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ABSTRACT
A boosting algorithm based on cellular genetic programming
to build an ensemble of predictors is proposed. The method
evolves a population of trees for a fixed number of rounds
and, after each round, it chooses the predictors to include
into the ensemble by applying a clustering algorithm to the
population of classifiers. The method proposed runs on a
distributed hybrid multi-island environment that combines
the island and cellular models of parallel genetic program-
ming. The large amount of memory required to store the
ensemble makes the method heavy to deploy. The paper
shows that by applying suitable pruning strategies it is pos-
sible to select a subset of the classifiers without increasing
misclassification errors; indeed, up to 20% of pruning, en-
semble accuracy increases. Experiments on several data sets
shows that combining clustering and pruning enhances clas-
sification accuracy of the ensemble approach.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications —
Data Mining ; I.2.2 [Artificial Intelligence]: Automatic
Programming

General Terms
Algorithms

Keywords
Genetic Programming, Data Mining, Classification, Ensem-
ble

1. INTRODUCTION
Ensemble learning algorithms have captured an increasing

interest in the research community because of their capa-
bility of improving the classification accuracy of any single
classifier. An ensemble of classifiers is constituted by a set
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of predictors that, instead of yielding their individual deci-
sions to classify new examples, combine them together by
adopting some strategy [5, 18, 6, 11, 4]. It has been pointed
out that the boost in accuracy is tightly related with the
diversity of the classifiers [11, 21]. Two classifiers are di-
verse if they make different incorrect predictions on new data
points. Several approaches for building ensembles satisfying
the diversity demand have been proposed. The AdaBoost
algorithm introduced by Freund and Schapire [18] showed
to be efficacious at generating different classifiers because
it guides the underlying learning algorithm at focusing on
harder examples by adaptively changing the distributions
of the training set on the base of the performance of the
previous classifiers.

The combination of Genetic Programming (GP ) [20] and
ensemble techniques has been receiving a lot of attention be-
cause of the improvements that GP obtains when enriched
with these methods [19, 27, 22, 9, 15, 17]. In particular,
BoostCGPC (Boost Cellular Genetic Programming Classi-
fier) [17] implements the AdaBoost.M1 boosting algorithm
of Freund and Shapire [18] on a parallel computer by us-
ing the algorithm CGPC (Cellular Genetic Programming
for data classification) [14] as base classifier. Given a train-
ing set S of size N and the number P of processors used to
run the algorithm, BoostCGPC partitions the population
of classifiers in P subpopulations, creates P subsets of tuples
of size n < N by uniformly sampling instances from S with
replacement, and builds an ensemble of classification trees
by choosing from each subpopulation the individual having
the best fitness.

As already observed, one of the main problems of voting
classification algorithms is the generation of many different
predictors, thus a spontaneous observation that arises is that
a population of predictors by itself constitutes an ensemble,
thus why choose only one individual, though it is the one
with the best fitness? Considering that the size of a popula-
tion is generally not small, taking all the individuals of each
subpopulation could not be a practical approach because of
the resulting high number of predictors. A reasonable pro-
posal could be to use a clustering algorithm [12] to group
individuals in the population that are similar with respect
to a similarity measure and then take the representatives of
these clusters.

In this paper a distributed Boosting Cellular Genetic Pro-
gramming Classifier endowed with a clustering strategy to
build the ensemble of predictors is proposed. The algo-
rithm, named ClustBoostCGPC (Clustering Boost Cellu-



lar Genetic Programming Classifier), instead of choosing,
like BoostCGPC, from each subpopulation the individual
having the best fitness, finds k groups of individuals similar
with respect to a similarity measure and then takes the indi-
vidual of each cluster having the best fitness. The algorithm
runs on a distributed environment based on a hybrid multi-
island model [2] that combines the island model with the
cellular model. Each node of the network is considered as an
island that contains a learning algorithm, based on cellular
genetic programming, whose aim is to generate decision-tree
predictors trained on the local data stored in the node. Ev-
ery genetic program, however, though isolated, cooperates
with the neighboring nodes by collaborating with the other
learning components located on the network and takes ad-
vantage of the cellular model by exchanging the outermost
individuals of the population.

