1.1 The CARPET Programming Language

CARPET is a programming language for the definition of cellular automata-based models and their transition functions, designed as an extension to ANSI C. A CARPET program consists of the following sections: a global declaration section, known as the cadef (CA DEFinition) section; a transition function; and an optional steering function.

The general layout of a CARPET program is as follows:

cadef

{

declarations

}

[transition function local variable declarations and subroutine prototypes]

{

transition function code

}

[transition function subroutines]

[

steering

{

steering function code

}

]

where items in […] brackets are optional. Note that the steering function must be located after the transition function and any subroutine functions called by the transition function.

The extensions to C defined in the CARPET language are described below.

1.1.1 The transition function

The transition function (and its subroutine functions, if any) may contain the following CARPET statements, in addition to C code:

cell_substate

DimX, DimY, DimZ

GetX, GetY, GetZ

NFolds

NProcs

random()

randomise()

srandom()

step

update()

· parameter references

1.1.2 cadef

Syntax
cadef

{

declaration;

declaration;

 ...

declaration;

}

Remarks
This is the declaration section of the program; it must precede any statement except for C pre-processor ones. declaration can be any of the following statements:

deterministic

dimension

neighbour

parameter

radius

region

state

threshold
Example

cadef

{

dimension 3;

radius 1;

region Inside (start+1:end-2, :,:);

state (float val; int val2);

neighbour N[6] ([-1,0,0]left,[1,0,0]right,

[0,-1,0]down, [0,1,0]up,

[0,0,-1]in, [0,0,1]out);

parameter (pi 3.14159);

deterministic;

threshold (cell_val == 3);

}

1.1.3 cell_<substate>

Syntax

cell_<substate>

Remarks
A user may refer to a specific substate of a cell by using the string “cell_” followed by the name of the substate.

N.B.: A user may modify the value of a substate using the update function (section 2.3.25).

Example

cadef

{

state (float temp);

}

float val;

val = cell_val+3;

1.1.4 cpt_abort

Syntax

cpt_abort()

Remarks
Calling this function causes the program to stop. It is only available inside the steering block of the program.

Example
An example is available in section 2.3.22.

1.1.5 cpt_save

Syntax

cpt_save (char *fname)

Remarks
This function saves all the CA Engine data to project and substate files. It does not save the AVS/Express related files. It is only available for steering. It uses the fname argument as a root for the generated files, as described in section 2.2.2.1.2 (omitting the AVS/Express related discussion).

Example
An example is available in section 2.3.22.

1.1.6 cpt_set_param

Syntax

cpt_set_param (float *par, float npar)

Remarks
This function alters the value of the global parameter pointed by par to that of npar. It is only available inside the steering statement. See section 2.3.14 for the definition of global parameters.

Example
An example is available in section 2.3.22.

1.1.7 deterministic (alias determin)

Syntax

deterministic;

Remarks
This statement signifies the commitment of the programmer that the cell update function is deterministic [Telford et al. 1998]. A deterministic program is one where the state of a cell is guaranteeed to be unchanged if the state of its local neighbourhood is unchanged. This is one of the necessary conditions for automatic inactive region detection (the other being that the user has not set active folds manually).

N.B.: A program whose update rule depends on step or random functions is non-deterministic (except if this only happens in step 0). Starting with release 1.2 of the software, detection of the deterministic keyword and the keyword step or any random function in a program is flagged by the parser as a warning (non-fatal).

Example

The example below gives an example where the incorrect use of deterministic leads to erroneous program execution.

cadef {

...

state (float val);

deterministic;

}

float newval;

{

if (0 == step) {

// OK

newval = GetX+GetY+GetZ;

} else if (step < 20) {

// not deterministic!

newval = 0.51*cell_val;

}

...

update(cell_val, newval);

}

1.1.8 dimension

Syntax

dimension <n>;

Remarks
Defines the number of dimensions of the CA Engine. It ranges from 1-3.

1.1.9 DimX, DimY, DimZ

Syntax

DimX, DimY, DimZ

Remarks
These values are the CA Engine dimension of the x, y and z axis respectively. Note that for x, which is split according to the number of processes, this is the size of the whole model.

Example

cadef {

...

state (int st);

...

