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Abstract. A novel technigue to search for functional modules in a protein-protein
interaction network is presented. The network is represented by theadjama-

trix associated with the undirected graph modelling it. The algorithm introduces
the concept ofjuality of a sub-matrix of the adjacency matrix, and applies a
greedy search technique for finding local optimal solutions made cfedsub-
matrices containing the maximum number of ones. An initial random solution,
constituted by a single protein, is evolved to search for a locally optimal solutio
by adding/removing connected proteins that best contribute to improvptie

ity function. Experimental evaluations carried out®accaromyces Cerevisiae
proteins show that the algorithm is able to efficiently isolate groups of biologi-
cally meaningful proteins corresponding to the most compact sets cdatitens.

1 Introduction

One of the most important challenges of the post-genomidsetiae analysis of the
complex biological processes in which proteins are indh\Recently, great attention
has been addressed to the whole set of protein interactf@gieen organism, known
asinteractomeor protein-protein interaction (PPI) networkMany studies have been
driven to predict and understand functional propertiesrofgins starting from interac-
tomes (e.g., [6,5, 12]). In the last few years, a vast amofinew protein interactions
have been discovered and made available. This has spugesténich for automated
and accurate tools to identify significant parts of this data

PPI networks are often modelled as graphs where nodes egprpsoteins and
edges represent pairwise interactions. Many currentteffom at clustering dense re-
gions of a given PPI network, since it has been observed Hgdigts that groups of
highly interacting proteins could be involved in commonlbgical processes. A num-
ber of approaches have been proposed to extract relevantl@esddom PPI networks
[4,5,1,13,12]; some of them rely on traditional hierarehiclustering methods [7],
other ones are based on graph partitioning algorithms [B]1The obtained results
have been found to strongly depend on the adopted appraationehe input parame-
ters fixed by the user. Most methods, in fact, require the rarrabclusters to be known
in advance. However, this information is not always avadathus some algorithms
are executed with different cluster numbers and resulisfgaty a quality criteria are
considered to be the most reliable. Obviously, the negessitunning an algorithm



different times may cause losses in efficiency. Another jerotthat arises in PPI net-
works is the choice of the metric adopted to measure thertistbetween two proteins.
In this kind of graphs, due to the structure of the interaxdjat has been found that the
distances among many nodes are often identical. In suchealvasdopted clustering
method fails in finding good solutions, due to the presendesthat have to be solved
arbitrarily.

In this paper, we present a novel technique, based on a stedhg approach [9],
to search for functional modules in protein-protein int&ien networks. Co-clustering
methods, differently from clustering approaches, aim muianeously grouping both
the dimensions of a data set. We model a protein-proteimaation network by an
undirected graph and represent it as the binary adjacentxmbof this graph, where
rows and columns correspond to proteins and a 1 entry at #igqo(;,j) means that
the proteing andj interact. ThePPI network Co-Clusteringoased algorithm, named
PINCoC applies a greedy search technique for finding local optsoéltions made
of dense sub-matrices containing the maximum number of. driesnotion ofquality
of a sub-matrix is introduced. High quality sub-matricesidd correspond to modules
of the input interactome having a significant biologicaldtion. The algorithm starts
with an initial random solution constituted by a single pintand searches for a locally
optimal solution by adding/removing connected proteitas biest contribute to improve
thequality function. In order to escape poor local maxima, with a fixezbability, the
protein causing the minimal decrease of theality function is removed. When the
algorithm cannot improve any more the solution found sotfe,computed cluster is
returned. To limit the effects of the initial random choideagrotein to build a cluster,
one step of backtracking is executed. Each protein belgnigirthe solution is at turn
temporary removed, and eventually substituted with a nesvtbat best improves the
quality function. At this point a new random protein is chosen, aral fihocess is
repeated until all the proteins are assigned to any groupelhard scenario of strongly
connected networks, where the detection of the most fumallip related proteins is a
difficult task due to the high number of connections, our atgm is able to efficiently
isolate those groups of proteins corresponding to the nomspact sets of interactions.
In the experimental result section we validate the clugtensd byPINCoC through the
SGD Gene Ontology Term Findand compare our results with other studies made in
the literature [1, 8]. We show that the obtained clusterseregnized to be biologically
meaningful.

The paper is organized as follows. The next section defiragrtiblem of clustering
PPI networks and the adopted notation. Section 3 descritgeproposed algorithm.
Section 4 illustrates the experiments we carried out on afsgt Cerevisiae proteins
and compare the obtained results with those of [1, 8]. RinelISection 5 we draw our
conclusions.

