
FlockStream: a Bio-inspired Algorithm for Clustering Evolving Data Streams

Agostino Forestiero, Clara Pizzuti, Giandomenico Spezzano
Institute for High Performance Computing and Networking, ICAR-CNR

Via Pietro Bucci, 41C
87036 Rende (CS), Italy

{folino,pizzuti,spezzano}@icar.cnr.it

Abstract

Existing density-based data stream clustering algo-
rithms use a two-phase scheme approach consisting of an
online phase, in which raw data is processed to gather sum-
mary statistics, and an offline phase that generates the clus-
ters by using the summary data. In this paper we propose
a data stream clustering method based on a multi-agent
system that uses a decentralized bottom-up self-organizing
strategy to group similar data points. Data points are asso-
ciated with agents and deployed onto a 2D space, to work
simultaneously by applying a heuristic strategy based on a
bio-inspired model, known as flocking model. Agents move
onto the space for a fixed time and, when they encounter
other agents into a predefined visibility range, they can de-
cide to form a flock if they are similar. Flocks can join
to form swarms of similar groups. This strategy allows to
merge the two phases of density-based approaches and thus
to avoid the offline cluster computation, since a swarm rep-
resents a cluster. Experimental results show the capability
of the bio-inspired approach to obtain very good results on
real and synthetic data sets.

1. Introduction

In recent years, many organizations are collecting
tremendous amount of data, often generated continuously as
a sequence of events and coming from different locations.
Credit card transactional flows, telephone records, sensor
network data, network event logs are just some examples of
data streams. The design and development of fast, efficient,
and accurate techniques, able to extract knowledge from
these huge data sets too large to fit into the main memory
of computers, pose significant challenges. First of all, data
can be examined only once, as it arrives. Second, using an
entire data stream of a long period could mislead the analy-
sis results due to the weight of outdated data considered in
the same way as more recent data. Since data streams are

continuos sequences of information, the underlying clusters
could change with time, thus giving different results with
respect to the time horizon over which they are computed.
Traditional clustering approaches are not sufficiently flex-
ible to deal with data that continuously evolves with time,
thus, in the last few years, many proposals to data stream
clustering have been presented [2, 3, 4, 5, 11, 12, 10, 1, 14].
Aggarwal et al. [1] have been the first to address the prob-
lem of the impossibility to revise a data stream during the
computation. They suggested that a stream clustering al-
gorithm should be separated in an online micro-clustering
component, that gathers appropriate summary statistics on
the data stream, and an offline macro-clustering compo-
nent that makes use of the information stored to provide
the clustering results. One of the main drawback of their
CluStream algorithm is that it is unable to discover clus-
ters of arbitrary shapes, furthermore the number k of clus-
ters must be fixed a-priori. A more amenable approach to
clustering data streams is that based on the concept of den-
sity introduced by DBSCAN [9]. Density-based approach
[4, 5] apply the two-phase scheme [1] described above in
a density-based framework. In particular, the former, Den-
Stream, extensively described in the next section, extends
the concept of core point introduced in DBSCAN and
employs the notion of micro-cluster to store an approxi-
mate representation of the data points in a damped window
model. The latter applies analogous concepts by associating
a decay factor to the density of each data point and by parti-
tioning the data space into discretized grids where new data
points are mapped. The authors study the relation between
time horizon, decay factor, and data density to guarantee the
generation of high quality clusters.

The main drawback of these methods is the execution
time required when dealing with large data sets of high di-
mensionality. In fact, both the methods, when a new data
point arrives, in order to determine whether it should be
merged into an existing cluster or consider it as the seed for
a new group, need to do a comparison with all the clusters
generated so far.

