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Abstract. A novel technique to search for functional modules in a protein-protein
interaction network is presented. The network is represented by the adjacency ma-
trix associated with the undirected graph modelling it. The algorithm introduces
the concept ofquality of a sub-matrix of the adjacency matrix, and applies a
greedy search technique for finding local optimal solutions made of dense sub-
matrices containing the maximum number of ones. An initial random solution,
constituted by a single protein, is evolved to search for a locally optimal solution
by adding/removing connected proteins that best contribute to improve thequal-
ity function. Experimental evaluations carried out onSaccaromyces Cerevisiae
proteins show that the algorithm is able to efficiently isolate groups of biologi-
cally meaningful proteins corresponding to the most compact sets of interactions.

1 Introduction

One of the most important challenges of the post-genomic erais the analysis of the
complex biological processes in which proteins are involved. Recently, great attention
has been addressed to the whole set of protein interactions of a given organism, known
as interactomeor protein-protein interaction (PPI) network. Many studies have been
driven to predict and understand functional properties of proteins starting from interac-
tomes (e.g., [6, 5, 12]). In the last few years, a vast amount of new protein interactions
have been discovered and made available. This has spurred the search for automated
and accurate tools to identify significant parts of this data.

PPI networks are often modelled as graphs where nodes represent proteins and
edges represent pairwise interactions. Many current efforts aim at clustering dense re-
gions of a given PPI network, since it has been observed by biologists that groups of
highly interacting proteins could be involved in common biological processes. A num-
ber of approaches have been proposed to extract relevant modules from PPI networks
[4, 5, 1, 13, 12]; some of them rely on traditional hierarchical clustering methods [7],
other ones are based on graph partitioning algorithms [3, 11, 8]. The obtained results
have been found to strongly depend on the adopted approach, and on the input parame-
ters fixed by the user. Most methods, in fact, require the number of clusters to be known
in advance. However, this information is not always available, thus some algorithms
are executed with different cluster numbers and results satisfying a quality criteria are
considered to be the most reliable. Obviously, the necessity of running an algorithm



different times may cause losses in efficiency. Another problem that arises in PPI net-
works is the choice of the metric adopted to measure the distance between two proteins.
In this kind of graphs, due to the structure of the interactions, it has been found that the
distances among many nodes are often identical. In such a case the adopted clustering
method fails in finding good solutions, due to the presence ofties that have to be solved
arbitrarily.

In this paper, we present a novel technique, based on a co-clustering approach [9],
to search for functional modules in protein-protein interaction networks. Co-clustering
methods, differently from clustering approaches, aim at simultaneously grouping both
the dimensions of a data set. We model a protein-protein interaction network by an
undirected graph and represent it as the binary adjacency matrix A of this graph, where
rows and columns correspond to proteins and a 1 entry at the position (i,j) means that
the proteinsi andj interact. ThePPI network Co-Clusteringbased algorithm, named
PINCoC, applies a greedy search technique for finding local optimalsolutions made
of dense sub-matrices containing the maximum number of ones. The notion ofquality
of a sub-matrix is introduced. High quality sub-matrices should correspond to modules
of the input interactome having a significant biological function. The algorithm starts
with an initial random solution constituted by a single protein and searches for a locally
optimal solution by adding/removing connected proteins that best contribute to improve
thequality function. In order to escape poor local maxima, with a fixed probability, the
protein causing the minimal decrease of thequality function is removed. When the
algorithm cannot improve any more the solution found so far,the computed cluster is
returned. To limit the effects of the initial random choice of a protein to build a cluster,
one step of backtracking is executed. Each protein belonging to the solution is at turn
temporary removed, and eventually substituted with a new one that best improves the
quality function. At this point a new random protein is chosen, and the process is
repeated until all the proteins are assigned to any group. Inthe hard scenario of strongly
connected networks, where the detection of the most functionally related proteins is a
difficult task due to the high number of connections, our algorithm is able to efficiently
isolate those groups of proteins corresponding to the most compact sets of interactions.
In the experimental result section we validate the clustersfound byPINCoC through the
SGD Gene Ontology Term Finderand compare our results with other studies made in
the literature [1, 8]. We show that the obtained clusters arerecognized to be biologically
meaningful.

