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ABSTRACT
Extracting and understanding community structure in com-
plex networks is one of the most intensively investigated
problems in recent years. In this paper we propose a ge-
netic based approach to discover overlapping communities.
The algorithm optimizes a fitness function able to identify
densely connected groups of nodes by employing it on the
line graph corresponding to the graph modelling the net-
work. The method generates a division of the network in a
number of groups in an unsupervised way. This number is
automatically determined by the optimal value of the fitness
function. Experiments on synthetic and real life networks
show the capability of the method to successfully detect the
network structure.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications —
Data Mining ; I.2.2 [Artificial Intelligence]: Automatic
Programming; I.5.3 [Computing Methodologies]: Pat-
tern Recognition—Clustering

General Terms
Algorithms

Keywords
Genetic Algorithms, Data Mining, Clustering, Complex Net-
works.

1. INTRODUCTION
Complex networks constitute an efficacious formalism to

represent the relationships among the objects composing
many real world systems. Collaboration networks, the In-
ternet, the world-wide-web, biological networks, communi-
cation and transport networks, social networks are just some
examples. Networks are modelled as graphs, where nodes
represent the objects and edges represent the interactions
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among these objects. One of the main problems in the study
of complex networks is the detection of community structure,
i.e. the division of a network into groups (clusters or mod-
ules) of nodes having dense intra-connections, and sparse
inter-connections. In the last few years many different ap-
proaches have been proposed to uncover community struc-
ture in networks [14, 22, 24, 5, 29, 2, 18] (a recent review
can be found in [9]). However, as observed in [34], there are
two main challenges in discovering communities. The first is
that it is not known a priori the number of groups present in
a given network. The second is that the communities may
overlap, i.e. some nodes can belong to more than one clus-
ter. The membership of an entity to many groups is very
common in real world networks. For example, in a social
network, a person may participate to many interest groups.
Most of the known algorithms are not able to find overlap-
ping communities. Only recently some methods capable to
address this feature have been proposed [27, 25, 3, 34, 11,
12, 16]

In this paper we propose a new algorithm, named GA-
NET+, to discover overlapped communities in networks by
employing genetic algorithms. The method uses the concept
of community score to measure the quality of the division in
communities of a network, and tries to optimize this quan-
tity by running the genetic algorithm on the line graph L(G)
of the graph G modelling the network. L(G) represents the
adjacency between the edges of G, thus it takes into account
not only the links between a node and its direct connected
neighbors, but also the higher-order interactions. A main
advantage in using the line graph is that the partitioning of
L(G) obtained by GA-NET+ corresponds to an overlapping
graph division of G. The dense communities present in the
network structure are obtained at the end of the algorithm
by selectively exploring the search space, without the need
to know in advance the exact number of groups. In fact, un-
like many existing methods, the algorithm does not require
the number of communities to find. This number is auto-
matically determined by the optimal value of the community
score. Experiments on synthetic and real life networks show
the capability of the genetic approach to correctly detect
communities with results comparable to the state-of-the-art
approaches.

The paper is organized as follows. In the next section the
concept of community is defined and the community detec-
tion problem is formalized. Section 3 describes the method,
the genetic representation adopted and the variation oper-
ators used. In section 4 an overview of the main proposals
in community detection algorithms is given. In section 5,



Figure 1: (a) A simple graph with six nodes; (b) a partition of the graph in two communities; (c) a division
of the graph in two overlapping communities.

finally, the results of the method on synthetic and real life
data sets are presented.

2. COMMUNITY DEFINITION AND DETEC-
TION

A network N can be modelled as a graph G = (V, E)
where V is a set of objects, called nodes or vertices, and E
is a set of links, called edges, that connect two elements of V .
A community (also called cluster or module) in a network
is a group of vertices (i.e. a sub-graph) having a high den-
sity of edges within them, and a lower density of edges be-
tween groups. This definition of community is rather vague
and there is no general agreement on the concept of den-
sity. A more formal definition has been introduced in [29]
by considering the degree ki of a generic node i, defined as
ki =

∑

j Aij , where A is the adjacency matrix of G. A is

such that an entry at position (i, j) is 1 if there is an edge
from node i to node j, 0 otherwise. Given a subgraph S ⊂ G,
where node i belongs to, its degree with respect to S can be
split as

ki(S) = kin
i (S) + kout

i (S)

kin
i (S) =

∑

j∈S Aij is the number of edges connecting i to

the other nodes in S. kout
i (S) =

∑

j /∈S Aij is the number of
edges connecting i to the rest of the network. A subgraph
S is a community in a strong sense if

kin
i (S) > kout

i (S), ∀i ∈ S

A subgraph S is a community in a weak sense if
∑

i∈S

kin
i (S) >

∑

i∈S

kout
i (S)

Thus, in a strong community, each node has more connec-
tions within the community than with the rest of the graph.
In a weak community the sum of the degrees within the sub-
graph is larger than the sum of degrees towards the rest of
the network.

