
A Multiobjective and Evolutionary Clustering

Method for Dynamic Networks

Francesco Folino and Clara Pizzuti

Institute for High Performance Computing and Networking (ICAR)

Italian National Research Council

Via Pietro Bucci, 41C

87036 Rende (CS), Italy

Email: {f.folino,pizzuti}@icar.cnr.it

Abstract—The discovery of evolving communities in dynamic
networks is an important research topic that poses challenging
tasks. Previous evolutionary based clustering methods try to
maximize cluster accuracy, with respect to incoming data of
the current time step, and minimize clustering drift from one

time step to the successive one. In order to optimize both these
two competing objectives, an input parameter that controls the
preference degree of a user towards either the snapshot quality
or the temporal quality is needed. In this paper the detection
of communities with temporal smoothness is formulated as a
multiobjective problem and a method based on genetic algorithms
is proposed. The main advantage of the algorithm is that it
automatically provides a solution representing the best trade-
off between the accuracy of the clustering obtained, and the
deviation from one time step to the successive. Experiments on
synthetic data sets show the very good performance of the method
compared to state-of-the-art approaches.

I. INTRODUCTION

The adaptability of networks to represent many real world

complex systems, including those undergoing dynamic shifts

of their structure, is generating a growing interest in the

study of their topological features. Networks are modeled as

graphs, where nodes represent the individual objects and edges

represent the interactions among these objects. Individuals in

a network interact each other and exchange information by

forming communities. The detection of community structure,

i.e. the organization of nodes into groups having many connec-

tions inside the same cluster and relatively sparse connections

between vertices of different communities, is a fundamental

research topic in the study of complex networks. An important

standpoint to analyze in networks is their dynamic behavior,

i.e. the evolutions they go through over time.

Dynamic networks, in fact, capture the modifications of

interconnections over time, allowing to trace the changes of

network structure at different time steps. Many approaches

have been proposed for the analysis and temporal evolution of

dynamic networks [1], [3], [12], [13], [15], [14], [17], [21],

[23], [24], [26], [25]. Some of these methods [3], [15], [24],

[12] employ the concept of evolutionary clustering, introduced

by Chakrabarti et al. in [2], to catch the evolution of clusters

in temporal data.

Evolutionary clustering groups data coming at different time

steps to produce a sequence of clusterings by introducing

a framework called temporal smoothness. This framework

assumes that abrupt changes of clustering in a short time

period are not desirable, thus it smooths each community

over time. Smoothness is realized by trading-off between

two different criteria. The first, called snapshot quality, is

that the clustering should reflect as accurately as possible

the data coming during the current time step. The second,

called temporal cost, is that each clustering should not shift

dramatically from one time step to the successive one.

In particular, Lin et al. [15] define the snapshot cost by

using the KL-divergence between the observed node similarity

matrix at time t and an approximate community structure

computed by using a mixture model. Their algorithm, named

FacetNet, at each iteration, updates the values of the ap-

proximate structure in order to decrease the cost function.

Convergence to the optimal solution is guaranteed by the

monotonic decrease of the cost function. FacetNet discovers

communities that maximize the fit to the observed data and the

temporal evolution. FacetNet, however, as observed in [12],

assumes only a fixed number of communities over time.

Kim and Han [12] thus proposed an evolutionary particle-

and-density based clustering method able to deal with a

variable number of communities between different timesteps.

The method introduces the concept of nano-community and

l-clique-by-clique (l-KK) to discover a variable number of

communities that can evolve, form, and dissolve. A nano-

community captures the evolution of a dynamic network

over time at particle level. A community is modeled as a

dense subset of nano-communities and l-KK. A biclique is a

complete bipartite graph such that two nodes are connected if

and only if they are in different partites. Being complete, each

node in a partite is connected with all the nodes in the other

partite. An l-clique-by-clique is an extension of a biclique to

a number l of bicliques. A cost embedding technique to allow

temporal smoothing, and a density-based clustering method to

find local clusters by optimizing the clustering modularity are

proposed.

Both methods, in order to apply temporal smoothness, need

an input parameter that controls the preference degree of a

user with respect to either the snapshot quality or the temporal

quality. The two quality functions, however, are competing. In

fact, optimizing one produces a degradation of the other.

