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ABSTRACT
A multiobjective genetic algorithm for detecting communi-
ties in dynamic networks, i.e., networks that evolve over
time, is proposed. The approach leverages on the concept
of evolutionary clustering, assuming that abrupt changes of
community structure in short time periods are not desir-
able. The algorithm correctly detects communities and it is
shown to be very competitive w.r.t. some state-of-the-art
methods.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications —
Data Mining ; I.2.2 [Artificial Intelligence]: Automatic
Programming; I.5.3 [Computing Methodologies]: Pat-
tern Recognition—Clustering

General Terms
Algorithms.

Keywords
Genetic Algorithms, Data Mining, Clustering, Dynamic Net-
works, Community Detection.

1. INTRODUCTION
The analysis of social network data is gaining an increas-

ing interest because of the capacity of networks to represent
the relationships among objects composing many real world
systems. More recently a growing attention is focusing on
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 networks, i.e. networks that evolve over time. Dy-
namic networks capture the modifications of interconnec-
tions over time, allowing to trace the changes of network
structure at different time steps. Some methods (e.g., [2, 5,
8, 4]) employ the concept of evolutionary clustering [1] for
catching the cluster evolution in temporal data. Evolution-
ary clustering groups data coming at different time steps to
produce a sequence of clusterings by introducing a frame-
work called temporal smoothness. It assumes that abrupt
changes of clustering in a short time period are not desir-
able, thus it 𝑠𝑚𝑜𝑜𝑡ℎ𝑠 each community over time.
In this paper we propose a multiobjective approach, named

DYN-MOGA, to discover communities in dynamic networks
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by employing genetic algorithms. The detection of com-
munity structure with temporal smoothness is formulated
as a multiobjective optimization problem. The first objec-
tive measures how well the clustering found represents the
data at the current time. The second objective is the mini-
mization of the temporal cost and it measures the distance
between two clusterings at consecutive timesteps.
Experiments confirms the effectiveness of our algorithm

w.r.t. some state-of-the-art approaches.

2. MULTIOBJECTIVE EVOLUTIONARY
CLUSTERING

Let {1, . . . , 𝑇} be a finite set of time steps and 𝑉 =
{1, . . . , 𝑛} be a set of individuals or objects. A static net-
work 𝒩 𝑡 at time 𝑡 can be modeled as a graph 𝐺𝑡 = (𝑉 𝑡, 𝐸𝑡)
where 𝑉 𝑡 is a set of objects, called nodes or vertices, and
𝐸𝑡 is a set of links, called edges, that connect two elements
of 𝑉 𝑡 at time 𝑡. Thus 𝐺𝑡 is the graph representing a snap-
shot of the network 𝒩 𝑡 at time 𝑡. 𝑉 𝑡 ⊆ 𝑉 is a subset of
individuals 𝑉 observed at time 𝑡. An edge (𝑢𝑡, 𝑣𝑡) ∈ 𝐸𝑡 if
individuals 𝑢 and 𝑣 have interacted at time 𝑡.
A community (i.e., cluster) in a static network 𝒩 𝑡 is a

group of vertices 𝑉 𝑡
𝑖 ⊆ 𝑉 𝑡 having a high density of edges

inside the group, and a lower density of edges with the re-
maining nodes 𝑉 𝑡/𝑉 𝑡

𝑖 . Let 𝐶𝑡 denote the sub-graph repre-
senting a community. A clustering, or community structure,
𝒞ℛ𝑡 = {𝐶𝑡

1, . . . 𝐶
𝑡
𝑘} of a network 𝒩 𝑡 at time 𝑡 is a partition-

ing of 𝐺𝑡 in groups of nodes such that for each couple of
communities 𝐶𝑡

𝑖 and 𝐶𝑡
𝑗 ∈ 𝒞ℛ𝑡, 𝑉 𝑡

𝑖 ∩ 𝑉 𝑡
𝑗 = ∅. A dynamic

network is a sequence𝒩 = {𝒩 1, . . . ,𝒩 𝑇 } of static networks,
where each 𝒩 𝑡 is a snapshot of individuals and their inter-
connections at time 𝑡.
A multiobjective evolutionary clustering problem