A quality measure of a community S that maximizes the
in-degree of the nodes belonging to S and that implicitly
minimizes their out-degree has been introduced in [28]. We
now recall the definition of this measure, and then we show
how it can be exploited to find overlapping communities. In
the following, without loss of generality, the graph modelling
a network is assumed to be undirected.

Let µi denote the fraction of edges connecting node i to
the other nodes in S. More formally

µi = 1

|S|
kin

i (S)

where | S | is the cardinality of S.
The power mean of S of order r, denoted as M(S) is

defined as

M(S) =

∑

i∈S(µi)
r

|S|

Notice that, in the computation of M(S), since 0 ≤ µ ≤ 1,
the exponent r increases the weight of nodes having many
connections with other nodes belonging to the same mod-
ule, and diminishes the weight of those nodes having few
connections inside S.

The volume vS of a community S is defined as the number
of edges connecting vertices inside S, i.e the number of 1
entries in the adjacency sub-matrix of A corresponding to
S, vS =

∑

i,j∈S Aij .

The score of S is defined as score(S) = M(S)×vS . Thus
the score takes into account both the fraction of intercon-
nections among the nodes (through the power mean) and
the number of interconnections contained in the module S
(through the volume). The community score of a clustering
{S1, . . . Sk} of a network is defined as

CS =
k

∑

i

score(Si)

The community score gives a global measure of the network
division in communities by summing up the local score of



each module found. The problem of community identifica-
tion can then be formulated as the problem of maximizing
CS.

Genetic algorithms have been used in [28] to partition a
network in communities by optimizing the community score.
The method uses the locus-based adjacency representation
proposed in [26] and employed by [13, 21] for multiobjective
clustering. In this graph-based representation an individual
of the population consists of H genes g1, . . . , gH , where H
is the number of vertices, and each gene can assume allele
values j in the range {1, . . . , H}. Genes and alleles repre-
sent nodes of the graph G = (V, E) modelling a network
N , and a value j assigned to the ith gene is interpreted as
a link between the nodes i and j of V . This means that
in the clustering solution found i and j will be in the same
cluster. A decoding step, however, is necessary to identify
all the components of the corresponding graph. The nodes
participating to the same component are assigned to one
cluster.

Figure 2: (a) The locus-based representation of a
genotype relative to the graph of figure 1; (b) the
graph based structure of the genotype.

Consider the simple graph shown in figure 1(a). It consists
of six nodes and seven edges. The partition in two commu-
nities {1, 2, 4} and {3, 5, 6} is displayed in figure 1(b). The
locus-based representation of the genotype corresponding to
this solution can be seen in figure 2(a), and the decoded
graph of the individual in the population corresponding to
this genotype is shown in figure 2(b). A main advantage of
this representation is that the number k of clusters is au-
tomatically determined by the number of components con-
tained in an individual and determined by the decoding step.
A drawback, however, is that each node can be connected to
only one other node. This means that it is not possible to
represent the participation of a vertex to multiple clusters.

For the graph of figure 1(a), a more natural division in
two communities should include node 3 in both, as shown in
figure 1(c). However, the locus-based adjacency representa-

tion, does not allow for multiple links among nodes. Thus,
the graph can be partitioned, for example, like in figure 1(b).

Figure 3: The line graph corresponding to the graph
of figure 1.

In this paper an approach that allows to overcome this
disadvantage and, at the same time, to exploit the benefits
of the locus-based representation is proposed. Given a graph
G = (V, E) we propose to apply the genetic algorithm to
the line graph of G. The line graph L(G) of an undirected
graph G is another graph L(G) such that 1) each vertex of
L(G) represents an edge of G, and 2) two vertices of L(G)
are adjacent if and only if their corresponding edges share
a common endpoint in G. Thus a line graph represents the
adjacency between edges of G. The line graph of the graph
contained in figure 1(a) is shown in figure 3. Notice that it
contains seven nodes (one for each edge in G). Two nodes
in L(G) are connected if they have a node in common in G.
Thus, for example, there is an edge between the nodes in
L(G) labelled (1,2) and (1,4) because they share node 1 of
G.