In this paper we propose a multiobjective approach, named

DYN-MOGA (DYNamic MultiObjective Genetic Algorithms),

to discover communities in dynamic networks by employing

genetic algorithms [7]. The detection of community structure

with temporal smoothness, in fact, can be formulated as a

multiobjective optimization problem. The first objective is the

maximization of the snapshot quality, that measures how well

the clustering found represents the data at the current time.

The second objective is the minimization of the temporal

cost, that measures the distance between two clusterings at

consecutive timesteps. In order to maximize the snapshot

quality to measure the goodness of the division in communities

of a network, the concept of community score, introduced in

[19], and proved very effective in detecting communities, is

used. The higher the community score, the more dense the

clustering obtained.

To minimize the temporal cost we compute the Normalized

Mutual Information (NMI for short), a well known entropy

measure in information theory that measures the similarity of

two clusterings, between the community structure obtained at

the current time step with that obtained at the previous one.

DYN-MOGA exploits the benefits of these two functions and

discovers the communities in the network by selectively ex-

ploring the search space, without the need to know in advance

the exact number of groups. This number is automatically

determined by simultaneously optimizing the objectives.

Experiments on synthetic and real life networks show the

capability of the multiobjective genetic approach to correctly

detect communities with results competitive w.r.t. the state-of-

the-art approaches.

It is worth to note that, though multiobjective evolutionary

algorithms have been proposed for partitioning static graphs

[5], [8], [20], their use for dynamic networks is new.

The paper is organized as follows. In the Section II the

concept of dynamic network is defined and the evolutionary

clustering problem is formalized. Section III formulates the

community detection problem in dynamic networks as a

multiobjective optimization problem and describes the method,

the genetic representation adopted and the variation operators

used. In section IV, finally, the results of the method on syn-

thetic and real life networks are presented, and a comparison

with the approaches of [15] and [12] is reported.

II. PROBLEM FORMULATION

A. Notation

Let {1, . . . , T} be a finite set of time steps and V =
{1, . . . , n} be a set of individuals or objects. A static network

N t at time t can be modeled as a graph Gt = (V t, Et) where

V t is a set of objects, called nodes or vertices, and Et is a

set of links, called edges, that connect two elements of V t at

time t. Thus Gt is the graph representing a snapshot of the

network N t at time t. V t ⊆ V is a subset of individuals V
observed at time t. An edge (ut, vt) ∈ Et if individuals u and

v have interacted at time t.
A community (also called cluster or module) in a static

network N t is a group of vertices V t
i ⊆ V t having a high

density of edges inside the group, and a lower density of edges

Fig. 1. A network of 7 nodes partitioned in two communities {1, 2, 3, 4}
and {5, 6, 7}, and the corresponding locus-based representation.

with the remaining nodes V t/V t
i . Let Ct denote the sub-graph

representing a community.

A clustering, or community structure, CRt = {Ct
1
, . . . Ct

k}
of a network N t at time t is a partitioning of Gt in groups

of nodes such that for each couple of communities Ct
i and

Ct
j ∈ CRt, V t

i ∩ V t
j = ∅.

A dynamic network is a sequence N = {N 1, . . . ,N T } of

static networks, where each N t is a snapshot of individuals

and connections among these individuals at time t.

B. Evolutionary Clustering

Evolutionary clustering was introduced by Chakrabarti et

al. in [2] as the problem of clustering data coming at different

time steps to produce a sequence of clusterings. At each

time step a new clustering must be produced by simultane-

ously optimizing two conflicting criteria. The first is that the

clustering should reflect as accurately as possible the data

coming during the current time step. The second is that each

clustering should not shift dramatically from one time step to

the successive. To satisfy this last property a framework called

temporal smoothness is defined. This framework assumes that

the abrupt change of clustering in a short time period is not

desirable, thus it smooths each community over time. For

smoothing, a cost function composed by two sub-costs, the

snapshot cost (SC) and the temporal cost (T C), is defined. The

snapshot cost SC measures how well a community structure

CRt represents the data at time t. The temporal cost T C
measures how similar the community structure CRt is with the

previous clustering CRt−1. As pointed out by the authors, the

clustering algorithm must trade off the benefit of maintaining a

consistent clustering over time (temporal cost) with the cost of

deviating from an accurate representation of the current data

(snapshot cost) [2]. The framework of evolutionary clustering

is apt in those situations in which the clustering result is

frequently and regularly consumed by a user. Thus mild

changes are preferred over dramatic shifts because in such a

way the user is not required to learn a new data segmentation.