The paper is organized as follows. The next section defines the problem of clustering
PPI networks and the adopted notation. Section 3 describes the proposed algorithm.
Section 4 illustrates the experiments we carried out on a setof S. Cerevisiae proteins
and compare the obtained results with those of [1, 8]. Finally, in Section 5 we draw our
conclusions.

2 Notation and Problem definition

In this section the notation used in the paper is introduced and the formalization of the
problem of clustering PPI networks as a co-clustering problem is provided.



A PPI networkP can be modelled as an undirected graphG = (V,E) where the
nodesV correspond to the proteins and the edgesE correspond to the pairwise inter-
actions. If the network is constituted byN proteins, the associated graph can be repre-
sented with itsN ×N adjacency matrixA, where the entry at position(i, j) is 1 if there
is an edge from nodei to nodej, 0 otherwise. Since the graphG is undirected, the ad-
jacency matrix is symmetric. Note that the mathematical definition of adjacency matrix
assumes that the main diagonal contains a1 value at position(i, i) only if there is a loop
at vertexi. In the biological context a protein connected with itself is not meaningful.
However, by convention, we assume that the main diagonal of the adjacency matrixA
of a PPI network contains all ones. This means that if a row ofA is constituted by all
zeroes except one positioni with value 1, the protein corresponding to nodei does not
interact with any other protein. The problem of finding denseregions of a PPI network
P can thus be transformed in that of finding dense subgraphs of the graphG associated
with P, and consequently, dense sub-matrices of the adjacency matrix A corresponding
to G. Searching for dense sub-matrices of a matrixA can be viewed as a special case of
co-clustering a binary data matrix where the set of rows and columns represent the same
concept. In order to better explain the idea, first a definition of co-clustering is given, and
then the formalization of the problem of clustering proteins as a co-clustering problem
is provided. Co-clustering [9], also known as bi-clustering, differently from clustering,
tries to simultaneously group both the dimensions of a data set. For example, when
clustering genes with respect to a set of experimental conditions, not all the genes are
relevant for all the experimental conditions, but groups ofgenes are often co-regulated
and co-expressed only under specific conditions. In this application domains the idea
of co-clustering both the dimensions turns to be more beneficial and interesting than
clustering with only one dimension. LetA be anN × M data matrix of binary values.
Let X = {I1, . . . , IN} denote the set of rows ofA andY = {J1, . . . , JM} the set of
columns ofA.

Definition 1. A co-cluster is a sub-matrixB = (I, J) of A, whereI is a subset of the
rowsX of A, andJ is a subset of the columnsY of A.

The problem of co-clustering can then be formulated as follows: given a data ma-
trix A, find row and column maximal groups which divide the matrix into regions that
satisfy some homogeneity characteristics. The kind of homogeneity a co-cluster must
fulfil depends on the application domain. In our case we wouldlike to find as many pro-
teins as possible having the highest number of interactions. This corresponds to identify
highly dense squared sub-matrices, i.e. containing as many1 values as possible. Higher
the number of ones, more likely those proteins are to be functionally related. In the
following we introduce aquality function that tries to obtain both these objectives.
Note that the adjacency matrixA associated with a PPI network is a squared matrix of
dimensionN × N , whereN is the number of proteins. This means that any co-cluster
B = (I, J) of A has the property that the setI of rows and the setJ of columns
coincide. In particular, beingA symmetric, any co-cluster found is symmetric too.

Let aiJ denote themean valueof theith row of the co-clusterB = (I, J), andaIj

the mean of thejth column ofB = (I, J). More formally,

aiJ = 1
|J|

∑
j∈J aij , andaIj = 1

|I|

∑
i∈I aij



ThevolumevB of a co-clusterB = (I, J) is the number of1 entriesaij such that
i ∈ I andj ∈ J , that isvB =

∑
i∈I,j∈J aij .