The line graph is often used in graph theory and has a
number of advantages. First, it can recover the original net-
work thus maintaining all the information content. Second,
it takes into account not only the direct neighbors of a node.
Third, it is more highly structured of the original graph. In
fact, its has been verified that the line graph has a higher
clustering coefficient1 of the original graph [27]. Further-

1The clustering coefficient has been defined by Watt in [32].
Given a node i, let ni be the number of links connecting the
ki neighbors of i to each other. The clustering coefficient
of i is Ci = 2ni/ki(ki − 1). ni represents the number of
triangles passing through i, and ki(ki − 1)/2 the number
of possible triangles that could pass through node i. The
clustering coefficient a graph is the average of the clustering
coefficients of the nodes it contains.



more, the line graph clustering approach produces an over-
lapping graph partitioning of the original interaction graph,
thus allowing nodes to be present in multiple communities.
The approach of using the line graph to obtain overlapping
modules is not new. Pereira et al. [27] adopted it to find
overlapping modules in protein-protein interaction networks.
However, the combination of the line graph with genetic al-
gorithms has not been previously explored.

In the next section a detailed description of the algorithm
is given.

3. ALGORITHM DESCRIPTION
In this section we give a description of the algorithm GA-

NET+, and the variation operators used.
Given a network N and the graph G = (V, E) modelling

it, GA-NET+ performs the following steps;

1. Compute the line graph L(G) associated with G

2. create an initial population of random individuals whose
length equals the number L =| E | of edges of G

3. while termination condition is not satisfied, perform
the following sub-steps

(a) translate each individual A = {g1, . . . , gL} of the
population in the corresponding individual A =
{g1, . . . , gH} of the original graph G

(b) evaluate the fitness of the translated individuals

(c) create a new population of individuals by apply-
ing the variation operators

The algorithm starts by generating a population initial-
ized at random with individuals representing a partition in
sub-graphs of the line graph L(G) and repaired to produce
safe individuals, that is individuals generating connected
sub-graphs of L(G). This is realized by checking that an ef-
fective link exists between a gene at position i and the allele
value j. This value is maintained only if the edge (i, j) ex-
ists. Otherwise, j is substituted with one of the neighbors of
i. This guided initialization biases the algorithm towards a
decomposition of the network in connected groups of nodes.
An individual generating this kind of partitioning is called
safe because it avoids uninteresting divisions containing un-
connected nodes. Safe individuals improve the convergence
of the method because the space of the possible solutions is
restricted.

After that the fitness must be evaluated. As described in
the previous section, we are interested in identifying a clus-
tering that optimizes the community score because this guar-
antees highly intra-connected and sparsely inter-connected
communities. The objective function is thus CS =

∑k
i Q(Si).

However, the fitness must be evaluated on the original
graph G, instead of the line graph L(G). Thus a trans-
lation from the individual A, representing a partitioning
{C1, . . . Ck} of L(G), to the individual A, representing an
overlapping division {S1, . . . Sh} of G, is necessary before
fitness evaluation.
Regarding the variation operators, we used uniform crossover
because it guarantees the maintenance of the effective con-
nections of the nodes of the network in the child individual.
In fact, because of the biased initialization, each individual
in the population is safe, that is it has the property, that if
a gene i contains a value j, then the edge (i, j) exists. Thus,

given two safe parents, a random binary vector is created.
Uniform crossover then selects the genes where the vector
is a 1 from the first parent, and the genes where the vector
is a 0 from the second parent, and combines the genes to
form the child. The child at each position i contains a value
j coming from one of the two parents. Thus the edge (i, j)
exists. This implies that from two safe parents a safe child
is generated.

The mutation operator that randomly changes the value
j of a i-th gene causes a useless exploration of the search
space, because of the same above observations on node con-
nections. Thus the possible values an allele can assume are
restricted to the neighbors of gene i. This repaired mutation
guarantees the generation of a safe mutated child in which
each node is linked only with one of its neighbors.

Before presenting the experiments, in the next section an
overview of the main approaches to community detection is
given.

4. RELATED WORK
Many different algorithms, coming from different fields

such as physics, statistics, data mining, have been proposed
to detect communities in complex networks [10, 14, 22, 24,
5, 29, 23, 2, 18]. These approaches, the most famous of
which being that of Newman and Girvan [10, 24], divide
a network in separated clusters of nodes, where each node
can belong to only one group. Most of the real world net-
works, however, are constituted by overlapped communities
of nodes. Thus, more recently, a growing interest in devel-
oping methods that allow overlapping among the discovered
communities is rising [27, 25, 3, 11, 34, 12, 16, 15].