2 Notation and Problem definition

In this section the notation used in the paper is introducetthe formalization of the
problem of clustering PPI networks as a co-clustering mobis provided.



A PPI networkP can be modelled as an undirected gréph= (V, E) where the
nodesV correspond to the proteins and the edgesorrespond to the pairwise inter-
actions. If the network is constituted By proteins, the associated graph can be repre-
sented with itV x N adjacency matrixd, where the entry at positiof, ;) is 1 if there
is an edge from nodéto nodej, 0 otherwise. Since the gragh is undirected, the ad-
jacency matrix is symmetric. Note that the mathematicahitésn of adjacency matrix
assumes that the main diagonal contaibvalue at positiort, 7) only if there is a loop
at vertex:. In the biological context a protein connected with itselhbt meaningful.
However, by convention, we assume that the main diagondleo&tljacency matrixd
of a PPI network contains all ones. This means that if a rowt @ constituted by all
zeroes except one positionwith value 1, the protein corresponding to nad#oes not
interact with any other protein. The problem of finding deresgons of a PP| network
P can thus be transformed in that of finding dense subgraplegraph’ associated
with P, and consequently, dense sub-matrices of the adjacencixmatorresponding
to G. Searching for dense sub-matrices of a matrisan be viewed as a special case of
co-clustering a binary data matrix where the set of rows ahghens represent the same
concept. In order to better explain the idea, first a definitibco-clustering is given, and
then the formalization of the problem of clustering prosets a co-clustering problem
is provided. Co-clustering [9], also known as bi-clustgridifferently from clustering,
tries to simultaneously group both the dimensions of a dataFor example, when
clustering genes with respect to a set of experimental tiondi not all the genes are
relevant for all the experimental conditions, but groupgefies are often co-regulated
and co-expressed only under specific conditions. In thisigggjipn domains the idea
of co-clustering both the dimensions turns to be more baaéfad interesting than
clustering with only one dimension. Let be anN x M data matrix of binary values.
Let X = {I,...,In} denote the set of rows of andY = {Jy,..., Jas} the set of
columns ofA.

Definition 1. A co-cluster is a sub-matri® = (I, J) of A, where[ is a subset of the
rows X of A, andJ is a subset of the columns of A.

The problem of co-clustering can then be formulated asvidi@iven a data ma-
trix A, find row and column maximal groups which divide the matritoiregions that
satisfy some homogeneity characteristics. The kind of lgameity a co-cluster must
fulfil depends on the application domain. In our case we wbkidto find as many pro-
teins as possible having the highest number of interactitms corresponds to identify
highly dense squared sub-matrices, i.e. containing as thaajues as possible. Higher
the number of ones, more likely those proteins are to be imally related. In the
following we introduce aquality function that tries to obtain both these objectives.
Note that the adjacency matrik associated with a PPl network is a squared matrix of
dimensionN x N, whereN is the number of proteins. This means that any co-cluster
B = (I,J) of A has the property that the sétof rows and the sef of columns
coincide. In particular, being symmetric, any co-cluster found is symmetric too.

Let a;; denote thenean valuef theith row of the co-clusteB = (I, J), anday;
the mean of thgth column of B = (I, .J). More formally,

o= 1 . 1 .
iy = 177 D jes Gij» @ndar; = 7 e @i



Thevolumevg of a co-clustetB = (I, J) is the number ol entriesa;; such that

1€ landj € J, thatisvg = ZieI,jeJ aj.
Definition 2. Given a co-clustetB = (I,.J), let a;; be the mean of thé&h row of
B, and leta;; be the mean of thgth column of3. The power mean aB of orderr,

denoted adMI,.(B) is defined as

Dier(@in)” + 2 5e,(ar;)"
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M, (B) =

SinceB is symmetric|I| = |J| anda;; = ar;, thus the power mean can be reduced to
>ier(ais)’
1|

A quality measure based on volume and row/column mean, llbatsthe detection
of maximal and dense sub-matrices, can be defined as follows.