In this paper a density-based data stream clustering
method, named FlockStream, that employs a multi-agent
system using a decentralized bottom-up self-organizing
strategy to group similar data points, is proposed. Each
data point is associated with an agent. Agents are deployed
onto a 2D space, called the virtual space, and work simul-
taneously by applying a heuristic strategy based on a bio-
inspired model known as flocking model [8]. Agents move
onto the space for a fixed time and when they encounter
other agents into a predefined visibility radius they can de-
cide to form a flock (i.e a micro-cluster) if they are simi-
lar. However, the participation of an agent to a group is not
definitive since, if during the space exploration a more sim-
ilar agent is encountered, the current flock can be dropped
and the agent can join to the nearest agents’ flock. The
movement of the agents in the 2D space is not random, but
it is guided by the similarity function that aggregates the
agents to their closer neighbors. As different similar micro-
clusters can be created, by applying the flocking rules, they
are aggregated to form swarms of close micro-clusters.

FlockStream introduces two main novelties. First, it re-
places the exhaustive search of the nearest neighbor of a
point, necessary to assign it to the appropriate micro-cluster,
with a local stochastic multi-agent search that works in par-
allel. The method is thus completely decentralized as each
agent acts independently from each other and communi-
cates only with its immediate neighbors in an asynchronous
way. Locality and asynchronism implies that the algorithm
is scalable to very large data sets.

Second, since flocks of agents can join together into
swarms of similar groups, the two-phase scheme of data
stream clustering methods mentioned above is replaced by
a unique online phase, in which the clustering results are
always available. This means that the clustering generation
on demand by the user can be satisfied at any time by simply
showing all the swarms computed so far.

The paper is organized as follows. The next section de-
scribes the DenStream algorithm. Section 3 introduces
the Flocking model. Section 4 describes our approach. In
section 5, finally, the results of the method on synthetic and
real life data sets are presented.

2. DenStream Algorithm

DenStream [4] is a density-based clustering algorithm
for evolving data streams that uses summary statistics to
capture synopsis information about the nature of the data
stream. These statistics are exploited to generate clusters
with arbitrary shape. The algorithm assumes the damped
window model to cluster data streams. In this model the
weight of each data point decreases exponentially with time
t via a fading function f(t) = 2−λt, where λ > 0. The
weight of the data stream is a constant W = v

1−2−λ
, where

v is the speed of the stream, i.e. the number of points arrived
in one unit time. Historical data diminishes its importance
when λ assumes higher values.

The authors extend the concept of core point introduced
in DBSCAN [9] and employ the notion of micro-cluster
to store an approximate representation of the data points. A
core point is an object in whose ε neighborhood the over-
all weight of the points is at least an integer µ. A clus-
tering is a set of core objects having cluster labels. Three
definitions of micro-clusters are then introduced: the core-
micro-cluster, the potential core-micro-cluster, and the out-
lier micro-cluster.

A core-micro-cluster (abbreviated c-micro-cluster) at
time t for a group of close points pi1 , . . . , pin with time
stamps Ti1 , . . . , Tin is defined as CMC(w, c, r), where w
is the weight, c is the center, and r is the radius of the c-
micro-cluster. The weight w =

∑n
j=1 f(t − Tij) must be

such that w ≥ µ. The center is defined as

c =

∑n
j=1 f(t− Tij)pij

w

and the radius

r =

∑n
j=1 f(t− Tij)dist(pij , c)

w

is such that r ≤ ε. dist(pij , c) is the Euclidean distance
between the point pij and the center c. Note that the weight
of a micro-cluster must be above a predefines threshold µ in
order to be considered core. The authors assume that clus-
ters with arbitrary shape in a data stream can be described
by a set of c-micro-clusters. However, since as data flows it
can change, structures apt to incremental computation, sim-
ilar to those proposed by [1] are introduced.