Evolutionary clustering will provide a smooth view of the

transition for successive time steps. In this setting it is possible

to associate clusters within the historical context and thus trace

their evolution. Chakrabarti et al. defined the cost function for

generic data objects. A specialized version of this function in

the context of dynamic networks has been introduced in [15],

and adopted also by Kim and Han in [12]. The cost function

in this case is defined as follows:

cost = α · SC + (1 − α) · T C

where α is an input parameter used by the user to emphasize

one of the two objectives. When α = 1 the approach returns the

clustering without temporal smoothing. When α = 0, however,

the same clustering of the previous time step is produced, i.e.

CRt = CRt−1. Thus a value between 0 and 1 is used to

control the preference degree of each sub-cost.

In the next section we propose a multiobjective evolutionary

community detection approach that tries to optimize both

the snapshot cost and the temporal cost without the need to

fix the control parameter α. The solutions contained on the

Pareto front of the multiobjective optimization problem will

represent the better compromise satisfying both the snapshot

and temporal costs.

It is worth to note that the word evolutionary has a

different meaning with respect to the context in which it is

used. For Chakrabarti et al. in [2] the term evolutionary is in-

tended as temporal evolution. In the context of multiobjective

optimization it means evolutionary algorithms implementing

the concept of Darwinian biological evolution [11].

III. MULTIOBJECTIVE EVOLUTIONARY

CLUSTERING

A multiobjective evolutionary clustering problem

(Ω,F1,F2, . . . ,Fh) for a static network N t can be defined as

min Fi(CR
t), i = 1, . . . , h subject to CRt ∈ Ω

where Ω = {CRt
1
, . . . , CRt

k} is the set of feasible clusterings

of N t at time stamp t, and F = {F1,F2, . . . ,Fh} is a

set of h single criterion functions. Each Fi : Ω → R is

a different objective function that determines the feasibility

of the clustering obtained. Since F is a vector of competing

objectives that must be simultaneously optimized, there is not

one unique solution to the problem, but a set of solutions are

found through the use of Pareto optimality theory [9]. Given

two solutions CR1 and CR2 ∈ Ω, solution CR1 is said to

dominate solution CR2, denoted as CR1 ≺ CR2, if and only

if

∀i : Fi(CR1) ≤ Fi(CR2) ∧ ∃ i s.t. Fi(CR1) < Fi(CR2)

Instead, a nondominated solution is one for which an

improvement in one objective requires a degradation of an-

other. These solutions are called Pareto-optimal. The goal is

therefore to construct the Pareto optima. More formally, the

set of Pareto-optimal solutions Π is defined as

Π = {CR ∈ Ω : 6 ∃CR′ ∈ Ω with CR′ ≺ CR}

The vector F maps the solution space into the objective

function space. When the nondominated solutions are plotted

in the objective space, they are called the Pareto front. Thus

the Pareto front represents the better compromise solutions

satisfying all the objectives as best as possible.

In the last few years many efforts have been devoted to the

application of evolutionary computation to the development

of multiobjective optimization algorithms. Evolutionary algo-

rithms, in fact, proved very successful to solve multiobjective

optimization problems because of the population-based nature

of the approach that allows the generation of several elements

of the Pareto set in a single run [4], [7].

The MultiObjective Genetic Algorithm (MOGA) we used

is the Nondominated Sorting Genetic Algorithm (NSGA-II)

proposed by Srinivas and Deb in [22] and implemented in the

Genetic Algorithm and Direct Search Toolbox of MATLAB.

NSGA-II builds a population of competing individuals and

ranks them on the basis of nondominance (for a detailed

description of the approach see [7]). In order to employ

NSGA-II, DYN-MOGA has been adapted with a customized

population type that suitably represents a partitioning of a

network and endowed with two complementary objectives.

In the following the objective functions selected, the genetic

encoding adopted and the modified variation operators used to

work with this encoding are described.

Objective Functions: As described in the previous section,

we are interested in optimizing the cost function cost =
α · SC + (1 − α) · T C composed by the two competing

objectives, the snapshot cost SC and the temporal cost T C.

Since SC measures how well a community structure Ct

represents the data at time t, we need an objective function that

maximizes the number of connections inside each community

and minimizes the number of links between the communities.