Definition 2. Given a co-clusterB = (I, J), let aiJ be the mean of theith row of
B, and letaIj be the mean of thejth column ofB. The power mean ofB of orderr,
denoted asMr(B) is defined as

Mr(B) =

∑
i∈I(aiJ )r +

∑
j∈J(aIj)

r

|I| + |J |

SinceB is symmetric,|I| = |J | andaiJ = aIj , thus the power mean can be reduced to

Mr(B) =

∑
i∈I(aiJ )r

|I|

A quality measure based on volume and row/column mean, that allows the detection
of maximal and dense sub-matrices, can be defined as follows.

Definition 3. Given a co-clusterB = (I, J), let Mr(B) be the power mean ofB of
order r. The quality ofB is defined asQ(B) = Mr(B) × vB .

i.e. the quality of a co-clusterB is the product between the power mean ofB of order
r, and the number of non-zero entries inB. The quality Q(B) of the co-clusterB =
(I, J) is equal to|I| · |I| only when each entry ofB is one, thusQ(B) is upper bounded
by its volume, i.e.Q(B) ≤ vB ≤ |I| · |I|. WhenB contains zero entries, thequality is
a fraction ofvB . Notice that, adding a row/column composed only by ones or removing
a row/column composed only by zeros, always improves thequality of the co-cluster.

Whenr = 1 the power mean coincides with the standard mean. However, the mean
of a binary matrix of fixed volume (i.e., having the same number of ones), assumes
always the same value independently where the 1/0 values arepositioned. This means
that it is not able to distinguish matrices corresponding toPPI networks having the
same total number of interactions but different structure.Consider for example the two
sub-matrices and the associated protein graphs showed in Figure 1. The total number
of ones, i.e., of interactions, is equal to13 in both cases, but the way the proteins in-
teract is different. Intuitively, the graph in Figure 1(b) represents a more compact set
of interactions than the one in Figure 1(a). If we compute thepower mean of order1
the value is0.260 for both of the illustrated matrices, whereas the power meanof order
2 is 0.140 for the matrix on the left and0.148 for the matrix on the right. Since the
volume (the number of ones) is13 for both matrices, thequality function in the former
case is3.38 for both the matrices, while forr = 2 it is 1.820 for the first matrix and
1.924 for the second one. Thus,r = 2 is more suited to characterize different ways in
which proteins interact. However, it is worth to point out that increasing the value ofr
biases thequality function towards matrices containing a low number of zeroesbut of
lower volume. Thus the choice ofr should be done by considering the density of the
adjacency matrix. In the next section thePPI network Co-Clusteringbased algorithm
PINCoC, is presented. The method uses the concept ofquality to find maximally dense
regions in the binary data adjacency matrix.
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Fig. 1.Matrices with equal mean value but different network structure.

3 Algorithm Description

In this section we presentPINCoC, an algorithm for clustering a PPI networkP repre-
sented through the adjacency matrixA of the graph associated withP. LetA = (X,Y )
be theN × N adjacency matrix whereX = {I1, . . . , IN} denote the set of rows ofA
andY = {J1, . . . , JN} the set of columns ofA. Each row/column ofA corresponds to
a protein, thus in the following we use the two terms as synonyms.

A co-clusterB = (I, J) can be encoded as a binary stringb of lengthN , whereN

is the number of rows/columns of the adjacency matrix. If thevalue of thei-th bit is set
to 1 it means that the correspondingi-th protein belongs to the co-cluster.

