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Abstract. An extension of Cellular Genetic Programming for data clas-
sification to induce an ensemble of predictors is presented. Each classifier
is trained on a different subset of the overall data, then they are combined
to classify new tuples by applying a simple majority voting algorithm,
like bagging. Preliminary results on a large data set show that the ensem-
ble of classifiers trained on a sample of the data obtains higher accuracy
than a single classifier that uses the entire data set at a much lower
computational cost.

1 Introduction

Genetic programming (GP) [16] is a general purpose method that has been
successfully applied to solve problems in different application domains. In the
data mining field [8], GP has showed to be a particularly suitable technique
to deal with the task of data classification [13,19,22,17,9,10,12] by evolving
decision trees. Many data mining applications manage databases consisting of a
very large number of objects, each having several attributes. This huge amount
of data (gigabytes or even terabytes of data) is too large to fit into the memory of
computers, thus it causes serious problems in the realization of predictors, such
as decision trees [20]. One approach is to partition the training data into small
subsets, obtain an ensemble of predictors on the basis of each subset, and then
use a voting classification algorithm to predict the class label of new objects [5,
4,6]. The main advantage of this approach is that accuracy comparable to that
of a single predictor trained on all the training set can be obtained, but at a
much lower computational cost.

Bagging [2] is one of the well known ensemble techniques that builds bags of
data of the same size of the original data set by applying random sampling with
replacement. It has been shown that bagging improves the accuracy of decision
tree classifiers [2, 21]. Quinlan [21], for example, over 27 databases, experimented
that bagging reduces the classification error by about 10% on average and that
it is superior to C4.5 on 24 of the 27 data sets. However, when the data set is
too large to fit into main memory, bags are also too large, thus, constructing and
elaborating many bags of the same size of the entire data set is not feasible. In this



case data reduction through the partitioning of the data set into smaller subsets
seems a good approach, though an important aspect to consider is which kind
of partitioning has the minimal impact on the accuracy of results. Furthermore,
to speed up the overall predictor generation process it seems straightforward to
consider a parallel implementation of bagging.

In this paper we present an extension of Cellular Genetic Programming for
data classification to induce an ensemble of predictors, each trained on a different
subset of the overall data, and then combine them together to classify new tuples
by applying a simple majority voting algorithm, like bagging. Preliminary results
on a large data set show that the ensemble of classifiers trained on a subset of
the data set obtains higher accuracy than a single classifier that uses the entire
data set.

The paper is organized as follows. In section 2 a brief overview of the ensemble
techniques is given. In section 3 the cellular parallel implementation of GP for
data classification is presented. Section 4 proposes an extension of cellular genetic
programming with ensemble techniques. In section 5, finally, the results of the
method on some standard problems are presented.

2 Ensemble techniques

Let S = {(x;,y;)]i = 1,...,n} be a training set where z;, called example, is
an attribute vector with m attributes and y; is the class label associated with
x;. A predictor, given a new example, has the task to predict the class label
for it. Ensemble techniques build K predictors, each on a different subset of the
training set, then combine them together to classify the test set.

Bagging (bootstrap aggregating) was introduced by Breiman in [2] and it is
based on bootstrap samples (replicates) of the same size of the training set S.
Each bootstrap sample is created by uniformly sampling instances from S with
replacement, thus some examples may appear more than once while others may
not appear in it. K bags B, ..., Bk are generated and K classifiers Cy,...,Ck
are built on each bag B;. The number K of predictors is an input parameter. A
final classifier classifies an example by giving as output the class predicted most
often by C,...,Ck, with ties solved arbitrarily.

More complex techniques such as boosting [14] and arching [3] adaptively
change the distribution of the sample depending on how difficult each example
is to classify. Bagging, boosting and variants have been studied and compared,
and shown to be successful in improving the accuracy of predictors [7, 1]. These
techniques, however, requires that the entire data sets be stored in main memory.
When applied to large data sets this kind of approach could be impractical.

Breiman in [4] suggested that, when data sets are too large to fit into main
memory, a possible approach is to partition the data in small pieces, build a pre-
dictor on each piece and then paste these predictors together. Breiman obtained
classifiers of accuracy comparable if all the data set had been used. Similar re-
sults were found by Chan and Stolfo in [5]. In [6] Chawla et al. on a very large
data set with a committee of eight classifiers trained on different partitions of



the data attained accuracy higher than one classifier trained on the entire data
set.