To this end we employ the community score introduced in [19]

that proved very effective in detecting communities.

Let CRt = {Ct
1
, . . . Ct

k} be a clustering of a network Gt at

time t. The community score of CRt is defined as follows

CS(CRt) =

k∑

i=1

score(Ct
i) (1)

where

score(Ct
i) =

∑
i∈Ct(µi)

2

|Ct|
×

∑

i,j∈Ct

At
ij (2)

The second term of (2) is the number of edges connecting

vertices inside Ct, i.e the number of 1 entries in the adjacency

sub-matrix At corresponding to Ct. The first term computes

the square mean of

µi =
1

| Ct |

∑

j∈Ct

At
ij

where µi denotes the fraction of edges connecting each node

i of Ct to the nodes in the same community Ct. Thus the

score takes into account both the fraction of interconnections

among the nodes (through the first term of (2)), and the number

of interconnections contained in the module Ct (through the

second term of (2)).

The second objective must minimize the temporal cost T C,

thus we need a metric to measure how similar the community

structure CRt is with the previous clustering CRt−1. To this

end we employ the Normalized Mutual Information, a well

known entropy measure in information theory. Given two

partitionings A = {A1, . . . , Aa} and B = {B1, . . . , Bb} of a

network in communities, let C be the confusion matrix whose

element Cij is the number of nodes of the community Ai ∈ A
that are also in the community Bj ∈ B. The normalized

mutual information NMI(A, B) is defined as:

NMI(A, B) =
−2

∑cA

i=1

∑cB

j=1
Cij log(CijN/Ci.C.j)∑cA

i=1
Ci.log(Ci./N) +

∑cB

j=1
C.j log(C.j/N)

where cA (cB) is the number of groups in the partitioning A
(B), Ci. (C.j) is the sum of the elements of C in row i (column

j), and N is the number of nodes. If A = B, NMI(A, B) =
1. If A and B are completely different, NMI(A, B) = 0. Thus

our second objective at a generic time step t is to maximize

NMI(CRt, CRt−1).

Genetic representation: Our clustering algorithm uses the

locus-based adjacency representation proposed in [18]. In this

graph-based representation an individual of the population

consists of N genes g1, . . . , gN , where N is the number of

nodes. Each gene can assume allele value j in the range

{1, . . . , N}. Genes and alleles represent nodes of the graph

G = (V, E) modeling a network N , and a value j assigned

to the i-th gene is interpreted as a link between the nodes i
and j of V . This means that in the clustering solution found i
and j will be in the same cluster. A decoding step, however, is

necessary to identify all the components of the corresponding

graph. The nodes participating to the same component are as-

signed to one cluster. A main advantage of this representation

is that the number k of clusters is automatically determined

by the number of components contained in an individual and

determined by the decoding step. Figure 1 shows a network

partition and the corresponding encoded genotype.

Initialization: A random individual is generated such that

if in the i-th position there is an allele value j, than j must

be one of the neighbors of i, i.e. the edge (i, j) must exist.

Uniform Crossover: We used uniform crossover because it

guarantees the maintenance of the effective connections of the

nodes in the network in the child individual. In fact, because

of the biased initialization, each individual in the population

has the property that, if a gene i contains a value j, then the

edge (i, j) exists. Thus, given two parents, a random binary

mask is created. Uniform crossover (see Table I) then selects

the genes where the mask is a 0 from the first parent, and

the genes where the mask is a 1 from the second parent,

and combines the genes to form the child. The child at each

position i contains a value j coming from one of the two

parents. Thus the edge (i, j) exists.

Input: Given a dynamic network N = {N 1, . . . ,NT }, the sequence

of graphs G = {G1, . . . , GT } modeling it, and the number T

of timestamps.

Output: A clustering for each network N i of N .

Method: Perform the following steps:
1 Generate an initial clustering CR1

= {C1

1
, . . . C1

k
} of the

network N 1 without smoothing by optimizing only the first

objective (i.e. the community score);

2 for t = 2 to T
3 Create a population of random individuals whose

length equals the number N =| V t | of nodes of Gt;

4 while termination condition is not satisfied do

5 Decode each individual I = {g1, . . . , gN} of the

population to generate the partitioning

CR1
= {Ct

1
, . . . , Ct

k
} of the graph Gt in k

connected components;

6 Evaluate the two fitness values of the translated

individuals;

7 Assign a rank to each individual and sort them

according to nondomination rank;

8 Create a new population of offspring by applying the

variation operators;

9 Combine the parents and offspring into a new pool

and partition it into fronts;

10 Select points on the lower front (with lower rank) and

apply the variation operators on them to create

the next population;

11 end while

12 return the solution CRt
= {Ct

1
, . . . Ct

k
} of the

Pareto front having the maximum modularity value;

13 end for

Fig. 2. The pseudo-code of the DYN-MOGA algorithm.