}

{

DimX = 5;

// This is illegal!

if (DimX == cell_st) {

update(cell_st, DimY);

}

...

}
1.1.10 GetX, GetY, GetZ

Syntax

GetX, GetY, GetZ

Remarks
These values are the global x, y and z coordinates of the cell respectively.

Example

cadef

{

...

state (float dist);

...

}

float val;

{

if (0 == step) {

val = GetX+GetY+GetZ-3;

update(cell_dist, val);

}

...

}
1.1.11 neighbour (alias neighbor)

Syntax

neighbour <Nname>[<n>](<[x,y,z] alias>, ...,

<[x,y,z] alias>);

Remarks
This statement defines a logical neighbourhood. The x,y,z values must remain within the [-radius, radius] interval defined in the cadef statement. The alias for each neighbour is not compulsory; a cell can refer to its neighbour using the Nname[i] notation.

Example

cadef {

dimension 2;

radius 1;

state (float dist);

neighbour Neumann[4]([0,-1] North, [0,1], [-1,0], [1,0]);

}

float v1, v2;

{

v1 = North_dist;

v2 = Neumann_dist[0];
// Should be the same!

...

}
1.1.12 NFolds

Syntax

NFolds

Remarks
Returns the number of folds.

Example

cadef

{

...

}

NFolds = 3;

// illegal!

if (1 == NFolds) {

...
1.1.13 NProcs

Syntax

NProcs

Remarks
Returns the number of processes to which the CA is split in the x axis.

Example

cadef

{

...

}

Nprocs = 2;

// illegal!

int strip_length;

strip_length = DimX/(NProcs * NFolds);

...
1.1.14 parameter

Syntax

parameter (param_def_list)

where param_def_list is a comma-separated list of parameter definitions, where each parameter definition has one of the following forms:

· param_name

· param_name value

where value is a float, in any C float syntax.

· param_array[dim]

· param_array[dim] {array_list}

where array_list is a comma-separated list of floats, in any C float syntax, and dim is an integer index greater than 1.

Remarks
Declares and defines global CA parameters. Their values can only be changed during the run from the GUI, or by means of the cpt_set_param() primitive (section 2.3.6), since they are global to all the cells. They are of type float. Parameters are accessed in a CARPET program directly through their symbolic name. The maximum number of parameters (counting each element of parameter arrays) is 500, as set by the MaxNumParam variable in the file parser.h of the parser. The same file contains the definition of the maximum length of a parameter name (30 characters, including the array indices) MaxLenParam. The array list may have fewer than dim elements, in which case the additional values default to zero (non-initialised parameters default to 0 in any case).

Example

cadef {

...

parameter (mypar 2.0, par_array[3] {1.0, 4.0});
...

}

1.1.15 radius

Syntax

radius n;

Remarks
Defines the radius of the neighbourhood of the cells.

N.B.: radius is limited to

· 60, if dimension is 1;

· 2, if dimension is 2;

· 1, if dimension is 3.

1.1.16 random

Syntax

random (n);

Remarks
Returns a pseudo random integer between 0 and n, n being a positive integer.

N.B.: random() returns the same sequence of numbers every time it is called. To avoid this, the user may use the randomise() function. The use of this function could make a program non-deterministic (see section 2.3.7).

1.1.17 randomise (alias randomize)

Syntax

randomise();

Remarks
Creates a new seed for the random number generator.

1.1.18 region

Syntax

region <region-name> (<min_x>:<max_x>,<min_y>:<max_y>,

<min_z>:<max_z>);

Remarks
The user specifies a region as part of the cadef block of the program, using a declaration of the above form. This is used to allow global reduction operations within the steering block of the CARPET program. There is no limit to the number of regions that can be specified by the user. If the lower or upper bound of a co-efficient of the region is not defined, the specification defaults to the corresponding minimum or maximum for the respective dimension. The bounds of the region range from 1 to the size of the corresponding dimension. The keywords start and end are defined to be the minimum and maximum of the dimension in which they are found, thus allowing flexible region specification.

Because the dimensions of the model are specified at build time while the regions are declared at compile time, full error checking is not possible. Nonetheless, the following conditions are flagged as errors:

· Specifying minimum and maximum values for dimensions not used by the model;

· Specifying a negative integer as a range boundary;

· Specifying a maximum value less than a minimum value (this check is possible if the region boundaries are explicitly defined).