The main drawback of the approach proposed is that the
size of the ensemble increases as the number of clusters and
the nodes of the network. Thus we could ask if it it possible
to discard some of these predictors and still obtain compa-
rable accuracy. The paper shows that by applying suitable
pruning strategies it is possible to select a subset of the clas-
sifiers without increasing misclassification errors; indeed, up
to 20% of pruning, ensemble accuracy increases. Experi-
ments on several data sets shows that the combination of
clustering and pruning enhances classification accuracy of
the ensemble approach.

The paper is organized as follows. The next section re-
views the Boosting algorithms of Freund and Schapire [26].
In Section 3 the algorithm ClustBoostCGPC and software
architecture used to run it are described. Section 4 describes
the pruning strategy adopted to reduce the size of the en-
semble. In section 5, finally, the results of the method on
some standard problems are presented.

2. ENSEMBLE TECHNIQUES
Let S = {(xi, yi)|i = 1, . . . , N} be a training set where xi,

called example or tuple or instance, is an attribute vector
with m attributes and yi is the class label associated with xi.
A predictor (classifier), given a new example, has the task to
predict the class label for it. Ensemble techniques [5, 25, 11,
4] build T predictors, each on a different training set, then
combine them together to classify the test set. Boosting
was introduced by Schapire [25] and Freund [26] for boost-
ing the performance of any “weak” learning algorithm, i.e.
an algorithm that “generates classifiers which need only be
a little bit better than random guessing” [26]. The boosting
algorithm, called AdaBoost, adaptively changes the distri-
bution of the training set depending on how difficult each
example is to classify. Given the number T of trials (rounds)
to execute, T weighted training sets S1, S2, . . . , ST are se-
quentially generated and T classifiers C1, . . . , CT are built
to compute a weak hypothesis ht. Let wt

i denote the weight
of the example xi at trial t. At the beginning w1

i = 1/n
for each xi. At each round t = 1, . . . , T , a weak learner Ct,
whose error ǫt is bounded to a value strictly less than 1/2,
is built and the weights of the next trial are obtained by
multiplying the weight of the correctly classified examples
by βt = ǫt/(1 − ǫt) and renormalizing the weights so that
Σiw

t+1

i = 1. Thus “easy” examples get a lower weight, while
“hard” examples, that tend to be misclassified, get higher
weights. This induces AdaBoost to focus on examples that
are hardest to classify. The boosted classifier gives the class

label y that maximizes the sum of the weights of the weak
hypotheses predicting that label, where the weight is defined
as ln(1/βt). Freund and Schapire [26] showed theoretically
that AdaBoost can decrease the error of any weak learning
algorithm and introduced two versions of the method. In
this paper we use AdaBoost.M1.

3. CLUSTBOOSTCGPC
In this section the description of the algorithm

ClustBoostCGPC is given. The method builds an ensemble
of classifiers by using, at each round of the boosting proce-
dure, the algorithm CGPC (Cellular Genetic Programming
for data classification) [14] to create a population of predic-
tors and the clustering algorithm k-means to choose a fixed
number k of predictors in the population. Before giving a
detailed outline of the approach proposed, a brief review of
the CGPC and k-means methods is provided.

3.1 The CGPC algorithm
Genetic programming can be used to inductively gener-

ate a GP classifier as a decision tree for the task of data
classification [20]. Decision trees, in fact, can be interpreted
as composition of functions where the function set is the
set of attribute tests and the terminal set are the classes.
The function set can be obtained by converting each at-
tribute into an attribute-test function. For each attribute
A, if A1, . . . An are the possible values A can assume, the
corresponding attribute-test function fA has arity n and if
the value of A is Ai then fA(A1, . . . An) = Ai. When a tuple
has to be evaluated, the function at the root of the tree tests
the corresponding attribute and then executes the argument
that outcomes from the test. If the argument is a terminal,
then the class name for that tuple is returned, otherwise the
new function is executed. The CGPC algorithm used for
data classification is described in figure 1.

Let pc, pm be crossover and mutation probability
for each point i in grid do in parallel
generate a random individual hi

evaluate the fitness of hi

end parallel for
while not MaxNumberOfGeneration do

for each point i in grid do in parallel
generate a random probability p
if (p < pc)

select the cell j, in the neighborhood of i,
such that hj has the best fitness
produce the offspring by crossing hi and hj

evaluate the fitness of the offspring
replace hi with the best of the two offsprings
evaluate the fitness of the new hi

else
if ( p < pm + pc) then

mutate the individual
evaluate the fitness of the new hi

else
copy the current individual in the population

end if
end if

end parallel for
end while

Figure 1: The algorithm CGPC.