M, (B) =

Definition 3. Given a co-clusteB = (I, J), let M,.(B) be the power mean d8 of
orderr. The quality ofB is defined ag)(B) = M,.(B) x vp.

i.e. the quality of a co-clusteB is the product between the power meanbf order
r, and the number of non-zero entriesBn The quality Q(B) of the co-cluste3 =
(I,J)is equal tgI]-|I| only when each entry aB is one, thug)(B) is upper bounded
by its volume, i.eQ(B) < vp < |I|-|I|. WhenB contains zero entries, tlggiality is
a fraction ofvp. Notice that, adding a row/column composed only by onesmpxéng
a row/column composed only by zeros, always improvegtradity of the co-cluster.
Whenr = 1 the power mean coincides with the standard mean. Howeeméan
of a binary matrix of fixed volume (i.e., having the same numifeones), assumes
always the same value independently where the 1/0 valugsoaitoned. This means
that it is not able to distinguish matrices correspondind®Ri networks having the
same total number of interactions but different struct@ensider for example the two
sub-matrices and the associated protein graphs showedumeFL. The total number
of ones, i.e., of interactions, is equal 18 in both cases, but the way the proteins in-
teract is different. Intuitively, the graph in Figure 1(l@presents a more compact set
of interactions than the one in Figure 1(a). If we computepgbeer mean of ordet
the value i9).260 for both of the illustrated matrices, whereas the power noéamder
2 is 0.140 for the matrix on the left an@.148 for the matrix on the right. Since the
volume (the number of ones) 18 for both matrices, thquality function in the former
case is3.38 for both the matrices, while for = 2 it is 1.820 for the first matrix and
1.924 for the second one. Thus,= 2 is more suited to characterize different ways in
which proteins interact. However, it is worth to point ouatlincreasing the value of
biases theuality function towards matrices containing a low number of zelméf
lower volume. Thus the choice efshould be done by considering the density of the
adjacency matrix. In the next section tA@I network Co-Clusteringoased algorithm
PINCoC is presented. The method uses the concequafity to find maximally dense
regions in the binary data adjacency matrix.
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Fig. 1. Matrices with equal mean value but different network structure.

3 Algorithm Description

In this section we prese®INCoC an algorithm for clustering a PPI netwoFkrepre-
sented through the adjacency matfif the graph associated with. Let A = (X, Y)
be theN x N adjacency matrix wher& = {I,..., I} denote the set of rows of
andY = {Ji,..., Jy} the set of columns afil. Each row/column ofd corresponds to
a protein, thus in the following we use the two terms as synay

A co-clusterB = (I, J) can be encoded as a binary stringf length N, where N
is the number of rows/columns of the adjacency matrix. Ifihleie of thei-th bit is set
to 1 it means that the correspondiirth protein belongs to the co-cluster.

Algorithm PINCoC
Input:
- a0-1 adjacency matrixd = (X, Y') of dimensionN x N
- maximum number of iterations allowetlaxz_flips
- probability p of a REMOVE-MIN move () = no remove move)
Ouput: aclusteringB = {Bi, ..., By} of the PPI network corresponding b
setB = (), Ag(Xo, Yo) = A(X,Y),i=0
while A; is not the empty matrix
choose at random a rowof A;, setl;, = {k}, J; = {k}, B; = (I;, J;)
setf = 0, quality = —oo, local_.mazimum = false
while f < maz_flips and notlocal_-mazimum
let0 < p < 1 arandom generated number
if p > pthen
let B; = (I;, J;) the co-cluster obtained from;
after the move that maximize thyiality
if Q(B;) > Q(B;) then
accept the movel; = I;, J; = J;, and updateQ (B;)

else
setlocal_-maximum = true
else
remove the row/column aB; scoring the minimum decrease of tijeality function
f=r+1
end while
execute one-pass backtracking
B =BUB;
setX; 1 =Xy — I, Yip1 =Y — Jiy Ajpr = (Xig1, Yigr)
end while
assign the singletons
return the clusterind® = {B1,..., By}

Fig. 2. ThePINCoC algorithm.