In the following a review of some of the proposals that
detect overlapping communities is given.

One of the first approach has been proposed in protein-
protein interaction domain and it is due to Pereira et al.
[27]. They transform the interaction graph into the cor-
responding line graph, in which edges represent nodes and
nodes represent edges, and then apply a known clustering
algorithm on the line graph. The validity of the method has
been established by the biological significance of the modules
obtained.

The Clique Percolation Method of Palla et al. [7, 25]
implemented in CFinder [1], finds k-clique percolation clus-
ters, i.e. groups of nodes that can be reached via chains
of k-cliques and the link in these cliques. The idea behind
this approach is that a cluster can be interpreted as the
union of small fully connected subgraphs that share nodes.
A k-clique is a complete subgraph constituted by k nodes
such that there is an edge for each pair of nodes. Two k-
cliques are said adjacent if they have k-1 common nodes. A
k-clique-community is then defined as the union of all the k-
cliques that can be reached through adjacent k-cliques. The
algorithm extracts all the maximal complete subgraphs, i.e.
the maximal cliques. Then a clique-clique overlap matrix is
built in which each entry contains the number of common
nodes between the two corresponding cliques, and each di-
agonal entry is the clique size. The k-cliques-communities
can be found by deleting every entry off the diagonal having
a value less than k-1, and every diagonal entry less than k.
The remaining separate components will be the k-cliques-
communities. The parameter k has to be provided in input.
Increasing k shrinks community size because nodes must be-
long to at least a clique of size k.



Lancichinetti et al. [16, 15] propose an algorithm to find
communities one at a time. The method starts by picking
a node X at random, and considering it as a community C.
Then a loop over all the neighbors nodes of C is performed
in order to choose the neighbor node to be added to C.
The choice is done by computing a fitness function for each
node, and augmenting C with the node having the highest
value of the fitness. At this point the fitness of each node
is recomputed, and if a node turns out to have a negative
fitness, it is removed from C. The process stops when all
the C nodes have a negative fitness. Once a community has
been obtained, a new node is picked and the process restarts
until all the nodes have been assigned to at least one group.
Overlapping can be obtained since a node can be considered
many times during the process. The fitness function adopted
is defined as follows. Let C be a module, then

fC =
kC

in

(kC
in + kC

out)
α

where kC
in and kC

out are the total internal and external de-
grees of the nodes of C. α is a positive real-valued parameter
controlling the size of the community. The role of α is analo-
gous to our power mean parameter r. Higher values of both
return denser communities, but the size diminishes. In the
next section we show that our genetic algorithm approach is
very competitive with respect to this one and that of Palla
et. al. [25]

Regarding approaches to community detection based on
Genetic Algorithms, only few proposals can be found in the
literature [30, 31, 8]. None of them, however, contemplate
the case of overlapping communities.

5. EXPERIMENTAL RESULTS
In this section the effectiveness of the approach on a syn-

thetic data set is studied. Then the results obtained by GA-
NET+ are compared with those reported by Lancichinetti
et al. in [15] on some real-worlds networks for which the par-
titioning in communities is known. In both cases we show
that our genetic algorithm successfully detects the network
structure and is competitive with the other approaches. The
GA-NET+ algorithm has been written in MATLAB, using
the Genetic Algorithms and Direct Search Toolbox 2. The
experiments have been performed on a Pentium 4 machine,
1800MHz, 1GB RAM. We employed standard parameters
for the genetic algorithm, crossover rate 0.8, mutation rate
0.2, elite reproduction 10% of the population size, roulette
selection function. The population size was 50, the number
of generations 30.

Synthetic data set. In order to check the ability of our
approach to successfully detect the community structure of
a network, we use the benchmark proposed by Lancichinetti
et al. [17], which is an extension of the classical benchmark
proposed by Girvan and Newan in [10]. The network con-
sists of 512 nodes divided into four communities of 128 nodes
each. Every node has an average degree of 16 and shares a
fraction α of links with the other nodes of its community,
and 1 − α with the other nodes of the network. α is called
the mixing parameter. When α ≤ 0.5 the neighbors of a
node inside its group are more than the neighbors belong-
ing to the other three groups, thus a good algorithm should
discover them. We generated 10 different networks for val-
ues of α ranging from 0.2 to 0.5, and used the Normalized

Mutual Information to measure the similarity between the
true partitions and the detected ones.