Algorithm PINCoC
Input:
- a0-1 adjacency matrixA = (X, Y ) of dimensionN × N
- maximum number of iterations allowedmax flips
- probabilityp of a REMOVE-MIN move (0 = no remove move)
Ouput: a clusteringB = {B1, . . . , Bk} of the PPI network corresponding toA
setB = ∅, A0(X0, Y0) = A(X, Y ), i = 0
while Ai is not the empty matrix
choose at random a rowk of Ai, setIi = {k}, Ji = {k}, Bi = (Ii, Ji)
setf = 0, quality = −∞, local maximum = false

while f < max flips and notlocal maximum
let 0 ≤ p ≤ 1 a random generated number
if p > p then

let Bi = (Ii, Ji) the co-cluster obtained fromBi

after the move that maximize thequality
if Q(Bi) > Q(Bi) then

accept the move,Ii = Ii, Ji = Ji, and updateQ(Bi)
else

setlocal maximum = true
else

remove the row/column ofBi scoring the minimum decrease of thequality function
f = f + 1

end while
execute one-pass backtracking
B = B ∪ Bi

setXi+1 = Xi − Ii, Yi+1 = Yi − Ji, Ai+1 = (Xi+1, Yi+1)
end while

assign the singletons
return the clusteringB = {B1, . . . , Bk}

Fig. 2.ThePINCoC algorithm.



The algorithm, showed in figure 2, receives in input a0-1 adjacency matrix, the
maximum number of times (max flips) that a flip can be done, and the probability (p)
of executing a REMOVE-MIN move (these two latter input parameters are explained
shortly).PINCoC starts with an initial random co-clusterB = (Ii, Ji) constituted by a
single row and a single column such thatI = {k} andJ = {k}, where1 ≤ k ≤ N is a
random row/column index. Then it evolves the initial co-cluster by successive transfor-
mations ofBi, until thequality function is improved. The transformations consist in the
change of membership (calledflip or move) of the row/column that leads to the largest
increase of thequality function. If a bit is set from0 to 1 it means that the correspond-
ing protein, which was not included in the co-clusterBi, is added toBi. Viceversa, if
a bit is set from1 to 0 it means that the corresponding protein is removed from the
co-cluster. During its execution, in order to avoid get trapped into poor local maxima,
instead of performing the flip maximizing thequality, with a user-provided probabil-
ity p the algorithm selects the row/column ofBi scoring the minimum decrease of the
quality function, and removes it fromBi. This kind of flip is called REMOVE-MIN.
The flips are repeated until either a preset of maximum numberof flips (max flips) is
reached, or the solution cannot ulteriorly be improved (gettrapped into a local maxi-
mum). Until the stop condition is not reached, it executes a REMOVE-MIN move with
probabilityp, and a greedy move with probability (1 − p). When the inner loop stops,
the co-clusterBi = (Ii, Ji) is returned. At this point the algorithm performs one step
of backtracking, i.e. for eachh ∈ Ii, it temporary removesh from Ii and tries to find
a nodel such thatIi − {h} ∪ {l} improves thequality of Bi. In such a caseh is
removed andl is added. If more than onel node exists, the one generating the better
improvement ofQ(Bi) is chosen. Finally,Bi is added toB, its rows/columns are re-
moved fromA, a new random co-cluster is generated, and the process is repeated until
all the rows/columns have been assigned. Some of the clusters obtained at the end of
the algorithm could be constituted by a single protein because all its neighboring nodes
have already been assigned to a group. This situation happens for those proteins that
have few interactions and thus they have not been assigned toany group because their
contribution was considered marginal. However, we chose tohandle such singletons by
adopting the following strategy. Leth be a singleton protein,n1, . . . , nh its neighboring
proteins, i.e. the proteins having a direct interaction with h, andBn1