CGPC adopts a cellular model of GP [24]. In the cellular
model each individual has a spatial location, a small neigh-
borhood and interacts only within its neighborhood. The
main difference in a cellular GP, with respect to a panmictic
algorithm, is its decentralized selection mechanism and the
genetic operators (crossover, mutation) adopted.

CGPC generates a classifier as follows. At the beginning,
for each cell, the fitness of each individual is evaluated. The
fitness is the number of training examples classified in the
correct class. Then, at each generation, every tree under-
goes one of the genetic operators (reproduction, crossover,
mutation) depending on the probability test. If crossover is
applied, the mate of the current individual is selected as the
neighbor having the best fitness, and the offspring is gener-
ated. The current tree is then replaced by the best of the
two offsprings if the fitness of the latter is better than that
of the former. After the execution of the number of genera-
tions defined by the user, the individual with the best fitness
represents the classifier.

3.2 The k-means algorithm
The algorithm k-means [12] is a well known clustering

method that partitions a set of objects into k groups so
that the intracluster similarity is high but the intercluster
similarity is low. Cluster similarity is measured with respect
to the mean value of the objects in a cluster, which can be
considered as the cluster’s center. The algorithm first ran-
domly selects k objects, and assigns the remaining objects
to the most similar cluster, where similarity is computed as
the distance between the object and the center of the clus-
ter. After that, the new mean values of the clusters are
computed and this process is repeated until the criterion
function converges. Typically, the squared-error criterion is
used, defined as E =

∑k

i=1

∑
p∈Ci

dist(p, mi)
2, where E is

the sum of square error for all the objects, dist is a distance
measure, generally the Euclidean distance, p is an object,
and mi is the mean of cluster Ci. Both p and mi are multi-
dimensional objects.

In order to apply the k-means algorithm to a population
of trees, it is necessary to specify the concept of distance
between two individuals. To this end, each classification
tree h is represented by a couple (f, e), where f is its fitness
value and e is its distance from the empty tree Φ, consid-
ered as the origin tree. The metric adopted to measure the
structural distance between two genetic trees is that intro-
duced by Ekárt and Németh [13]. The distance between
two trees h1 and h2 is calculated in three steps: (1) h1 and
h2 are overlapped at the root node and the process is ap-
plied recursively starting from the leftmost subtrees. (2)
For each pair of nodes at matching positions, the differ-
ence of their codes (possibly raised to an exponent) is com-
puted. (3) The differences computed in the previous step
are combined in a weighted sum. Formally, the distance of
two trees h1 and h2 with roots R1 and R2 is defined as:

dist(h1, h2) = d(R1, R2) + 1

H

˙m∑

i=1

dist(childi(R1), childi(R2))

where: d(R1, R2) = (|c(R1) − c(R2)|)
z, c is a numeric code

assigned to each node of the tree, childi(Y ) is the ith of the
m possible children of a generic node Y , if i ≤ m, or the
empty tree otherwise. The constant H is used to give differ-
ent weights to nodes belonging to different levels and z is a
constant such that z ∈ N . Since the nodes of a classification

tree are labelled with the attribute’s names of the training
examples, each attribute is coded with a number and this
number is used as the code associated with each node la-
belled with that attribute. When computing the distance
between a tree and the empty tree, dist(h, Φ) gives simply
a weighted sum of the codes associated with the attributes
appearing in the tree.

Once for each tree the couple (f, e) has been computed,
since both f and e are numbers, the k-means algorithm em-
ploys the Euclidean distance to the tree population by using
this two dimensional representation.

3.3 The ClustBoostCGPC algorithm to build
GP ensemble

ClustBoostCGPC is a new cooperative ensemble learn-
ing algorithm for constructing GP ensembles. The idea
is to incorporate different GP classifiers, each trained on
different parts or aspects of the training set, so that the
ensemble can better learn from the whole training data.
ClustBoostCGPC applies the boosting technique in a dis-
tributed hybrid multi-island model of parallel GP and uses
a clustering-based selective algorithm to maintain the diver-
sity of the ensemble by choosing in each population the most
accurate predictors of each group.