The Normalized Mutual Information is a similarity mea-
sure coming from Information Theory [20] proved to be reli-
able by Danon et al. [6]. The original formulation, however,
does not contemplate the possibility of having communities
sharing nodes. In Lancichinetti et al. [17] an extension to
deal with overlapping modules is presented. In the follow-
ing we summarize the extension introduced in [17]. Given
two divisions A and B of a network in communities, with
respectively | A | and | B | clusters, to measure the distance
between two clusterings A and B, it is necessary to mea-
sure the amount of information needed to recover A, once
B is known. The normalized mutual information N(A, B)
is defined as :

N(A, B) = 1 −
1

2
(H(A|B)norm + H(B|A)norm)

where

H(A|B)norm =
1

| A |

|A|
∑

k=1

H(Ak|B)

−pAlog(pA)

with pA the fraction of nodes contained in the clustering A.
Note that −pAlog(pA) is the entropy of A. H(Ak|B) is the
conditional entropy of a module Ak ∈ A with respect to the
clustering B, and it is computed as follows:

H(Ak|B) =















minl∈{1,2,...,|B|}H(Ak|Bl)
if p11 + p00 > p10 + p01 (see below)

−pAk
log(pAk

) otherwise

H(Ak|Bl) is the amount of information needed to infer the
module Ak, given a certain module Bl. The constraint is
necessary in order to avoid to choose a cluster Bl in B similar
to the complementary of Ak, instead of Ak. H(Ak|Bl) is
calculated as:

H(Ak|Bl) = (−p11log(p11) − p10log(p10) − p01log(p01)

−p00log(p00)) − (−pBl
log(pBl

))

where p11 is the fraction of nodes shared by the two clusters
Ak and Bl, p10 is the fraction of nodes belonging to Ak but
not to Bl, p01 is the fraction of nodes belonging to Bl but not
to Ak, and p00 is the fraction of nodes contained in neither
Ak nor Bl. H(B|A)norm is computed in an analogous way.

When N(A, B) = 1 it means that the two clusterings are
identical. Since the benchmark networks we use to validate
how well our approach recover the original structure are such
that each node is labelled with the class number of only
one community, it is not possible to obtain a value of the
normalized mutual information equal to 1 for the results
obtained by GA-NET+. However, the higher the value of
the normalized mutual information obtained, the better the
solution found.

Figure 4 shows the normalized mutual information, aver-
aged over the 10 runs, for different values of the exponent
r when the mixing parameter α increases from 0.2 to 0.5.
The figure points out that, for low values of r, GA-NET+
is able to recover almost 70% of community structure only



Figure 4: Normalized mutual information obtained
by GA-NET+ on the synthetic network for different
values of the exponent r.

when the fuzziness modules is low (α = 0.2). When r = 2,
instead, the algorithm is able to recover the true community
structure in almost more than 70% of cases even for α = 0.5,
i.e. each node has half of the links inside its community and
the other half with the rest of the network. This result is
very interesting because a high mixing parameter increases
the network fuzziness, thus it is rather difficult to identify
the hidden groups, being the communities mixed with each
other.

Real-life data set. We now show the application of GA-
NET+ on three real-world networks, the Zachary’s Karate
Club , the Bottlenose Dolphins, and American College Foot-
ball, well studied in the literature, and compare our results
with those obtained by Lancichinetti et al. in [15] and Palla
et al. [25], reported in [15].
The Zackary’s Karate Club network was generated by Zachary
[33], who studied the friendship of 34 members of a karate
club over a period of two years. During this period, because
of disagreements, the club divided in two groups almost of
the same size. The social network of 62 bottlenose dolphins
living in Doubtful Sound, New Zealand, was compiled by
Lusseau [19] from seven years of dolphins behavior. A tie
between two dolphins was established by their statistically
significant frequent association. The network split naturally
into two large groups, the number of ties being 159. The
last example is the American College Football network [10]
which comes from the United States college football. The
network represents the schedule of Division I games during
the 2000 season. Nodes in the graph represent teams and
edges represent the regular season games between the two
teams they connect. The teams are divided in conferences.
The teams on average played 4 inter-conference matches and

7 intra-conference matches, thus teams tend to play between
members of the same conference. The network consists of
115 nodes and 616 edges grouped in 12 teams.