, . . . Bnh
their cor-

responding clusters (note that theBni
are not necessarily distinct). Thenh is assigned

to the clusterBni
s.t.Q(Bni

∪ {h}) is maximum, i.e. whosequality function has the
better improvement or the lowest decrease. In the experimental results section we show
thatPINCoC is able to generate clusters of proteins both dense and biologically mean-
ingful. The temporal cost of the algorithm to compute a single clusterBi = (Ii, Ji) is
upper bounded by

max flips×Cq×[(1−p)×N+pN ]+Cq× | Ii | ×N = Cq×N×(max flips+ | Ii |)

whereCq is the cost of computing thequality of the co-cluster after performing a
move. In order to reduce the complexity ofCq, we maintain, together with the current
co-clusterBi = (Ii, Ji), the mean valuesaiJ , for eachi ∈ I, and the volumevIJ . Thus,
computing the|Ii| mean valuesaiJ (1 ≤ i ≤ |I|) after performing a move can be done
efficiently in time|Ii|, i.e. in time linear in the co-cluster dimensions, by exploiting the
values maintained together with the current co-cluster.
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Fig. 3. (a) Clusters validation by Gene Ontology term finder; (b) graphical view of the obtained
clusters drawn using PIVOT [10].

4 Experimental Validation

In this section we applyPINCoC on a set of 34 proteins coming from the well known
S. cerevisiaenetwork. This set, extracted from theDIP database (http://dip.doe-mbi
.ucla.edu/) has already been well studied and characterized in the literature [6, 1]. In the
following, we first present the clusters obtained by our method and we validate their
biological meaningfulness by using theSGD Gene Ontology Term Finder(http://db
.yeastgenome.org/cgi-bin/GO/goTermFinder). Then we compare our results with those
obtained by Arnau and Marı̀n [1], and King et al. [8] showing that the clustering re-
turned by our method is meaningful and comparable with the other two approaches.

The PINCoC algorithm has been implemented in C++, and all the experiments
have been performed on a Pentium 4 machine, 1800MHz, 1GB RAM,by usingr = 2,
max flips = 100, p = 0.1. The results obtained are summarized in figure 3. In par-
ticular, figure 3(a) shows the table containing the seven clusters returned, the GO term
obtained when querying theSGD Gene Ontology Term Finderwith the proteins be-
longing to our clusters, and the corresponding p-value. Thep-value is a commonly used
measure of the statistical and biological significance of a cluster. It gives the probability
that a given set of proteins occurs by chance. In particular,given a cluster of sizen and
m proteins sharing a particular biological annotation, thenthe probability of observing



m or more proteins that are annotated with the same GO term out of thosen proteins,

according to the Hypergeometric Distribution, is:p−value =
∑n

i=m

(M
i )(N−M

n−i
)

(N
n )

, where
N is the number of proteins in the database withM of them known to have that same
annotation [2]. Thus, the closer the p-value to zero, the more significant the associ-
ated GO term. In the table we show the smallest p-value found over all the functional
groups. We can observe that the p-value of our clusters varies between2.25· 10−10

and5.3· 10−04, values all sufficiently low to consider relevant the biological meaning-
fulness of the correspondent clusters. Figure 3(b) shows a graphical representation of
the interactions among the considered proteins, indicatedby the names according to
the Gene Ontology notation, and a list of the proteins participating to each cluster. The
graph has been drawn using PIVOT [10]. It is worth to point outthat the biological sig-
nificance of the seven clusters agrees with the functional classification reported in [6].
PINCoC, in fact, is able to correctly distinguish proteins involved in different processes
such as, for example, actin patch assembly and patch mediated endocytosis (Cluster1),
actin-capping proteins (Cluster4), CDC42 signaling pathway (Cluster5), control of the
morphogenesis checkpoint (Cluster7).

In order to better assess the quality of the results obtainedby PINCoC, we now
compare them with those obtained in [1] and [8]. Arnau and Marı̀n [1] proposed the hi-
erarchical clustering method UVCLUSTER, that iterativelyexplores the distance data
sets to analyze protein-protein interaction networks. UVCLUSTER uses an agglomera-
tive hierarchical clustering twice. The first time it considers theprimary distances, that
is, the minimum number of interactions required to connect two proteins, and generates
K alternative clustering solutions. The value of K must be given by the user. The second
time it clusters again the set of proteins but using thesecondary distances, defined as
the percentage of clusters in which two proteins do not appear together.