Our approach aims to emphasize the cooperation among
the individuals of the population (classifiers) using a hybrid
model of parallel GP that combines the multi-island and
cellular models of GP to enhance accuracy and to reduce
performance fluctuation of programs produced by GP.

The multi-island model is based on subpopulations cre-
ated by dividing the original population into disjunctive sub-
sets of individuals, usually of the same size. Each subpopula-
tion is assigned to an island and a standard (panmictic) GP
algorithm is executed on it. Occasionally, migration process
between subpopulations is carried out after a fixed number
of generations. The hybrid model modifies the multi-island
model by substituting the standard GP algorithm with a
cellular GP algorithm [16]. In our model we use the CGPC
algorithm in each island. Each island operates in parallel on
a subset of the tuples of the whole training set. The train-
ing and combination of the individual classifiers are carried
together in the same learning process by a cooperative ap-
proach. Our model is based on the coevolution of different
subpopulations of classifiers and a migration process that
transfers asynchronously individuals among subpopulations.

In order to improve the prediction accuracy achieved by
an ensemble, we need to ensure accuracy of classifiers and
diversity among them. Although GP does not require any
change in a training data to generate individuals of differ-
ent behaviors, in [17] it is showed that GP enhanced with
a boosting technique improves both the prediction accu-
racy and the running time with respect to the standard
GP. ClustBoostCGPC combines the boosting method and
the distributed hybrid model of GP to iteratively build an
ensemble of classification trees through a fixed number of
round.

The selection, at each round, of classifiers satisfying both
high diversity and accuracy requirements, is a difficult opti-
mization task. To this end in ClustBoostCGPC we applied
a method that gradually achieves diversity and accuracy.
First, we employ the k-means clustering algorithm to divide
all individuals of each subpopulation into groups (clusters)
according to similarity of the classifiers. Then, the most



accurate individual in each group is selected.
A more formal description the algorithm, in pseudo-code,

is shown in figure 2.
Let a network of P nodes be given, each having a training

set Sj of size nj . At the beginning, for every node Nj ,
j = 1, . . . , P , a subpopulation Qj is initialized with random
individuals and the weights of the training instances are set
to 1/nj . Each subpopulation Qj is evolved for t generations
and trained on its local training set Sj by running a copy
of the CGPC algorithm (figure 1). After t generations, the
evolved population of trees is clustered by using the k-means
algorithm [12] and k groups of individuals are determined.
For each group, the tree having the best fitness is chosen as
representative of the cluster and output as the hypothesis
computed. Then the k individuals of each subpopulation are
exchanged among the P nodes and constitute the ensemble
of predictors used to determine the weights of the examples
for the next round.

Given a network constituted by P nodes,
each having a data set Sj of size nj

For j = 1, 2, . . ., P (for each island in parallel)
Initialize the weights w1

i = 1

nj
for i = 1, . . . , nj ,

where nj is the number of training examples on each node j.
Initialize the subpopulation Qj , for j = 1, . . . , P
with random individuals

end parallel for
For t = 1,2,3, . . ., T

For j = 1, 2, . . ., P (for each island in parallel)
Train CGPC on the partition Sj using a weighted
fitness according to the distribution wt

Run the k-means algorithm to compute
k weak hypotheses hj1,t....hjk,t : X → Y
Exchange the hypotheses hjc,t c = 1, . . . , k

among the P nodes
let Djc = 1 if arg max hjc,t(xi) 6= yi

0 otherwise
Compute the error ǫt

jc
=

∑n
i=1 wt

iDic

Set βt
jc

= ǫt
jc

/(1 − ǫt
jc

),

Compute avg betat
j =

∑k
c=1

βt
jc

k

Update the weights wt+1
i = avg betat

j × wt
i if hj,t(xi) = yi

end parallel for
end for t
output the hypothesis :

hf = arg max (
∑T

t=1

∑P
j=1

∑k
c=1 log( 1

βt
jc

)Dt
jc

)

where Dt
jc

= 1 if hjc,t(xi) = yi, 0 otherwise

Figure 2: The algorithm ClustBoostCGPC

We implemented ClustBoostCGPC using a distributed
infrastructure and a distributed framework to run GP.