Parent1 : 4 3 2 2 6 5 6
Parent2 : 3 3 1 5 4 7 6
Mask : 0 1 1 0 0 1 1
Offspring 4 3 1 2 6 7 6

TABLE I
EXAMPLE OF UNIFORM CROSSOVER.

Mutation: The mutation operator that randomly changes

the value j of a i-th gene causes a useless exploration of the

search space, because of the same above observations on node

connections. Thus the possible values an allele can assume are

restricted to the neighbors of gene i. This mutation guarantees

the generation of a mutated child in which each node is linked

only with one of its neighbors.

The pseudo-code of DYN-MOGA is reported in Figure 2.

Given a dynamic network N = {N 1, . . . ,N T } and the

sequence of graphs G = {G1, . . . , GT } modeling it, DYN-

MOGA finds a partitioning of the network N 1 by running

the genetic algorithm that optimizes only the first objective,

i.e. the community score. For a given number of timestamps,

the multiobjective genetic algorithm creates a population of

random individuals whose length is the number of nodes of

the current graph Gt. Then, for a fixed number of generations,

it decodes the individuals to generate the partitioning at time

step t, evaluates the objective values, assigns a rank to each

individual according to Pareto dominance and sorts them.

A new population is generated by applying the specialized

variation operators described above. Parents and offspring are

then combined, and the new pool is partitioned into fronts.

The individuals with the lower rank are selected and variation

operators are applied on them to create the new population.

At the end of each timestamp DYN-MOGA returns a set of

solutions, i.e. all those contained in the Pareto front. Each of

these solutions corresponds to a different trade-off between the

two objectives and thus to diverse partitioning of the network

consisting of various number of clusters. A criterion should be

established to automatically select one solution with respect

to another. To this end, we use the modularity, introduced by

Girvan and Newman [16] to select, among the solutions found,

that having the highest value of modularity. The modularity is

a well known quality function to evaluate the goodness of a

partitioning. Let k be the number of modules found inside a

network, the modularity Q is defined as

Q =

k∑

s=1

[
ls
m

− (
ds

2m
)2]

where m is the number of edges of the network, ls is the

total number of edges joining vertices inside the module s, and

ds is the sum of the degrees of the nodes of s. The first term

of each summand of the modularity Q is the fraction of edges

inside a community, the second one is the expected value of

the fraction of edges that would be in the network if edges fall

at random without regard to the community structure. Values

approaching 1 indicate strong community structure.

In the next section we show that DYN-MOGA is able to find

meaningful network structure for both synthetic and real life

data sets.

IV. EXPERIMENTAL RESULTS

In this section we study the effectiveness of our approach

and compare the results obtained by DYN-MOGA w.r.t. the

algorithms of Lin et al. [15] and Kim and Han [12] on

synthetic networks for which the partitioning in communities

is known. Then, we also evaluate our method on a real-world

network. In both cases we show that our multiobjective genetic

algorithm successfully detects the network structure and is

very competitive vs. the other approaches.

The DYN-MOGA algorithm has been written in MATLAB1,

using both the Genetic Algorithms and Direct Search 2 tool-

boxes. The experiments have been performed on a Pentium

4 machine with 1800MHz and 1GB RAM. We used standard

parameters for the genetic algorithm: crossover rate = 0.8,

mutation rate = 0.2, elite reproduction = 10% of the population

size, and roulette selection function. The population size was

200, the number of generations 30.

Synthetic data set. In order to check the ability of our

approach to successfully detect the community structure of a

dynamic network, we used the same benchmark adopted by

Lin et al. [15] and Kim and Han [12]. It consists of two kinds

of data sets. The first is a dynamic network of a fixed number

of communities (named SYN-FIX). The second is a dynamic

network of a variable number of communities (named SYN-

VAR).