The algorithm, showed in figure 2, receives in inpu-a& adjacency matrix, the
maximum number of timesi{ax_flips) that a flip can be done, and the probability (
of executing a REMOVE-MIN move (these two latter input paedens are explained
shortly).PINCoC starts with an initial random co-clust& = (I;, J;) constituted by a
single row and a single column such tiiat {k} and.J = {k}, wherel < k < Nisa
random row/column index. Then it evolves the initial coster by successive transfor-
mations ofB;, until thequality function is improved. The transformations consist in the
change of membership (callgd:p or move) of the row/column that leads to the largest
increase of theuality function. If a bit is set frond to 1 it means that the correspond-
ing protein, which was not included in the co-clust®y, is added taB;. Viceversa, if
a bit is set froml to 0 it means that the corresponding protein is removed from the
co-cluster. During its execution, in order to avoid get pragh into poor local maxima,
instead of performing the flip maximizing thewality, with a user-provided probabil-
ity p the algorithm selects the row/column Bf scoring the minimum decrease of the
quality function, and removes it fron®;. This kind of flip is called REMOVE-MIN.
The flips are repeated until either a preset of maximum numbéips (max_flips) is
reached, or the solution cannot ulteriorly be improved (gagtped into a local maxi-
mum). Until the stop condition is not reached, it execute EMRVE-MIN move with
probability p, and a greedy move with probability ¢ p). When the inner loop stops,
the co-clusteB; = (I;, J;) is returned. At this point the algorithm performs one step
of backtracking, i.e. for each € I;, it temporary removes from I; and tries to find
a nodel such thatl; — {h} U {i} improves thequality of B;. In such a casé is
removed and is added. If more than onenode exists, the one generating the better
improvement ofQ)(B;) is chosen. FinallyB; is added taB, its rows/columns are re-
moved fromA, a new random co-cluster is generated, and the processeiategbuntil
all the rows/columns have been assigned. Some of the dusieained at the end of
the algorithm could be constituted by a single protein bseall its neighboring nodes
have already been assigned to a group. This situation hagpethose proteins that
have few interactions and thus they have not been assigraad/tgroup because their
contribution was considered marginal. However, we cho$etalle such singletons by
adopting the following strategy. Létbe a singleton proteim,, . . . , ny, its neighboring
proteins, i.e. the proteins having a direct interactiornitandB,,, , . . . B,,,, their cor-
responding clusters (note that thg, are not necessarily distinct). Théris assigned
to the clusterB,,, s.t. Q(B,, U {h}) is maximum, i.e. whosquality function has the
better improvement or the lowest decrease. In the expetahessults section we show
thatPINCoC is able to generate clusters of proteins both dense andjigalty mean-
ingful. The temporal cost of the algorithm to compute a ndusterB; = (I;, J;) is
upper bounded by

maz_flipsx Cyx[(1=p) X N+pN]+Cyx | I; | XN = Cyx N x(mazx_flips+ | I; |)

where C, is the cost of computing thgquality of the co-cluster after performing a
move. In order to reduce the complexity @f, we maintain, together with the current
co-clusterB; = (I;, J;), the mean values,; ;, for eachi € I, and the volume; ;. Thus,
computing thg ;| mean valueg, ; (1 < i < |I|) after performing a move can be done
efficiently in time|I;], i.e. in time linear in the co-cluster dimensions, by exjihgj the
values maintained together with the current co-cluster.
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Fig. 3. (a) Clusters validation by Gene Ontology term finder; (b) graphical viethe obtained
clusters drawn using PIVOT [10].

4 Experimental Validation

In this section we applfPINCoC on a set of 34 proteins coming from the well known
S. cerevisiametwork. This set, extracted from tH@P databaseh(ttp://dip.doe-mbi
.ucla.edu) has already been well studied and characterized in thatite= [6, 1]. In the
following, we first present the clusters obtained by our radtand we validate their
biological meaningfulness by using ti®D Gene Ontology Term Findénttp://db
.yeastgenome.org/cgi-bin/GO/goTermFinddhen we compare our results with those
obtained by Arnau and Mar [1], and King et al. [8] showing that the clustering re-
turned by our method is meaningful and comparable with therdivo approaches.
The PINCoC algorithm has been implemented in C++, and all the experisnen
have been performed on a Pentium 4 machine, 1800MHz, 1GB RAMSsIingr = 2,
max_flips = 100, p = 0.1. The results obtained are summarized in figure 3. In par-
ticular, figure 3(a) shows the table containing the sevestets returned, the GO term
obtained when querying theGD Gene Ontology Term Findaiith the proteins be-
longing to our clusters, and the corresponding p-value pFiaglue is a commonly used
measure of the statistical and biological significance dfister. It gives the probability
that a given set of proteins occurs by chance. In particgieen a cluster of size and
m proteins sharing a particular biological annotation, ttrenprobability of observing



m Or more proteins that are annotated with the same GO termfmhbx?verifproteins,
M —
according to the Hypergeometric Distribution,jis: value = > ;" % where
N is the number of proteins in the database withof them known to have that same
annotation [2]. Thus, the closer the p-value to zero, theensignificant the associ-
ated GO term. In the table we show the smallest p-value fourd @l the functional
groups. We can observe that the p-value of our clusterssvaeeweer2.25- 10~10
and5.3- 10~%, values all sufficiently low to consider relevant the bidtad meaning-
fulness of the correspondent clusters. Figure 3(b) showshgal representation of
the interactions among the considered proteins, indichyethe names according to
the Gene Ontology notation, and a list of the proteins padting to each cluster. The
graph has been drawn using PIVOT [10]. It is worth to pointtbat the biological sig-
nificance of the seven clusters agrees with the functioralstfication reported in [6].
PINCoC in fact, is able to correctly distinguish proteins invahia different processes
such as, for example, actin patch assembly and patch médiatiocytosis (Clustdr),
actin-capping proteins (Clustéy, CDC42 signaling pathway (Clustg), control of the
morphogenesis checkpoint (Clus®r