The second algorithm we consider for comparison is the Restricted Neighborhood
Search Clustering (RNSC), proposed by of King et al. [8]. RNSC is a cost-based local
search algorithm that explores the solution space of all thepossible clusterings to mini-
mize a cost function that refelcts the number of inter-cluster and intra-cluster edges.

Table 1 reports the clusterings obtained byPINCoC, UVCLUSTER and RNSC
with the list of proteins for each cluster, the fraction of proteins in each cluster that
have been recognized to participate to a specific biologicalprocess with the p-value re-
ported in the last column. RNSC needs some input parameters.In our experimentation
we used the values reported by Brohèe and van Helden [4], who have extensively ana-
lyzed RNSC to determine the best parameter values with respect to (i) the best match-
ing complex found in a cluster, denoted by RNSCa, and(ii) how well a given cluster
isolates complexes from other clusters, denoted by RNSCs. Note that the p-values of
the clusters reported for UVCLUSTER differ from those appearing in [1] because the
authors computed the values on the January 2004 release of the DIP database, contain-
ing 4721 proteins. At present DIP contains 5027 proteins. For each cluster found by
PINCoC, we report the cluster (or the clusters) obtained by UVCLUSTER and RNSC
that has the maximum number of common proteins withPINCoC. The names of the
common proteins with UVCLUSTER are highlighted in bold, those of the common
proteins with RNSC are highlighted in italic. The symbol ‘–’means that no significant
ontology term has been found for that cluster. The table points out that our first clus-



ter is bigger than those generated by both UVCLUSTER and RNSC, and has a lower
p-value. The second cluster found byPINCoC partially includes two different clus-
ters found by UVCLUSTER, and other two different clusters found by RNSC (note
that we use RNSCa, s for short when both the two RNSC runs returned the same clus-
ter). Both the two groups generated by UVCLUSTER and those generated by RNSC
have higher p-value than thePINCoC cluster. In correspondence of the third cluster
generated byPINCoC, both UVCLUSTER and RNSC found two groups without any
biological meaning. The fourth and fifth clusters are identical for all the methods, ex-
cept than RNSCs, which was able to score the best p-value for the cluster{cdc42, cla4,
gic2, bni1} thanks to the proteinbni1, which does not appear in the correspondent clus-
ter of the other methods. This is the only case in whichPINCoC does not reach the
best p-value score. The seventh cluster generated byPINCoC does not contain the pro-
teinapp1, in fact this protein is not involved in the biological process of the other two.
Finally, it worth to note that UVCLUSTER and RNSC returned the singleton clusters
acf2, yjr083c, ynl086w, ypi236c, ygr268c, ybr108w, and trm5. In our approach this is
not possible because of our policy of assigning singleton elements to the most suited
clusters. Interestingly,PINCoC assigns acf2, yjr083c, and ynl086w to the first clus-
ter, ypi236c, ygr268c, and ybr108w to the sixth cluster, andtrm5 to the second one,
by obtaining a better p-value. The table points out the very good results ofPINCoC,
comparable with those obtained from the other two methods.

5 Concluding Remarks

We proposed a novel technique to detect significant functional modules in a protein-
protein interaction network. The main novelty of the approach is the formalization of
the problem of finding dense regions of a PPI network as a co-clustering problem. The
method has two fundamental advantages with respect to otherapproaches in the liter-
ature. The first is that the number of clusters is automatically determined by the algo-
rithm. Furthermore, the problem of ties occurring in protein-protein distances plagu-
ing algorithms based on hierarchical clustering is implicitly solved. As proved by tests
carried out onS. cerevisiaeproteins, the presented method returns partitions that are
biologically relevant, correctly clustering proteins which are known to be involved in
different biological processes. Future research aims at using PINCoCon sets of pro-
teins of other organisms, to characterize proteins whose biological functions are not yet
completely known.
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