Example

cadef {

dimension 3;

region myregion (start+2:end-2,:,3:);
...

}

1.1.19 region_<op>

Syntax

region_<op> (<region-name>, <state>);

Remarks
The region_<op>() function is available inside the steering function. It returns a value of the same type as its state argument. It applies the reduction operation op to state state all the cells in region region-name. The supported operations are as follows:

max

min

sum

prod

land (logical and)
band (binary and)
lor (logical or)
bor (binary or)
lxor (logical exclusive or)
bxor (binary exclusive or)
The user can supply a global reduction operation inside their CARPET program to cater for operations other than the ones above. The prototype of a global reduction function corresponding to the region_<op>() function must comply with the following:

<datatype> cpt_<datatype>_<op> (int min_x, int max_x, int min_y, int max_y, int min_z, int max_z, int stateid, CptCell *cp)
N.B.: The automatically generated functions assume that the co-efficients of the model are in the [0,DIMw-1] range, w ({X,Y,Z}, in other words, they range from 0 to the maximum dimension of the model minus 1.

Note: the importance of the neutral element
When developing a global reduction function the user should take into account that a region can be defined so that the data in it are outside the domain of one or more processes. The functions automatically generated provide an algorithm which prevents erroneous calculation. However, because the operations are global, all the processes contribute to the global reduction of the result. In order to avoid incorrect global reduction of the data, the user can set the initial value of the variable containing the per-process result of the function to be equal to the neutral element for the corresponding operation.

Example
Examples of such functions are the ones automatically generated by the parser.

1.1.20 srandom

Syntax

srandom (n);

Remarks
Same as randomise(), only that the programmer may choose the seed argument through n.

1.1.21 state

Syntax
state(type substateA1, substateA2, …, substateAn,

type substateB1, substateB2, …, substateBn, …);

Remarks
The state of a cell consists of various typed substates. The allowed types are:

· (unsigned) char;

· (unsigned) short;

· (unsigned) int;

· float;

· double;

· arrays of the above.

1.1.22 steering

Syntax
steering {

statement;

...

statement;

}

Remarks
The steering function is an optional feature of a CARPET program by which the user can affect the flow of the program as a result of global reductions on regions of the model (see section 2.3.18 for the definition of regions in a CARPET program).

The steering function is defined in a separate section of the CARPET program, similarly to the update function. The main difference is that the update function is applied separately in each cell, whereas the steering function is global for the model. Any code inside the steering statement is copied verbatim to the generated file, with the exception of the region_<op>() statements which are translated to a global reduction function, as shown in section 2.3.19. The user can modify the flow of the program inside the steering section in either of the following two ways:

· call the function cpt_set_param (float *old_p, float new_p), which sets the global parameter pointed by old_p to the value of new_p;

· call the function cpt_abort(), which terminates the execution of the program without exiting the CA Engine.

Inside the steering code, the user has access only to the following CARPET defined variables:

· DimX, DimY, DimZ;

· step;

· global parameter values.

Example
cadef {

dimension 3;

region Inside (start+2:end-2,:,:);

...

state (float val);

parameter (pi 3.141);

}

...

steering {

float min = region_min (Inside, val);

if (min < 4.0) {

cpt_set_param (&pi, 3.14159);

} else if (min > 100.0) {

cpt_save (“aborted”);

cpt_abort ();

}

}

1.1.23 step

Syntax

step

Remarks
This denotes the current CA Engine iteration. The initial value is 0. Allows time-dependent update function development.

1.1.24 threshold

Syntax
threshold (expression);

Remarks
Defines a C expression, which, if satisfied, is equivalent to the cell being idle for the past CA Engine evolution. It is used in conjunction with deterministic for the inactive region detection.

Example
cadef

{

...

state (float val; int val2;);

threshold (cell_val == 3);

...

}
1.1.25 update

Syntax

update (cell_substate, value);

Remarks
This is the only way to set the value of a cell substate by means of the program. This is done in order to ensure that the state of all cells is set in lock step in the next generation after the update has been issued, thus preventing race conditions.