Regarding the application of ensemble techniques to Genetic Programming,
Iba in [15] proposed to extend Genetic Programming to deal with bagging and
boosting. A population is divided in a set of subpopulations and each subpop-
ulation is evolved on a training set sampled with replacement from the original
data,. The size of the sampled training set is the same of the entire training
set. Best individuals of each subpopulation participate in voting to give a pre-
diction on the testing data. Experiments on some standard problems using ten
subpopulations showed the effectiveness of the approach.

3 Data Classification using Cellular Genetic
Programming

Approaches to data classification through genetic programming involve a lot of
computation and their performances may drastically degrade when applied to
large problems because of the intensive computation of fitness evaluation of each
individual in the population. High performance computing is an essential compo-
nent for increasing the performances and obtaining large-scale efficient classifiers.
To this purpose, several approaches have been proposed. The different models
used for distributing the computation and to ease parallelize genetic program-
ming, cluster around two main approaches [23]: the well-known island model and
the cellular model. In the island model several isolated subpopulations evolve in
parallel, periodically exchanging by migration their best individuals with the
neighboring subpopulations. In the cellular model each individual has a spatial
location on a low-dimensional grid and the individuals interact locally within a
small neighborhood. The model considers the population as a system of active in-
dividuals that interact only with their direct neighbors. Different neighborhoods
can be defined for the cells and the fitness evaluation is done simultaneously
for all the individuals. Selection, reproduction and mating take place locally
within the neighborhood. In [11] a comparison of cellular genetic programming
with both canonical genetic programming and the island model using bench-
mark problems of different complexity is presented and the the superiority of
the cellular approach is shown.

Cellular genetic programming (CGP) for data classification was proposed in
[9]. The method uses cellular automata as a framework to enable a fine-grained
parallel implementation of GP through the diffusion model. The main advantages
of parallel genetic programming for classification problems consist in handling
large populations in a reasonable time, enabling fast convergence by reducing the
number of iterations and execution time, favoring the cooperation in the search
for good solutions, thus improving the accuracy of the method. The algorithm,
in the following referred as CGPC' (Cellular Genetic Programming Classifier, is
described in figure 1.

At the beginning, for each cell, an individual is randomly generated and its
fitness is evaluated. Then, at each generation, every tree undergoes one of the



Let p., p» be crossover and mutation probability
for each point ¢ in grid do in parallel
generate a random individual ¢;
evaluate the fitness of #;
end parallel for
while not MaxNumberOfGeneration do
for each point 7 in grid do in parallel
generate a random probability p
if (p < pec)
select the cell j, in the neighborhood of i,
such that ¢; has the best fitness
produce the offspring by crossing ¢; and t;
evaluate the fitness of the offspring
replace t; with the best of the two offspring
evaluate the fitness of the new ¢;
else
if (p < pm + pc) then
mutate the individual
evaluate the fitness of the new ¢;
else
copy the current individual in the population
end if
end if
end parallel for
end while

Fig. 1. The algorithm CGPC

genetic operators (reproduction, crossover, mutation) depending on the proba-
bility test. If crossover is applied, the mate of the current individual is selected as
the neighbor having the best fitness, and the offspring is generated. The current
string is then replaced by the best of the two offspring if the fitness of the latter
is better than that of the former. The evaluation of the fitness of each classifier
is calculated on the entire training data. After the execution of the number of
generations defined by the user, the individual with the best fitness represents
the classifier. The parallel implementation of the algorithm has been realized us-
ing a partitioning technique based upon a domain decomposition in conjunction
with the Single-Program-Multiple-Data (SPMD) programming model. Further-
more, a parallel file system for partitioning the data set on different processors
to obtain an efficient data access time was adopted. Figure 2 shows the soft-
ware architecture of the implementation. On each processing element (PE) is
allocated a process that contains a slice (SP;) of the population and operates on
all the data thought the parallel file system transferring the partitioned data set
into the memory of the computer. In this way all the individuals of a subpopu-
lation can operate on the training data without the need to request the transfer



of the data many times. The size of the subpopulation of each slice process is
calculated by dividing the population for the number of processors of the paral-
lel machine and ensuring that the size of each subpopulation be greater then a
threshold determined from the granularity supported by the processor. For effi-
ciency reasons, the individuals within a slice are combined into a single process
that sequentially updates each individual. This reduces the amount of internal
communication on each process, increasing the granularity of the application.
Communication between processors is local, all that needs to be communicated
between slices are the outermost individuals. The configuration of the structure
of the processors is based on a ring topology and a slice process is assigned to
each.
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Fig. 2. Software architecture of CGPC

4 Ensemble of Classifiers in CGP

Although CGPC allows the construction of accurate decision trees, the perfor-
mance of the algorithm is strongly depending on the size of the training set. In
fact, in this model, one of the most expensive operation is the evaluation of the
fitness of each decision tree: the entire data set is needed to compute the number
of examples that are correctly classified, thus it must be replicated for each sub-
population. One approach to improve the performance of the model is to build
an ensemble of classifiers, each working on a different subset of the original data
set, then combine them together to classify the test set.