The software architecture of ClustBoostCGPC is illus-
trated in figure 3.

We used dCAGE (distributed Cellular Genetic Program-
ming System) a distributed environment to run genetic pro-
grams by a multi-island model, which is an extension of [16].
dCage has been modified to support the hybrid variation of
the classic multi-island model.

In the new implementation, to take advantage of the cel-
lular model of GP, the islands are evolved independently
using the CGPC algorithm, and the outermost individuals
are asynchronously exchanged. The training sets assigned
to each islands can be thought as portions of the overall data
set. dCAGE distributes the evolutionary processes (islands)

Figure 3: Software architecture of CustBoostCGPC.

that implement the classification models over the network
nodes using a configuration file that contains the configura-
tion of the distributed system. dCAGE implements the hy-
brid model as a collection of cooperative autonomous islands
running on the various hosts within an heterogeneous net-
work that works as a peer-to-peer system. The MPI (Mes-
sage Passed Interface) library is used to make cooperate
the islands. Each island, employed as a peer, is identical to
each other. At each round, a collector process collects the
GP classifiers from the other nodes, handling the fusion of
the results on behalf of the other peers, and redistributes
the GP ensemble for future predictions to all the network
nodes.

We assume that each training set Si, i = 1, . . . , P re-
sides on a different node. The size of each subpopulation
Qi, i = 1, . . . , P present on a node, must be greater than
a threshold determined from the granularity supported by
the processor. Each node, using a training set Si and a
subpopulation Qi implements a classifier process CGPCi as
learning algorithm and generates a population of classifiers.
Communication among the nodes is local and asynchronous.
The configuration of the structure of the processors is based
on a ring topology and a classifier process is assigned to
each. During the boosting rounds, each classifier process
maintains the local vector of the weights that directly re-
flect the prediction accuracy on that site. At every boosting
round the hypotheses generated by each of these classifiers
(CGPCi in Figure 3) are clustered employing the standard
k-means algorithm. Then, the most accurate classifier in
each group is selected to be included in the ensemble of pre-
dictors.

Next, the ensemble built so far is broadcasted to each
classifier process to locally recalculate the new vector of the
weights and a copy of the ensemble is stored in a reposi-
tory. After the execution of the fixed number T of boosting
rounds, the classifiers stored in the repository are used to
evaluate the accuracy of the classification algorithm.



Table 1: Data sets used in the experiments
Dataset Attr. Tuples Classes

Adult 14 48842 2
Census 41 299285 2
Covtype 54 581012 7

Mammography 10 11183 2
Phoneme 5 5404 2
Satimage 36 6435 6
Segment 19 2310 7

Table 2: Main parameters used in the experiments
Name Value

max depth for new trees 6
max depth after crossover 17

max mutant depth 2
grow method RAMPED

selection method GROW
crossover func pt fraction 0.7
crossover any pt fraction 0.1
fitness prop repro fraction 0.1

parsimony factor 0

4. REDUCING THE SIZE OF THE ENSEM-
BLE

A drawback of the method proposed, and of the ensemble
methods in general, is the large amount of memory required
to maintain the classifiers. In our case, the size of the en-
semble increases as the number of clusters and the number
of nodes of the network. Thus we could ask if it it pos-
sible to discard some of the predictors generated and still
obtain comparable accuracy. This approach is well known
in the literature and it is called pruning [23] or thinning
[3] the ensemble. Pruning the ensemble requires a strat-
egy to choose the classifiers to remove. There is a general
agreement that the predictors forming the ensemble have to
be both diverse and accurate. A pruning policy thus iden-
tifies the most similar classifiers and removes them. The
concept of similarity in this context plays a central role.
In the Machine Learning community diversity means that
the predictors have to make independent classification er-
rors, i.e. they disagree with each other. A disagreement
measure used in [23] is, for example, the κ statistics [1].
In the Genetic Programming community the concept of di-
versity is perceived in a different way [7, 8], in particular
it reflects the structural diversity of the genetic programs
in a generation [13]. In this paper we adopt different di-
versity measures to choose the trees to prune, we compare
them and we show, in the experimental results, that the en-
semble can be quite substantially pruned without increasing
misclassification errors; indeed, up to 20% of pruning, en-
semble accuracy increases. The first two diversity measures
used are the pairwise distance between two trees (denoted
pairwise), and the distance of a tree from the empty tree
(denoted origin), introduced in subsection 3.2. The third
measure is the κ statistics, defined as follows. Given two
classifiers hi and hj , where hi, hj : X → Y , consider the
following | Y | × | Y | contingency table M . For elements
a, b ∈ Y , define Ma,b to contain the number of examples x
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Figure 4: Mean performance of pruned ClustBoost-
CGPC relative to unpruned ClustBoostCGPC with
different pruning percentages.