A potential c-micro-cluster, abbreviated p-micro-cluster,
at time t for a group of close points pi1 , . . . , pin with
time stamps Ti1 , . . . , Tin is defined as {CF 1, CF 2, w},
where the weight w, as defined above, must be such that
w ≥ βµ. β, 0 < β ≤ 1 is a parameter defining the
outlierness threshold relative to c-micro-clusters. CF 1 =∑n
j=1 f(t−Tij)pij is the weighted linear sum of the points,

CF 2 =
∑n
j=1 f(t−Tij)p2

ij
is the weighed squared sum of

the points. The center of a p-micro-cluster is c = CF 1

w and

the radius r ≤ ε is r =
√

CF 2

w − (CF 1

w)2
A p-micro-cluster is a set of points that could become a

micro-cluster.
An outlier micro-cluster, abbreviated o-micro-cluster, at

time t for a group of close points pi1 , . . . , pin with time
stamps Ti1 , . . . , Tin is defined as {CF 1, CF 2, w, t0}. The
definition of w, CF 1, CF 2, center and radius are the same
of the p-micro-cluster. t0 = Ti1 denotes the creation of the
o-micro-cluster. In an outlier micro-cluster the weight w
must be below the fixed threshold, thus w < βµ. However

it could grow into a potential micro-cluster when, adding
new points, its weight exceeds the threshold.

The algorithms consists of two phases: the online phase
in which the micro-clusters are maintained and updated as
new points arrive online; the off-line phase in which the
final clusters are generated, on demand, by the user. During
the online phase, when a new point p arrives, DenStream
tries to merge p into its nearest p-micro-cluster cp. This
is done only if the the radius rp of cp does not augment
above ε, i.e. rp ≤ ε. If this constraint is not satisfied, the
algorithm tries to merge p into its nearest o-micro-cluster
co, provided that the new radius ro ≤ ε. The weight w is
then checked if w ≥ βµ. In such a case co is promoted to p-
micro-cluster. Otherwise a new o-micro-cluster is generated
by p. Note that for an existing p-micro-cluster cp, if no new
points are added to it, its weight will decay gradually. When
it is below βµ, cp becomes an outlier.

The off-line part of the algorithm uses a variant of the
DBSCAN algorithm in which the potential micro-clusters
are considered as virtual points. The concepts of density-
connectivity and density reachable, adopted in DBSCAN,
are used by DenStream to generate the final result. Den-
Stream cannot be used to handle huge amounts of data avail-
able in large-scale networks of autonomous data sources
since it needs to find the closest micro-cluster for each
newly arrived data point and it assumes that all data is lo-
cated at the same site where it is processed. In the next
section a computational model that overcome these disad-
vantages is described.

3 The Flocking model

The flocking model [8] is a biologically inspired compu-
tational model for simulating the animation of a flock of en-
tities. In this model each individual (also called bird) makes
movement decisions without any communication with oth-
ers. Instead, it acts according to a small number of sim-
ple rules, depending only upon neighboring members in the
flock and environmental obstacles. These simple rules gen-
erate a complex global behavior of the entire flock.

The basic flocking model was first proposed by Craig
Reynolds [13], in which he referred to each individual as a
”boid”. This model consists of three simple steering rules
that a boid needs to execute at each instance over time: sep-
aration (steering to avoid collision with neighbors); align-
ment (steering toward the average heading and matching the
velocity of neighbors); cohesion (steering toward the aver-
age position of neighbors). These rules describe how a boid
reacts to other boids’ movement in its local neighborhood.
The degree of locality is determined by the visibility range
of the boid’s sensor. The boid does not react to the flock-
mates outside its sensor range. A minimal distance must
also be maintained among them to avoid collision.

(a) (b)

Figure 1. Alignment rule.

(a) (b)

Figure 2. Separation rule.

A Multiple Species Flocking (MSF) model [7] has been
developed to more accurately simulate flocking behavior
among an heterogeneous population of entities. MSF in-
cludes a feature similarity rule that allows each boid to dis-
criminate among its neighbors and to group only with those
similar to itself. The addition of this rule enables the flock
to organize groups of heterogeneous multi-species into ho-
mogeneous subgroups consisting only of individuals of the
same species. The basic behavior rules [6] of a single entity
of the MSF model are illustrated in figures 1, 2, 3. Let R1

and R2, with R1 > R2, be the radius indicating the visibil-
ity range of the boids and the minimum distance that must
be maintained among them respectively, and d(Fi, Ac) the
distance between the current agent Ac and a flockmate Fi.
The alignment rule means that a boid tends to move in the
same direction of the nearby boids, i.e. it tries to align its
velocity vector with the average velocity vector of the flocks
in its local neighborhood. This rule is depicted in figure 1
and it is formally described as

if d(Fi, Ac) ≤ R1 ∧ d(Fi, Ac) ≥ R2 ⇒ ~var =
1
n

n∑
i

~vi

where ~var is the velocity driven by the alignment rule,
d(Fi, Ac) is the distance between the boidAc and its neigh-
bor flockmate Fi, ~vi is the velocity of the boid Fi, and n is
the number of neighbors.