(Ω,ℱ1,ℱ2, . . . ,ℱℎ) for a static network 𝒩 𝑡 can be defined
as

min ℱ𝑖(𝒞ℛ𝑡), 𝑖 = 1, . . . , ℎ subject to 𝒞ℛ𝑡 ∈ Ω

where Ω = {𝒞ℛ𝑡
1, . . . , 𝒞ℛ𝑡

𝑘} is the set of feasible clusterings
of 𝒩 𝑡 at time stamp 𝑡, and ℱ = {ℱ1,ℱ2, . . . ,ℱℎ} is a set
of ℎ single criterion functions. Each ℱ𝑖 : Ω → ℛ is a dif-
ferent objective function that determines the feasibility of
the obtained clustering. Since ℱ is a vector of competing
objectives that must be simultaneously optimized, there is
not one unique solution to the problem. The set of all possi-
ble solutions are found through the use of Pareto optimality
theory [3].
In this scenario, we are interested in optimizing the weighted

cost function 𝛼 ⋅ 𝒮𝒞+(1−𝛼) ⋅ 𝒯 𝒞 having two competing ob-



jectives: (i) the snapshot cost 𝒮𝒞 and (ii) the temporal cost
𝒯 𝒞. Notice that 𝛼 is used to emphasize one of the two ob-
jectives.
Since 𝒮𝒞 measures how well a community structure 𝐶𝑡

represents the data at time 𝑡, we need an objective func-
tion that maximizes the number of connections inside each
community and minimizes the number of links between the
communities. To this end we employ the community score
introduced in [7] and proved very effective in detecting com-
munities. The second objective must minimize the temporal
cost 𝒯 𝒞, thus we need a metric to measure how similar the
community structure 𝒞ℛ𝑡 is w.r.t. the previous clustering
𝒞ℛ𝑡−1. To this end we employ the Normalized Mutual Infor-
mation (NMI), a well known entropy measure in information
theory.
Basically, the DYN-MOGA algorithm works in this way.

Given a dynamic network 𝒩 = {𝒩 1, . . . ,𝒩 𝑇 } and the se-
quence of graphs 𝒢 = {𝐺1, . . . , 𝐺𝑇 } modeling it, DYN-
MOGA starts by partitioning the network 𝒩 1 by means of
the genetic algorithm that optimize only the first objective
(i.e., the community score). For a given number of times-
tamps, the multiobjective genetic algorithm creates a pop-
ulation of random individuals whose size corresponds to the
number of nodes in the current graph 𝐺𝑡. Then, for a fixed
number of generations, it iteratively executes the following
steps: (1) decode the individuals to generate the partitioning
at time step 𝑡, (2) evaluate the objective values, (3) assign a
rank to each individual according to the Pareto dominance
and sorts them, (5) generate a new population of offspring,
(6) combine parents and offspring and partition the new pool
into fronts and, finally, (7) create a new population with in-
dividuals having lower rank.
At the end of each timestamp, DYN-MOGA returns all

solutions contained in the Pareto front. The best solution
is selected by leveraging on the 𝑚𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦 criterion intro-
duced in [6].

3. EXPERIMENTAL RESULTS
In this section we study the effectiveness of our approach

and compare the results obtained by DYN-MOGA w.r.t. the
algorithms of Lin et al. [5] (named FacetNet) and Kim and
Han [4] on synthetic networks for which the partitioning in
communities is known.
We used the same dataset adopted by both Lin et al. [5]

and Kim and Han [4]. It represents a dynamic network with
a fixed number of communities (named SYN-FIX). The net-
work consists of 128 nodes divided into four communities
of 32 nodes each. Every node has an average degree of 16
and shares a number 𝑧𝑖𝑛 of links with the nodes of its com-
munity, and 𝑧𝑜𝑢𝑡 with the other nodes of the network. The
dynamicity in the network is introduced by randomly select-
ing 3 nodes from each community and randomly assigning
them to the the remaining ones. For the test purposes, we
generated 10 different networks for 10 timestamps and run
DYN-MOGA on them.
The quality of clustering has been assessed through the

NMI that measures the similarity between the true parti-
tions and the detected ones.
Figure 1 shows the average normalized mutual informa-

tion, over the 10 networks for the 10 timestamps for SYN-
FIX when the value of 𝑧𝑜𝑢𝑡 = 5.
The figure clearly highlights the significantly better results
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Figure 1: Normalized mutual information of cluster-
ing results for SYN-FIX when 𝑧𝑜𝑢𝑡 = 5.

obtained by DYN-MOGA w.r.t. both FacetNet and Kim-
Han algorithms.

4. CONCLUSIONS
The paper presented a novel multiobjective genetic algo-

rithm for detecting communities in dynamic networks. The
algorithm optimizes the accuracy of the clustering obtained
with respect to the data of the current time step, and the
drift from one time step to the successive by providing a so-
lution that represents the best trade-off between these two
objectives. The approach has been shown to correctly de-
tect communities on both synthetic and real datasets and to
be very competitive w.r.t. state-of-the-art methods.
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