1http://www.mathworks.com

SYN-FIX is generated analogously to the classical bench-

mark proposed by Girvan and Newman in [10]. The network

consists of 128 nodes divided into four communities of 32

nodes each. Every node has an average degree of 16 and

shares a number zin of links with the nodes of its community,

and zout with the other nodes of the network. Increasing

zout augments the noise level of the network. In order to

introduce dynamics in G, 3 nodes are randomly selected from

each community in Gt−1 and randomly assigned to the other

three communities. Edges are placed with higher probability

between a pair of nodes of the same community, and with

lower probability between nodes of different communities.

These probabilities depend on the value of zout.

SYN-VAR is obtained by modifying the generation method

of SYN-FIX to introduce the forming and dissolving of

communities and the attaching and detaching of nodes. The

initial networks contains 256 nodes, divided in 4 communities

of 64 nodes each. 10 consecutive networks are generated by

choosing 8 nodes from each community and generating a new

community with these 32 nodes. This is done for 5 timestamps,

then the nodes return to the original communities. Thus, the

number of communities for the 10 timestamps is 4, 5, 6, 7, 8,

8, 7, 6, 5, 4. The average degree of each node in a cluster is

set to the half of the size of this cluster. Furthermore, at each

time step 16 nodes are randomly deleted and 16 new nodes

are added to the network.

We generated 10 different networks for 10 timestamps and

run DYN-MOGA on them. Since the network structure is

known, we computed the Normalized Mutual Information to

measure the similarity between the true partitions and the

detected ones.

Figure 3 shows the average normalized mutual information,

over the 10 networks for the 10 timestamps for SYN-FIX when

the value of zout = 3 (Figure 3(a)) and zout = 5 (Figure 3(b)).

Figure 4 shows the average normalized mutual information,

over the 10 networks for the 10 timestamps for SYN-VAR

when the value of zout = 3 (Figure 4(a)) and zout = 5 (Figure

4(b)).

Both figures show the significantly better results obtained

by DYN-MOGA with respect to both FacetNet and Kim-

Han algorithms. In fact, for SYN-FIX and SYN-VAR, when

zout = 3, DYN-MOGA obtains a value which is almost always

1, while FacetNet and Kim-Han are around 0.9 for SYN-

FIX and between 0.3 and 0.7 for SYN-VAR. The differences,

however, are much more remarkable when zout = 5. In

this case DYN-MOGA obtains values above 0.8 for all the

timestamps, except the first one, while both FacetNet and Kim-

Han methods fail to uncover the community structure. The

normalized mutual information obtained, in fact, is between

0.1 and 0.2. Same considerations apply for SYN-VAR, when

zout = 5. Also in this case FacetNet and Kim-Han algorithms

are not able to find the true community structure, getting values

of normalized mutual information between 0.1 and 0.2, while

the values obtained by DYN-MOGA are above 0.75.

It is worth to note that the results reported for FacetNet

and Kim-Han algorithms have been obtained by the authors

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Timestamp

N
M

I

DYN−MOGA
Kim−Han
FacetNet

(a)

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

Timestamp

N
M

I

DYN−MOGA
Kim−Han
FacetNet

(b)

Fig. 3. Normalized mutual information of clustering results for SYN-FIX when zout = 3 (a) and zout = 5 (b).

1 2 3 4 5 6 7 8 9 10
0

0,2

0,4

0,6

0,8

1

Timestamp

N
M

I

DYN−MOGA
Kim−Han
FacetNet

(a)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Timestamp

N
M

I

DYN−MOGA
Kim−Han
FacetNet

(b)

Fig. 4. Normalized mutual information of clustering results for SYN-VAR when zout = 3 (a) and zout = 5 (b).

1 2 3 4 5 6 7 8 9 10
0

0,2

0,4

0,6

0,8

Timestamp

M
o
d
u
la

ri
ty

Zout = 3
Zout = 5

(a)

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Timestamp

M
o
d
u
la

ri
ty

Zout = 3
Zout = 5

(b)

Fig. 5. Modularity values obtained by DYN-MOGA for SYN-FIX (zout = 3, 5) (a) and for SYN-VAR (zout = 3, 5) (b).

for α = 0.8, i.e., they gave higher preference to the snapshot

quality. However, in spite of the higher preference degree in

searching for the true data clustering as better as possible, they

could not detect the community structure.