In this paper we propose an extension of CGPC' to generate an ensemble of
classifiers, each trained on a different subset of the overall data and then use them
together to classify new tuples by applying a simple majority voting algorithm,
like bagging. The main feature of the new model, in the following referred as
BagCGPC, is that each subpopulation generates a classifier working on a sample
of the training data instead of using all the training set. The single classifier
is always represented by the tree with the best fitness in the subpopulation.
With K subpopulations we obtain K classifiers that constitute our ensemble.
To take advantage of the cellular model of genetic programming subpopulations
are not independently evolved, but they exchange the outmost individuals in an
asynchronous way. Experimental results show that communication among the
subpopulations produces an interesting positive result since the diffusion effect,
that allows to transfer classifiers from a subpopulation to another, reduces the
average size of trees and consequently improves the performances of the method
since the evaluation time of the fitness is reduced.

This cooperative approach has the following advantages :

— samples of the data set are randomly generated;

— large data set that do not fit in main memory can be taken in consideration;

— the method is fault tolerant since the ensemble of classifiers has a collective
fault masking ability operating with a variable number of classifiers.

Preliminary experiments on a large data set show that the ensemble of clas-
sifiers trained on a subset of the data set obtains higher accuracy than a single
classifier the uses the entire data set.

Notice that our approach substantially differs from Iba’s scheme [15] that
extends genetic programming with bagging, since we use a parallel genetic pro-
gramming model, we make cooperate the subpopulations to generate the classi-
fiers and each subpopulation does not use the overall training set.

5 Experimental Results

In this section we present preliminary experiments and results of BagCGPC
on a large data set taken from the UCI Machine Learning Repository [18],
the Cens data set, and compare them with CG PC. The parameters used for
the experiments are shown in table 1. Both algorithms run for 100 generations
with a population size depending on the number of classifiers. We experimented
BagCGPC with 2, 3, 4, 5, 10, 15, and 20 classifiers. Every classifier, with its
subpopulation, runs on a single processor of the parallel machine. The size
of a subpopulation was fixed to 100, thus CGPC used a population size of
100 x number of classi fiers. For example, if an ensemble of 5 classifiers is con-
sidered, the population size for CGPC is 500 (and the number of processors on
which CGPC is executed is 5) while, if the number of classifiers is 20, CGPC
used a population of 2000 elements ( and executed on 20 processors). All re-
sults were obtained by averaging 10-fold cross-validation runs. The experiments
were performed on a Linux cluster with 16 dual-processor 1,133 Ghz Pentium



ITT nodes having 2 Gbytes of memory connected by Myrinet and running Red
Hat v7.2.

Table 1. Main parameter used in the experiments

Name Value
max_depth_for_new_trees 6
max_depth_after_crossover 6
max_mutant_depth 2
grow_method RAMPED
selection_method GROW
crossover_func_pt_fraction 0.7
crossover_any_pt_fraction 0.1
fitness_prop_repro-_fraction 0.1
parsimony factor 0

Table 2. Comparing accuracy for BagCGP and CGPC

Num. proc. BagCGP CGPC
6000|15000/30000|50000|All dataset
1 5,992| 5,831 | 5,770 | 5,687 5,582
2 5,823| 5,779 | 5,638 | 5,404 5,407
3 5,662| 5,516 | 5,428 | 5,375 5,349
4

5

5,5636| 5,372 | 5,254 | 5,205 5,278
5,439| 5,338 | 5,108 | 5,072 5,244

10 5,359| 5,215 | 5,068 | 5,040 5,211
15 5,340| 5,207 | 5,060 | 5,028 5,185
20 5,322| 5,183 | 5,020 | 5,004 5,127

In our experiments we wanted to investigate the influence of the sample sizes
on the accuracy of the method. To this end we used the Cens data set, a large
real data set containing weighted census data extracted from the 1994 and 1995
current population surveys conducted by the U.S. Census Bureau. The data set
consists of 299285 tuples, 42 attributes and two classes.