The separation rule avoids that a boid be too close to
another boid, thus

if d(Fi, Ac) ≤ 2R2 ⇒ ~vsr =
n∑
i

~vi + ~vc
d(Fi, Ac)

where ~vsr is the separation velocity, ~vc and ~vi are the veloc-
ities of the current boid and of the i-th flockmate, respec-
tively. This rule is shown in figure 2.

(a) (b)

Figure 3. Cohesion rule.

The cohesion rule moves a boid towards other nearby
boids (unless another boid is too close) orienting the veloc-
ity vector of the boid in the direction of the centroid of the
local flock.

d(Fi, Ac) ≤ R1 ∧ d(Fi, Ac) ≥ R2 ⇒ ~vcr =
n∑
i

(Pi − Pc)

where ~Vcr is the cohesion velocity and (Pi−Pc) calculates
a directional vector point, being Pi and Pc the positions of
the current boidAc and a neighbor boid Fi. Figure 3 depicts
the cohesion rule.

When two boids are too close, the separation rule over-
rides the other two, which are deactivated until the mini-
mum separation is achieved. Similar boids try to stay close
using the strength of the attracting force, that is proportional
to the distance between the boids and the similarity between
the boids’ feature values. This strength is computed as

vsim =
n∑
i

(Sim(Fi, Ac) ∗ d(Pi, Pc))

where vsim is the velocity driven by feature similarity,
Sim(Fi, Ac) is the similarity value between the features of
boidsAc and Fi, and d(Pi, Pc) is the distance between their
positions in the 2D space.

Dissimilar boids try to stay away from other boids that
have dissimilar features by a repulsive force that is inversely
proportional to the distance between the boids and the sim-
ilarity between the boids.

vdsim =
n∑
i

1
Sim(Fi, Ac) ∗ d(Pi, Pc)

where vdsim is the velocity driven by feature dissimilarity.
The overall flocking behavior can be expressed by a

weighted linear combination of the velocities calculated by
all the rules that represent the net velocity vector ~v of the
boid in the virtual space.

The advantage of the flocking algorithm is the heuristic
principle of the flock’s searching mechanism. The heuristic
searching mechanism helps boids to quickly form a flock.
Since the boids continuously fly in the virtual space and
join the flock constituted by boids more similar to them,
new results can be quickly re-generate when adding entities
boids or deleting part of boids at run time. This feature
allows the flocking algorithm to be applied to clustering to
analyze dynamically changing information stream.

4 The FlockStream algorithm

FlockStream is a heuristic density-based data stream
clustering algorithm built on the Multiple Species Flock-
ing model. The algorithm uses agents with distinct simple
functionalities to mimic the flocking behavior. Each multi-
dimensional data item is associated with an agent. In our
approach, in addition to the standard action rules of the
flocking model, we introduce an extension to the flocking
model by considering the type of an agent. The agents can
be of three types: basic (representing a new point arriving in
one time unit), p-representative and o-representative (cor-
responding to p- or o- micro-clusters). FlockStream distin-
guishes between the initialization phase, in which the vir-
tual space is populated of only basic agents, and the micro-
cluster maintenance and clustering, in which all the three
types of agents are present.