Finally, Figure 5(a) and Figure 5(b) report the modularity

values obtained by DYN-MOGA for the two synthetic net-

works. The values corroborate the good performance of DYN-

MOGA in discovering dense interconnections in networks.

Real-life data set. We now show the application of DYN-

MOGA on the Football data2. The Football network comes

from the United States college football. The football data is

2http://www.jhowell.net/cf/scores/scoresindex.htm

the NCAA Football Division 1-A games. Nodes in the graph

represent teams and edges represent the regular season games

between the two teams they connect. The teams are divided

in conferences and they tend to play between members of the

same conference, thus the team cluster is assumed to be the

conference. This data set, restricted to year 2000, has been

used by Girvan and Newman in [10]. We selected years 2005,

2006, and 2007. The number of conferences is 12 for all

the three years and the number of teams is 120. Figure 6(a)

shows the NMI over the three years. The values obtained are

between 0.6 and 0.7, which is a quite good result. This is also

confirmed by the modularity values reported in figure 6(b),

2005 2006 2007
0

0.2

0.4

0.6

0.8

1

Year

N
M

I

DYN−MOGA

(a)

2005 2006 2007

0.2

0.4

0.6

0.8

1

Year

M
o
d
u
la

ri
ty

DYN−MOGA

(b)

Fig. 6. Results for Football network: Normalized Mutual Information (a) and Modularity (b).

Fig. 7. Communities found by DYN-MOGA on the Football data for the year 2007.

that are almost 0.6.

To conclude, Figure 7 displays the communities recognized

by DYN-MOGA on the Football data for the year 2007. The

figure has been obtained by using the Pajek software [6]. In

particular, we associated 12 distinct RGB colors (see Table II

for more details) with the 12 true classes – i.e. the conferences

the teams really belong to – and used them to paint the nodes.

Then, we grouped the nodes on the base of the clustering

provided by the DYN-MOGA algorithm.

It is worth notice that many communities exhibit a quite

homogeneous coloring so proving the capability of DYN-

MOGA to effectively deal with the community identification

in networks and confirming the quantitative results shown in

Figure 6 . For instance, the conferences CUSA, MAC, Pac 10,

SEC, Sun Belt, WAC are almost completely identified.

However, some misplaced assignments of nodes to erro-

neous groups are easily identifiable. These errors are especially

due to the inherent complexity of the network at hand. As

matter of fact, DYN-MOGA was able to recognize 11 (over 12)

different communities and, then, all nodes belonging to the

missed cluster were redistributed. Clearly, the redistribution

causes a reduction in terms of accuracy for the remaining

Conference Color

ACC Red

Big 12 Green

Big East Yellow

Big Ten Blue

CUSA Pink

MAC White

MWC Black

Pac 10 Maroon

SEC Magenta

Sun Belt Dandelion

WAC Tan

Independent Gray

TABLE II
ASSOCIATION CONFERENCES-COLORS.

conferences. More in detail, the percentage (on average) of

correclty clustered teams is about 62% for the conferences

Big 12, Big Ten and MWC, whereas it is about 55% for the

conferences ACC and Big East.

V. CONCLUSIONS

A multiobjective genetic algorithm for detecting communi-

ties in dynamic networks has been presented. The algorithm

at each time step provides the solution representing the best

trade-off between the accuracy of the clustering obtained with

respect to the data of the current time step, and the drift

from one time step to the successive. Experimental results

on two kinds of synthetic data sets and a real life network

showed the better performance of our approach compared

to state-of-the-art methods. Future work aims at evaluating

the method on large-scale networks to analyze the scalability

and applicability of the approach in real-life domains. It is

known, in fact, that evolutionary techniques can be very

computing demanding and require high memory capability

to store populations of individuals. On the other hand they

are naturally parallelizable. Thus the implementation of DYN-

MOGA on a parallel architecture would provide a considerable

improvement in terms of both performance and scalability.

VI. ACKOWLEDGMENTS

We wish to thank Min-Soo Kim for providing us the

synthetic data set generator, the Football data set, and the

results obtained by FacetNet and his method on the synthetic

networks.

REFERENCES

[1] S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for
characterizing the evolutionary behavior of interaction graphs. ACM

Transactions on Knowledge Discovery from Data, 3(4):Paper 16, 2009.

[2] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering.
In Proc. of the 12th ACM International Conference on Knowledge
Discovery and Data Mining (KDD’06), pages 554–560, 2006.