Figure 3, and the corresponding table 2, show the effect of different sample
sizes on accuracy as the number of classifiers increases. For each ensemble, the
error of CGPC and BagCGPC with sample size of 6000, 15000, 30000, and
50000 are shown. From the figure we can note that when the sample size is 6000,
BagCGPC is not able to outperform the single classifier working on the entire
data set. The same effects is obtained when the number of classifiers is less then
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Fig. 3. Error for different sample sizes of training set vs number of classifiers used.
(Cens dataset)

three. But, as the sample size or the number of classifiers increases, BagCGPC
is able to obtain an error lower than CGPC. An ensemble of four classifiers
using a subset of the data of size 30000 obtains higher accuracy. Augmenting
the sample size and the number of classifiers a further increase can be attained,
though a saturation point stops this effect. Another positive result regards the
computation time. In fact BagC'G PC' is much more efficient than CGPC. Table
3 shows the the execution times of CGPC and BagCGPC for each sample.
For example, CGPC required 6053 seconds to run on the Cens data set for
100 generations with a population size of 500 elements. When five classifiers
are employed, each using 50000 tuples and a population size of 100 elements,
BagCGPC needed 1117 seconds of computation time.

As already stated in the previous section, communication among the subpop-
ulations has a positive impact on the average size of the trees and consequently
improves the performances of the method since the evaluation time of the fitness
is reduced. This effect can be seen in figure 4, where the average length of the
trees is shown when the algorithm ran with 5 classifiers and 50000 tuple, in case
of communication of the border trees among the subpopulations and no commu-
nication, respectively. After 100 generations, in the former case the average size
is 900 and the computation time is 1117 seconds, as already said, while in the
latter the average size is about 10000 and the time needed by the method was
4081 seconds. In the lack of communication also accuracy worsened, going from
5,07 to 5,56.



Table 3. Comparing execution times for BagCGP and CGPC

Num. proc. BagCGP CGPC
6000(15000{30000|50000|All dataset
1 588 | 633 | 783 | 841 3760
2 596 | 654 | 823 | 976 4051
3 612 | 719 | 980 | 1022 4233
4 635 | 725 | 965 | 1056 5598
5 668 | 843 | 1064 | 1117 6053
10 799 | 902 | 1116 | 1278 6385
15 823 | 922 | 1226 | 1316 8026
20 964 | 1055 | 1456 | 1621 9161

Table 4. Comparing execution times and accuracy of CGPC, BagCGPC and
BagCGPC without communication using 5 classifiers and 1/5 of the training tuples
running on 5 processors

Dataset CGPC BagCGPC BagCGPC without com.
Test Error|Time (sec)||Test Error|Time (sec)||Test Error| Time (sec)
Adult 17,26 717 16,58 209 18,26 364
Mushroom 0,35 143 0,43 52 1,23 80
Sat 23,04 228 23,63 30 24,23 a7
Shuttle 5,18 729 5,37 151 8,54 174

A confirmation of this behavior was obtained for other 4 data sets of small-
medium size, shown in table 4, where the execution time and the error on the
test set for CGPC and BagCGPC (with and without communications) algo-
rithms are reported, in case of 5 classifiers and a sample of size 1/5 the overall
training set. In all the four data sets we obtained a lower execution time and a
higher accuracy using the committee of classifiers generated by the BagCGPC
algorithm with communication with respect to no communication, though in
this case the misclassification error is not always lower than that of the single
classifier generated by CGPC.

6 Conclusions and Future Work

An extension of Cellular Genetic Programming for data classification to induce
an ensemble of predictors was presented. The approach is able to deal with large
data set that do not fit in main memory since each classifier is trained on a
subset of the overall training data. Preliminary experiments on a large real data
set showed that higher accuracy can be obtained by using a sample of reasonable
size at a much lower computational cost. The experiments showed that sample
size influences the achievable accuracy and that, choosing a suitable sample size,
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Fig. 4. Average length of the trees for the Cens dataset (5 classifiers, 50000 tuples)
with and without communications.

a low number of classifiers is sufficient to obtain higher accuracy. Furthermore
we showed that the sharing of information between the subpopulations improves
the ability of algorithm to learn since trees with a smaller size are produced. The
method proposed is fault tolerant since the ensemble of classifiers has a collective
fault masking ability operating with a variable number of classifiers. We are
planning an experimental study on a wide number of very large benchmark
problems to substantiate the validity of the proposed approach.
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