Initialization. At the beginning a set of basic agents,
i.e. a set of points, is deployed randomly onto the virtual
space. The basic agents work in parallel for a predefined
number of iterations and move according to the MSF heuris-
tic. Analogously to birds in the real world, agents that share
similar object vector features will group together and be-
come a flock, while dissimilar birds will be moved away
from the flock. Agents uses a proximity function to identify
objects that are similar. In our algorithm we use the Eu-
clidean distance to measure the dissimilarity between data
points A and B, and assume that A and B are similar if
their Euclidean distance d(A,B) ≤ ε. While iterating, the
behavior (velocity) of each agent A with position Pa is in-
fluenced by all the agents X with position Px in its neigh-
borhood. The agent’s velocity is computed by applying the
local rules of Reynolds and the similarity rule. The sim-
ilarity rule induces an adaptive behavior to the algorithm
since the agents can leave the group they participate for an-
other group containing agents with higher similarity. Thus,
during this predefined number of iterations, the points join
and leave the groups forming different flocks. At the end
of the iterations, for each created group, summary statistics
are computed and the stream of data is discarded. As result
of this initial phase we have the two other types of agents:
p-representative and o-representative agents.
Representative Maintenance and Clustering. When a

new data stream bulk of agents is inserted into the virtual
space, at a fixed stream speed, the maintenance of the p-
and o- representative agents and online clustering are per-
formed for a fixed number of iterations. Analogously to
DenStream, different cases can occur (see figure 4) :

• a p-representative cp or an o-representative co encoun-
ters another representative agent. If the distance be-
tween them is below ε then they compute the velocity
vector by applying the Reynolds’ and similarity rules
(step 5), and join to form a swarm (i.e. a cluster) of
similar representatives (step 6).

• A basic agent A meets either a p-representative cp or
an o-representative co in its visibility range. The sim-
ilarity between A and the representative is computed
and, if the new radius of cp (co respectively) is be-
low or equal to ε, A is absorbed by cp (co) (step 9).
Note that at this stage FlockStream does not update the
summary statistics because the aggregation of the ba-
sic agent A to the micro-cluster could be dropped if A,
during its movement on the virtual space, encounters
another agent more similar to it.

• A basic agent A meets another basic agent B. The
similarity between the two agents is calculated and,
if d(A,B) ≤ ε, then the velocity vector is com-
puted (step 11) and A is joined with B to form an o-
representative (step 12).

At the end of the maximum number of iterations allowed,
for each swarm, the summary statistics of the representa-
tive agents it contains are updated and, if the weight w
of a p-representative diminishes below βµ, it is degraded
to become an o-representative. On the contrary, if the
weight w of an o-representative becomes above βµ, a new
p-representative is created.

It is worth to note that, the swarms of representative
agents avoid the off-line phase of DenStream to apply a
clustering algorithm to get the final result. In fact a swarm
represents a cluster, thus the clustering generation on de-
mand by the user can be satisfied at any time by simply
showing all the swarms computed so far. Figure 5 illustrates
the virtual space at a generic iteration. The figure points out
the presence of swarms of agents, as well as the presence of
isolated agents not yet aggregated with other similar agents.
In the next section we show that our approach successfully
detects clusters in evolving data streams.

5. Experimental Results

In this section we study the effectiveness of FlockStream
on real and synthetic datasets. The algorithm has been
implemented in Java and all the experiments have been
performed on an Intel(R) Core(TM)2 6600 having 2 Gb

1. for i=1 . . . MaxIterations
2. foreach agent (all)
3. if (typeAgent is (p-representative ∨ o-representative))
4. then{
5. computeVelocityVector(flockmates, MSF rules);
6. moveAgentAndFormSwarm(~v);}
7. else{
8. if (typeAgent is (basic ∧ in neighborhood of a similar swarm))
9. then agent temporary absorbed in the swarm;
10. else{
11. computeVelocityVector(flockmates, MSF rules);
12. moveAgentAndFormSwarm(~v);}}
13. end foreach
14. end for

Figure 4. The pseudo-code of the Flock-
Stream algorithm.