For each network, we run GA-NET+ 10 times and com-
puted the average normalized mutual information over these
10 runs. As regards the values of the normalized mutual in-
formation of the other two methods, we took the results
reported in [15], where the authors compare their method
with that of [25]. Figure 5 clearly shows the very good per-
formance of GA-NET+ with respect to both the other two
approaches.

Figure 5: Comparison of GA-NET+, Lancichinetti
et al., and Palla et al. relative to the extended Nor-
malized Mutual Information for Karate club, Dol-
phins, and American College Football networks.

In fact, over 10 runs, GA-NET+ obtained an average nor-
malized mutual information of 0.7635, 0.90071, 0.8913 on the
Zachary’s Karate Club, the Bottlenose Dolphins, and Amer-
ican College Football networks, respectively. On the other
hand Lancichinetti et al. obtained 0.690, 0.781, and 0.754,
while Palla et al. 0.170, 0.254, and 0.697, respectively.

To conclude, figure 6 displays the network division gen-
erated by Zackary in two distinct groups, identified by cir-
cles and triangles of different colors, and four, out of the
eleven overlapped groups obtained by GA-NET+. The fig-
ure has been reproduced by using the NetDraw software [4].
The figure points out that the sub-graphs sharing nodes are
significant. Consider, for example, the module containing
nodes {1, 5, 6, 7, 11, 17}. Nodes {5, 6, 7, 11, 17} are strictly
connected to each other and four out of five of them are
linked to only node 1. Thus the participation of node 1 in
this group is meaningful. On the other hand, node 1 is a cen-
tral node in the network because its degree is much higher
than the others (in the literature these kind of nodes are
often called ”hub”). This naturally candidates it to belong
to many different groups. Analogously, in the community
composed by the nodes {24, 25, 26, 28, 32}, node 32 can be-
long to more than one community. It is worth noting that
node 10, classified by Zackary in the community on the right,



Figure 6: Overlapped Communities found by the genetic based method GA-NET+

has only one link with both the two Zackary’s communities.
GA-NET+ assigned node 10 to two groups. One group is
formed with nodes all belonging to the community on the
right, the other group includes also nodes from the group on
the left, namely nodes 1, 3, and 14. This choice is plausible
because the module found contains also node 9, connected
to both nodes 1 and 3, and node 34, linked to node 14.

The results obtained show the capability of genetic algo-
rithms to effectively deal with community identification in
networks.

6. CONCLUSIONS
The paper presented a genetic algorithm for detecting

overlapping communities in complex networks. The ap-
proach makes use of the line graph to extract all the dense
communities present in the network by selectively explor-
ing the search space, without the need to know in advance
the exact number of groups. Experiments on synthetic and
real life networks showed the capability of the genetic ap-
proach to correctly detect communities with comparable re-
sults with state-of-the-art approaches. Future research will
aim at applying multi-objective optimization to improve qual-
ity results.
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[25] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás
Vicsek. Uncovering the overlapping community
structure of complex networks in nature and society.
Nature, 435:814–818, 2005.

[26] Y.J. Park and M.S. Song. A genetic algorithm for
clustering problems. In Proc. of 3rd Annual
Conference on Genetic Algorithms, pages 2–9, 1989.

[27] J. B. Pereira, A.J. Enright, and C.A. Ouzounis.
Detection of functional modules from protein
interaction networks. Proteins: Structure, Fuctions,
and Bioinformatics, (20):49–57, 2004.

[28] Clara Pizzuti. GA-NET: a genetic algorithm for
community detection in social networks. In Proc. of
the 10th Intenational Conference on Parallel Problem
Solving from Nature (PPSN 2008), pages 1081–1090,
2008.

[29] Filippo Radicchi, Claudio Castellano, Federico
Cecconi, Vittorio Loreto, and Domenico Parisi.
Defining and identifying communities in networks.
Proc. Natl. Acad.Sci. USA (PNAS’04),
101(9):2658–2663, 2004.

[30] Mursel Tasgin and Aluk Bingol. Communities
detection in complex networks using genetic
algorithms. In Proc. of the European Conference on
Complex Systems (ECSS’06), 2006.

[31] Mursel Tasgin, Amac Herdagdelen, and Aluk Bingol.
Communities detection in complex networks using
genetic algorithms. oai:arXiv.org:0711.0491v1
[physics.soc-ph], 2007.

[32] D. J. Watt. Small worlds. Princeton University Press,
1999.

[33] W.W Zachary. An information flow model for conflict
and fission in small groups. Journal of Anthropological
Research, 33:452–473, 1977.

[34] Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun
Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means
clustering. Phisica A, 374:483–490, 2007.