In order to better assess the quality of the results obtdiyedINCoC we now
compare them with those obtained in [1] and [8]. Arnau andiMHi] proposed the hi-
erarchical clustering method UVCLUSTER, that iterativekplores the distance data
sets to analyze protein-protein interaction networks. UMSTER uses an agglomera-
tive hierarchical clustering twice. The first time it consigl theprimary distancesthat
is, the minimum number of interactions required to conneotproteins, and generates
K alternative clustering solutions. The value of K must beegiby the user. The second
time it clusters again the set of proteins but usingdbeondary distanceslefined as
the percentage of clusters in which two proteins do not apioegther.

The second algorithm we consider for comparison is the ResdrNeighborhood
Search Clustering (RNSC), proposed by of King et al. [8]. RNSa cost-based local
search algorithm that explores the solution space of alptssible clusterings to mini-
mize a cost function that refelcts the number of inter-aduand intra-cluster edges.

Table 1 reports the clusterings obtained PNCoC UVCLUSTER and RNSC
with the list of proteins for each cluster, the fraction obgins in each cluster that
have been recognized to participate to a specific biologicadess with the p-value re-
ported in the last column. RNSC needs some input paramétersr experimentation
we used the values reported by Beghand van Helden [4], who have extensively ana-
lyzed RNSC to determine the best parameter values with cespg) the best match-
ing complex found in a cluster, denoted by RNS@nd(zi) how well a given cluster
isolates complexes from other clusters, denoted by RN8IGte that the p-values of
the clusters reported for UVCLUSTER differ from those app®gin [1] because the
authors computed the values on the January 2004 release bffhdatabase, contain-
ing 4721 proteins. At present DIP contains 5027 proteins.daah cluster found by
PINCoC we report the cluster (or the clusters) obtained by UVCLEBRTand RNSC
that has the maximum number of common proteins VAENCoC The names of the
common proteins with UVCLUSTER are highlighted in bold, $boof the common
proteins with RNSC are highlighted in italic. The symbol frreans that no significant
ontology term has been found for that cluster. The tabletpaint that our first clus-



ter is bigger than those generated by both UVCLUSTER and RN&E has a lower
p-value. The second cluster found BYNCoC partially includes two different clus-
ters found by UVCLUSTER, and other two different clusterarfd by RNSC (note
that we use RNSE s for short when both the two RNSC runs returned the same clus-
ter). Both the two groups generated by UVCLUSTER and thosemggeed by RNSC
have higher p-value than tHINCoC cluster. In correspondence of the third cluster
generated bYINCoC both UVCLUSTER and RNSC found two groups without any
biological meaning. The fourth and fifth clusters are ideadtfor all the methods, ex-
cept than RNSG which was able to score the best p-value for the clustéc42, cla4,
gic2, bnil thanks to the proteibnil, which does not appear in the correspondent clus-
ter of the other methods. This is the only case in wHidNCoC does not reach the
best p-value score. The seventh cluster generat&NgoC does not contain the pro-
teinappl, in fact this protein is not involved in the biological pr@seof the other two.
Finally, it worth to note that UVCLUSTER and RNSC returned #ingleton clusters
acf2, yjr083c, ynl086w, ypi236c¢c, ygr268c, ybr108w, andrrin our approach this is
not possible because of our policy of assigning singletemehts to the most suited
clusters. InterestinglyPINCoC assigns acf2, yjr083c, and ynl086w to the first clus-
ter, ypi236¢, ygr268c, and ybrl08w to the sixth cluster, antb to the second one,
by obtaining a better p-value. The table points out the verydgresults ofPINCoC
comparable with those obtained from the other two methods.

5 Concluding Remarks

We proposed a novel technique to detect significant funatiorodules in a protein-
protein interaction network. The main novelty of the appio& the formalization of
the problem of finding dense regions of a PPl network as austaiing problem. The
method has two fundamental advantages with respect to afipgpaches in the liter-
ature. The first is that the number of clusters is automdyickdtermined by the algo-
rithm. Furthermore, the problem of ties occurring in protprotein distances plagu-
ing algorithms based on hierarchical clustering is imglicsolved. As proved by tests
carried out onS. cerevisiagroteins, the presented method returns partitions that are
biologically relevant, correctly clustering proteins whiare known to be involved in
different biological processes. Future research aimsiagiNCoCon sets of pro-
teins of other organisms, to characterize proteins whasledical functions are not yet
completely known.
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