in the training set for which hi(x) = a and hj(x) = b. If
hi and hj give identical classifications, all non-zero counts
will appear along the diagonal. If hi and hj are very dif-
ferent, then there should be a large number of counts off

the diagonal. Let Θ1 =
∑ |Y |

a=1
Ma,a

N
be the probability that

two classifiers agree, where N is the size of the training
set and | Y | is the number of different classes. Let also

Θ2 =
∑|Y |

a=1
(

∑ |Y |
b=1

Ma,b

N

∑ |Y |
b=1

Mb,a

N
) be the probability that

two classifiers agree by chance, given the observed counts
in the table. Then the κ measure of disagreement between
classifiers hi and hj is defined as κ(hi, hj) = Θ1−Θ2

1−Θ2
. A value

of κ = 0 implies that Θ1 = Θ2 and the two classifiers are
considered different. A value of κ = 1 implies that Θ1 = 1,
which means that the two classifiers agree on each example.

Thus a pruning strategy first computes the κ, origin, and
pairwise measures and then chooses the predictors to elimi-
nate in the following way. If the origin measure is used, the
predictors hi are ordered in increasing order of dist(hi, Φ)
and eliminated by starting with that having the lowest value
until the pruning percentage fixed has been reached.

If pairwise or κ measures are adopted, the pruning strat-
egy choose pairs (hi, hj) of classifiers by starting with the
pair having the lowest dist(hi, hj) or κ(hi, hj) value, consid-
ering them in increasing order of dist or κ until the pruning
percentage fixed has been reached.

5. EXPERIMENTAL RESULTS
In this section ClustBoostCGPC and BoostCGPC are

compared on 7 data sets. Two data sets (Census and Covtype)
are from the UCI KDD Archive1, three (Segment, Satimage,
and Adult) are taken from the UCI Machine Learning Repos-
itory 2, one (Phoneme) is from the ELENA project 3, and

1http://kdd.ics.uci.edu/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3ftp.dice.ucl.ac.be in the directory
pub/neural/ELENA/databases



Table 3: Comparison of the misclassification error of BoostCGPC and ClustBoostCGPC (5 and 10 clusters).

Dataset BoostCGPC ClustBoostCGPC ClustBoostCGPC
(5 clusters) (10 clusters)

Adult 17.231 ± 0.164 14.749 ± 0.163 14.641 ± 0.161
Census 6.120 ± 0.045 4.695 ± 0.042 4.681 ± 0.041
Covtype 33.374 ± 0.468 30.850 ± 0.453 30.044 ± 0.442

Mammography 2.159 ± 0.099 1.309 ± 0.093 1.304 ± 0.091
Phoneme 19.121 ± 0.475 16.968 ± 0.462 16.918 ± 0.448
Satimage 21.398 ± 0.573 20.220 ± 0.552 20.185 ± 0.543
Segment 13.452 ± 0.421 12.127 ± 0.418 12.114 ± 0.417
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Figure 5: Mean performance of pruned ClustBoost-
CGPC relative to unpruned BoostCGPC with dif-
ferent pruning percentages.

one (Mammography) is a research data set used in [10]. The
size and class distribution of these data sets are described
in table 1.

The experiments were performed using a network com-
posed by 10 1,133 Ghz Pentium III nodes having 2 Gbytes of
Memory, interconnected over high-speed LAN connections.

