrefl, M.: Behavior consistent inheritance in uml. In: Proc. 19th

Int. Conf. on Conceptual Modeling (ER 2000). (2000) 527–542
14. Basten, T., van der Aalst, W.: Inheritance of behavior. Journal of Logic and

Algebraic Programming 47 (2001) 47–145
15. Lee, J., Wyner, G.M.: Defining specialization for dataflow diagrams. Information

Systems 28 (2003) 651–671
16. Liu, D.R., Shen, M.: Workflow modeling for virtual processes: an order-preserving

process-view approach. Information Systems 28 (2003) 505–532
17. Greco, G., Guzzo, A., Manco, G., Saccà, D.: Mining frequent instances on work-

flows. In: Proc. 7th Pacific-Asia Conference (PAKDD’03). (2003) 209–221
18. ProM: http://www.daimi.au.dk/PetriNets/tools/db/promframework.html.