[3] Y. Chi, X. Song, D.Zhou, K.Hino, and B.L. Tseng. Evolutionary spectral
clustering by incorporating temporal smoothness. In Proc. International

Conference on Knowledge Discovery and Data Mining (KDD’07), pages
153–162, 2007.

[4] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Springer,
2007.

[5] D. Datta, J.R Figuera, C.M. Fonseca, and F. Tavares-Pereira. Graph
partitioning through a multi-objective evolutionary algorithm: A prelim-
inary study. In Proc. of the Genetic and Evolutionary Computation

Conference (GECCO’08), pages 625–632, 2008.
[6] W. de Nooy, A. Mrvar, and V.Batagelj. Exploratory social network

analysis with pajek. Cambridge University Press, New York, 2005.
[7] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms.

John Wiley & Sons, Ltd, Chichester, England, 2001.
[8] G. N. Demir, A. S. Uyar, and S. Oguducu. Graph-based sequence

clustering through multiobjective evolutionary algorithm for web recom-
mender systems. In Proc. of the Genetic and Evolutionary Computation

Conference (GECCO’07), pages 1943–1950, 2007.
[9] M. Ehrgott. Multicriteria Optimization. Springer, Berlin, 2nd edition,

2005.
[10] M. Girvan and M. E. J. Newman. Community structure in social and

biological networks. In Proc. National. Academy of Science. USA 99,
pages 7821–7826, 2002.

[11] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, 1989.
[12] M. Kim and J. Han. A particle-and-density based evolutionary clustering

method for dynamic networks. In Proc. of the International Conference

on Very Large Data Bases (VLDB’09), pages –, 2009.
[13] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of

online social networks. In Proc. International Conference on Knowledge

Discovery and Data Mining (KDD’06), pages 611–717, 2006.
[14] L. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: den-

sification laws,shrinking diameters and possible explanations. In Proc.

International Conference on Knowledge Discovery and Data Mining

(KDD’05), pages 177–187, 2005.
[15] Yu-Ru Lin, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng.

Facetnet: A framework for analyzing communities and their evolutions
in dynamic networks. In Proc. of the International World Wide Web

Conference (WWW’08), pages 685–694, 2008.
[16] M. E. J. Newman and M. Girvan. Finding and evaluating community

structure in networks. Physical Review E, 69:026113, 2004.
[17] G. Palla, A.L. Barabasi, and T. Vicsek. Quantifying social group

evolution. Nature, (466), 2007.
[18] Y.J. Park and M.S. Song. A genetic algorithm for clustering problems.

In Proc. of 3rd Annual Conference on Genetic Algorithms, pages 2–9,
1989.

[19] Clara Pizzuti. Ga-net: a genetic algorithm for community detection in
social networks. In Proc. of the 10th Intenational Conference on Parallel

Problem Solving from Nature (PPSN 2008), pages 1081–1090, 2008.
[20] Clara Pizzuti. A multi-objective genetic algorithm for community

detection in networks. In Proc. of the 121st IEEE International

Conference on Tools with Artificial Intelligence (ICTAI 2009), pages
379–386, 2009.

[21] Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and Rene Schult.
Monic - modeling and monitoring cluster transitions. In Proc. Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD’06),
pages 706–711, 2006.

[22] N. Srinivas and K. Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248,
1994.

[23] J. Sun, C. Faloutsos, S. Papadimitriou, and P.S. Yu. Graphscope:
parameter-free of large time evolving-graphs. In Proc. International

Conference on Knowledge Discovery and Data Mining (KDD’05), pages
687–696, 2005.

[24] L. Tang, H. Liu, J. Zhang, and Z. Nazeri. Community evolution in
dynamic multi-mode networks. In Proc. International Conference on

Knowledge Discovery and Data Mining (KDD’07), pages 677–685,
2007.

[25] T. Xu, Z. Zhang, P. S. Yu, and Bo Long. Dirichlet process based evo-
lutionary clustering. In Proc. of the 8th IEEE International Conference

on Data Mining (ICDM’08), pages 648–657, 2008.
[26] T. Xu, Z. Zhang, P. S. Yu, and Bo Long. Evolutionary clustering by

hierarchical dirichlet process with hidden markov state. In Proc. of the

8th IEEE International Conference on Data Mining (ICDM’08), pages
658–667, 2008.