All results were obtained by averaging 50 runs. In order
to do a fair comparison between ClustBoostCGPC, and
BoostCGPC we used a network of 10 nodes for both the
algorithms, the number T of rounds was 10, population size
100 on each node, number of generations 100 (for a total
number of generations 100 × 10=1000), and number of clus-
ters fixed for ClustBoostGPC 5 and 10. Thus BoostCGPC
generated 100 classifiers, while ClustBoostCGPC, in one
run 500 predictors, and in the other run 1000 predictors. A
main difference between ClustBoostCGPC and BoostCGPC
regards the partitioning of the training sets on the nodes
of the network. ClustBoostCGPC runs on a distributed
environment where it is supposed that each node has its
own data set. In order to simulate this kind of situation,
each data set has been equally partitioned among the 10
nodes. Thus each node contains 1/10 of the training set.
BoostCGPC runs on a parallel computer, thus according

to the sequential AdaBoost approach, it creates 10 subsets
of tuples of size 1/10 the overall training set by uniformly
sampling instances with replacement. The parameters used
for the experiments are shown in table 2.

The main objectives of the experiments have been to in-
vestigate the influence of the clustering approach on the ac-
curacy when different number of clusters are chosen, and to
analyze and compare the pruning strategies described in the
previous section.

As regard the first objective, ClustBoostCGPC has been
executed by fixing the number of clusters to 5 and 10, thus
by using an ensemble of 500 an 1000 predictors, and com-
pared with BoostCGPC, that uses an ensemble of 100 pre-
dictors. Table 3 shows the classification errors of BoostCGPC
and ClustBoostCGPC. The table shows that for all the
data sets the clustering strategy sensibly improves the ac-
curacy of the method. For example, on the Adult data set
ClustBoostCGPC (5 clusters) obtains an error of 14.749
instead of 17.231 of BoostCGPC. Thus the choice of the
best five predictors in the clustered population instead of
the best classification tree, at each boosting round, allows
to obtain a much better result. However, as the table points
out, augmenting the number of clusters is no more benefi-
cial because the reduction of the misclassification error is
minimal.

Using an ensemble of 500 predictors instead of 100 needs
a larger amount of memory to store all the classifiers. Thus
the improved accuracy is obtained at the cost of higher stor-
age requirements. In the second set of experiments executed
we show that the ensemble can be substantially pruned with-
out decreasing performance. To this end we considered
the ensemble of 500 predictors and we applied the pruning
strategies described in the previous section.

Table 4 reports the results of the different pruning strate-
gies for all the data sets. The percentages of pruning exper-
imented are 10%, 20%, 50%, and 80% of the ensemble. The
table reports in the column named Err the misclassifica-
tion error of the ensemble pruned of the percentage showed
in the corresponding row, in the column GainC the rela-
tive gain in percentage of the pruned ensemble with respect
to the complete ensemble generated by ClustBoostCGPC,
and in the column GainB the relative gain in percentage
of the pruned ensemble with respect to the ensemble gen-
erated by BoostCGPC. A positive value means that the
misclassification error is diminished, while a negative one
that it increased. The table clearly shows that up to 50%
of pruning, for all the data sets, independently the pruning
strategy used, the ensemble can be reduced and still have



Table 4: Error and gain of pruned ClustBoostCGPC with respect to unpruned ClustBoostCGPC and un-
pruned BoostCGPC.

origin pairwise kappa
Err GainC GainB Err GainC GainB Err GainC GainB

10% 14.711 0.26% 14.62% 14.462 1.95% 16.07% 14.734 0.10% 14.49%
Adult 20% 14.971 -1.51% 13.12% 14.742 0.05% 14.44% 15.042 -1.99% 12.70%

50% 15.425 -4.58% 10.48% 16.032 -8.70% 6.96% 15.823 -7.28% 8.17%
80% 19.281 -30.73% -11.90% 22.469 -52.34% -30.40% 23.856 -61.74% -38.45%
10% 4.582 2.40% 25.13% 4.289 8.64% 29.92% 4.453 5.15% 27.24%

Census 20% 4.744 -1.04% 22.49% 4.706 -0.24% 23.10% 4.768 -1.56% 22.09%
50% 5.073 -8.06% 17.11% 4.944 -5.31% 19.22% 5.085 -8.32% 16.91%
80% 7.901 -68.30% -29.10% 7.542 -60.65% -23.24% 7.988 -70.15% -30.52%
10% 30.679 0.55% 8.08% 30.128 2.34% 9.73% 30.203 2.10% 9.50%