of memory. The synthetic datasets used, named DS1,
DS2 and DS3, are showed in Figure 6(a). Each of them
contains 10,000 points and they are similar to those
employed by Cao et al. in [4] to evaluate DenStream.
For a fair comparison, the evolving data stream, denoted
EDS, has been created by adopting the same strategy
of Cao et al. Each dataset has been randomly chosen
10 times, thus generating an evolving data stream of
total length 100,000 having a 10,000 points block for
each time unit. The real dataset used to test the perfor-
mances of FlockStream is the KDD Cup 1999 Data set
(http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html).
This data set comes from the 1998 DARPA Intrusion Detec-
tion Evaluation Data and contains training data consisting
of 7 weeks of network-based intrusions inserted in the
normal data, and 2 weeks of network-based intrusions and
normal data for a total of 4,999,000 connection records
described by 41 characteristics. The main categories
of intrusions are four: Dos (Denial Of Service), R2L
(unauthorized access from a remote machine), U2R
(unauthorized access to a local super-user privileges by
a local un-privileged user), PROBING (surveillance and
probing). The data set has been transformed into a data
stream by taking the input order as the streaming order.
For all the datasets the true class label is known, thus the
clustering quality can be evaluated by the average purity of
the clusters.

The average purity of a clustering is defined as:

purity =

∑K
i=1

|Cdi |
|Ci|

K
∗ 100%;

where K indicates the number of clusters, |Cdi | denotes the

Figure 5. Visualization of swarms of agents and isolated agents on the virtual space at a generic
iteration.

DS1 DS2 DS3
(a)

DS1 DS2 DS3
(b)

(c)

Figure 6. (a) Synthetic data sets.(b) Clustering performed by FlockStream on the synthetic datasets.
(c) Clustering performed by FlockStream on the evolving data stream EDS.

number of points with the dominant class label in cluster
i, and |Ci| denotes the number of points in cluster i. The
purity is calculated only for the points arriving in a prede-
fined window (horizon), since the weight of points dimin-
ishes continuously. The parameters used by FlockStream in

the experiments are analogous to those adopted by Cao et
al., that is initial points/agents Na = 1000, stream speed
v = 1000, decay factor λ = 0.25, ε = 16, µ = 10, out-
lier threshold β = 0.2 and MaxIterations = 1000. Ini-
tially we evaluated the FlockStream algorithm on the non-

Figure 7. Clustering quality for evolving
data stream EDS with horizon=2 and stream
speed=2000.

evolving datasets DS1, DS2 and DS3, to check the ability
of the method to get the shape of each cluster. The results
are reported in Figure 6(b). In this figure the circles indicate
the micro-cluster detected by the algorithm. We can see that
FlockStream exactly recovers the cluster shape.

The results obtained by FlockStream on the evolving
data stream EDS, at different times, are shown in figure
6(c). In the figure, points indicate the raw data while circles
denote the micro-clusters. It can be seen that FlockStream
captures the shape of each cluster as the data streams evolve.

The purity results of FlockStream compared to
DenStream on the EDS data stream are shown in figure
7. Here, the horizon is set to 2 and the stream speed is set to
2000 points per time unit. We can see the very good cluster-
ing quality of FlockStream, in fact it is always higher than
95% and comparable to DenStream. Figure 8 shows the
results of FlockStream when the stream speed is set to 1000
points per time unit and the horizon is set to 10 on the EDS
data stream. The results show that FlockStream, similarly
to DenStream, is insensitive to the horizon.

The comparison between FlockStream and DenStream
on the Network Intrusion data set is shown in Figures 9 and
10. We selected the same time points, when some particular
attacks happen, chosen by DenStream, and we report the
results obtained at these moments. In the former figure the
horizon is set to 1, whereas in the latter the horizon is set to
5; the stream speed is set to 1000 for both. We can see how
FlockStream clearly ouperforms DenStream in almost all
the time units chosen and the very high clustering quality
achieved also on this dataset. The purity of FlockStream
compared to DenStream in a dataset with noise is calcu-
lated and the clustering purity results of EDS with 1% and
5% noise are shown in figures 11 and 12 respectively. The
results demonstrate that FlockStream achieves high cluster-
ing quality, comparable to DenStream, also when noise is
present.