Covtype 20% 30.904 -0.18% 7.40% 30.355 1.60% 9.05% 30.800 0.16% 7.71%
50% 32.322 -4.77% 3.15% 30.952 -0.33% 7.26% 31.012 -0.53% 7.08%
80% 34.188 -10.82% -2.44% 33.681 -9.18% -0.92% 33.955 -10.06% -1.74%
10% 1.297 0.95% 39.93% 1.223 6.60% 43.35% 1.265 3.39% 41.41%

Mamm. 20% 1.385 -5.77% 35.85% 1.307 0.18% 39.46% 1.407 -7.45% 34.83%
50% 1.467 -12.04% 32.05% 1.421 -8.52% 34.18% 1.604 -22.50% 25.71%
80% 2.302 -75.81% -6.62% 2.208 -68.63% -2.27% 2.420 -84.82% -12.09%
10% 16.893 0.44% 11.65% 16.528 2.59% 13.56% 16.349 3.65% 14.50%

Phoneme 20% 17.185 -1.28% 10.13% 16.892 0.45% 11.66% 17.002 -0.20% 11.08%
50% 18.042 -6.33% 5.64% 18.312 -7.92% 4.23% 18.207 -7.30% 4.78%
80% 19.207 -13.20% -0.45% 20.209 -19.10% -5.69% 19.389 -14.27% -1.40%
10% 20.184 0.18% 5.67% 20.003 1.07% 6.52% 20.010 1.04% 6.49%

Satimage 20% 20.240 -0.10% 5.41% 20.081 0.69% 6.15% 20.120 0.49% 5.97%
50% 20.512 -1.44% 4.14% 20.958 -3.65% 2.06% 20.601 -1.88% 3.72%
80% 22.845 -12.98% -6.76% 22.696 -12.25% -6.07% 22.904 -13.27% -7.04%
10% 12.027 0.82% 10.59% 11.906 1.82% 11.49% 12.004 1.01% 10.76%

Segment 20% 12.209 -0.68% 9.24% 12.140 -0.11% 9.75% 12.233 -0.87% 9.06%
50% 12.638 -4.21% 6.05% 12.643 -4.25% 6.01% 12.901 -6.38% 4.10%
80% 16.467 -35.79% -22.41% 15.842 -30.63% -17.77% 15.068 -24.25% -12.01%

an error lower than BoostCGPC (see column GainB). For
example, the error obtained with the ensemble generated by
ClustBoostCGPC on the Census data set pruned of 50%
with the pairwise measure is 4.944, while that generated by
BoostCGPC is 6.12, thus using the former approach gives
a gain of 19.22%. Furthermore, it is worth to note that
pruning improves the performance of ClustBoostCGPC if
10% of the classifiers are eliminated. Indeed the pairwise
strategy, for almost all the data sets, allows to prune up
to 20% of predictors and still decrease the misclassification
error of ClustBoostCGPC. Thus it seems that the struc-
tural diversity used in Genetic programming gives better
results than the behavioral diversity employed in the Ma-
chine Learning community. Finally figures 4 and 5 shows
the overall performances, averaged for all the data sets, in
terms of the relative gain. In particular, figure 4 displays
the relative performance of each pruning strategy computed
as the difference between the corresponding misclassifica-
tion error and that obtained by BoostCGPC divided by
the gain, that is the difference in percentage points between
these errors. A value of 0 means that the pruned ensemble
obtains the same performance as BoostCGPC, while a value
greater than 0 that the pruned ensemble performs better
than BoostCGPC. Figure 5 shows the same performance
results compared with respect to ClustBoostCGPC. These
two figures summarizes the results of table 4 and clearly
point out that the pairwise strategy behaves better than
the two others.

6. CONCLUSIONS
A distributed Boosting Cellular Genetic Programming Clas-

sifier, endowed with a clustering strategy to build the en-
semble of predictors, and three pruning strategies to reduce
the size of the ensemble, have been presented. The algo-
rithm runs on a distributed environment based on a hybrid
multi-island model. Experiments on several data sets indi-
cate that ensemble accuracy can be increased at the cost of
greater storage requirements. However, by applying pruning
techniques similar or even better prediction accuracy can be
achieved.
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