Figure 8. Clustering quality for evolving data
stream EDS with horizon=10 and stream
speed=1000.

Figure 9. Clustering quality for Network In-
trusion dataset with horizon=1 and stream
speed=1000.

6. Conclusions

A heuristic density-based data stream clustering algo-
rithm, built on the Multiple Species Flocking model, has
been presented. The method employs a local stochastic
multi-agent search strategy that allows agents to act inde-
pendently from each other and to communicate only with
immediate neighbors in an asynchronous way. Decentral-
ization and asynchronism makes the algorithm scalable to
very large data sets. Another main novelty of the approach
is that the two-phase scheme of density-based data stream
clustering methods is replaced by a unique online phase,
in which the clustering results are always available. This
means that the clustering generation on demand by the
user can be satisfied at any time by simply showing all the
swarms computed so far. Experimental results on real and
synthetic data sets confirm the validity of the approach pro-
posed. Future work aims at extending the method to a dis-
tributed framework, more apt to real life applications.

Figure 10. Clustering quality for Network In-
trusion dataset with horizon=5 and stream
speed=1000.

Figure 11. Clustering quality for evolving
data stream EDS with horizon=2, stream
speed=2000 and with 1% noise.

Figure 12. Clustering quality for evolving
data stream EDS with horizon=10, stream
speed=1000 and with 5% noise.

References

[1] C. C. Aggarwal, J. Han, J. Wang, and P. Yu. On clustering
massive data streams: a summarization paradigm. In in Data
Streams- Models and Algorithms, Charu C. Aggarwal eds.,
pages 11–38. Springer, 2006.

[2] B. Babock, M. Datar, R. Motwani, and L. O’Callaghan.
Maintaining varaince and k-medians over data stream win-
dows. In Proceedings of the 22nd ACM Symposium on Prin-
ciples of Data base Systems (PODS 2003), pages 234–243,
2003.

[3] D. Barbará. Requirements for clustering data streams.
SIGKDD Explorations Newsletter, 3(2):23–27, 2002.

[4] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clus-
tering over evolving data stream with noise. In Proceedings
of the Sixth SIAM International Conference on Data Mining
(SIAM 2006), pages 326–337, 2006.

[5] Y. Chen and L. Tu. Density-based clustering for real-time
stream data. In Proceedings of the 13th ACM SIGKDD Inter-
national conference on Knowledge discovery and data min-
ing (KDD’07), pages 133 – 142. ACM, 2007.

[6] X. Cui, J. Gao, and T. E. Potok. A flocking based algorithm
for document clustering analysis. Journal of Systems Archi-
tecture, 52(8-9):505–515, 2006.

[7] X. Cui and T. E. Potok. A distributed agent implementation
of multiple species flocking model for document partitioning
clustering. In Cooperative Information Agents, pages 124–
137, 2006.

[8] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence
(The Morgan Kaufmann Series in Artificial Intelligence).
Morgan Kaufmann, March 2001.

[9] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second ACM
SIGKDD International conference on Knowledge discovery
and data mining (KDD’96), pages –, 1996.

[10] S. Gua, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data strams: Theory and prac-
tise. IEEE Transactions on Knowledge and Data Engineer-
ing, 15(3):515–528, 2003.

[11] S. Gua, N. Mishra, R. Motwani, and L. O’Callaghan. Clus-
tering data streams. In Proceedings of the Annual IEEE Sym-
posium on Foundations of Computer Science, pages 359–
366, 2000.

[12] L. O’Callaghan, N. Mishra, N. Mishra, and S. Gua.
Streaming-data algorithms for high quality clustering. In
Proceedings of the 18th International Conference on Data
Engineering (ICDE’01), pages 685–694, 2002.

[13] C. W. Reynolds. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the
14th annual conference on Computer graphics and interac-
tive techniques, pages 25–34, New York, NY, USA, 1987.
ACM.

[14] A. Zhou, F. Cao, W. Qian, and C. Jin. Tracking clusters in
evolving data streams over sliding windows. Knowledge and
Information Systems, 15(2):181–214, 2007.

