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Abstract The detection of communities is an important problem, intensively inves-
tigated in recent years, to uncover the complex interconnections hidden in networks.
In this paper a genetic based approach to discover communities in networks is
proposed. The algorithm optimizes a simple but efficacious fitness function able to
identify densely connected groups of nodes with sparse connections between groups.
The method is efficient because the variation operators are modified to take into con-
sideration only the actual correlations among the nodes, thus sensibly reducing the
search space of possible solutions. Experiments on synthetic and real life networks
show the ability of the method to successfully detect the network structure.

Keywords genetic algorithms · data mining · clustering · community detection ·
networks

1 Introduction

The suitability of networks to represent many real world systems has given an
impressive spur to the recent research area of complex networks. Collaboration
networks, biological networks, communication and transport networks, the Internet,
and the World-Wide-Web [25] are just some examples. Networks, in general, are
constituted by a set of objects and by a set of interconnections among these objects.
In social networks, for example, the objects are people and the connections represent
social relations, such as common interests, friendship, religion, and so on. Members
of networks and relationships between them can be modeled as a graph of nodes
and edges. Each participant is denoted by a distinct node, and interactions are
represented by edges connecting two objects. Complex networks can be analyzed
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at different levels of granularity. The node level is the smallest scale to study. At this
level the node degree can give valuable information on the role played by the objects
participating in the network. More interestingly, the community or sub-graph level
investigates the division of a network into groups (also called clusters or modules)
having dense intra-connections, and sparse inter-connections, thus delivering a meso-
scopic description of a network where the elements are the communities and not the
nodes. This partitioning is typical to many networks, thus the study of community
structure can give important information and useful insights to understand how
the structure of ties affects individuals and their relationships. In fact, members
of a community interact with each other, they share information, and can have a
remarkable influence on the behavior of the other objects of the community.

The problem of community detection has been receiving a lot of attention in the
last few years, and many different approaches have been proposed [1, 3, 4, 10, 17, 22,
23, 26, 29, 31–33, 37, 39].

In this paper an algorithm, named GA-Net, to discover communities in networks
by employing Genetic Algorithms (GAs) [14] is proposed. The approach introduces
the concept of community score to measure the quality of a network partitioning in
communities, and tries to optimize this quantity by running the genetic algorithm. All
the dense communities present in the network structure are obtained at the end of
the algorithm by selectively exploring the search space, without the need to know
in advance the exact number of groups. Specialized variation operators allow to
reduce the space of the possible solutions thus improving the convergence of the
algorithm. The method requires an input parameter that biases the search towards a
different number of communities. The number of communities found is determined
by the optimal value of the community score. Experiments on synthetic and real life
networks show the capability of the genetic approach to correctly detect communities
with results comparable to state-of-the-art approaches.

The paper is organized as follows. In the next section an overview of the main
proposals of community detection algorithms is given. Section 3 provides the neces-
sary background to formalize the problem and defines the quality metric employed
to detect communities. In Section 4 a description of the method along with the
representation adopted and the variation operators used are provided. In Section 5
the results of the method on synthetic and real life data sets are presented. Section 6
discusses the advantages of using GA-Net. Finally, Section 7 concludes the paper.

2 Related work

Many different algorithms have been proposed to detect communities in complex
networks [1, 3, 4, 7, 11, 13, 17, 22, 23, 26, 27, 29, 31–33, 35, 37, 39]. In the following we
review some of the most known algorithms. Overviews of community identification
methods in complex networks can be found in [6, 8, 10].

One of the most famous algorithm has been presented by Newman and Girvan in
[11, 29]. The method is a divisive hierarchical clustering method based on an iterative
removal of edges from the network. The edge removal splits the network in commu-
nities. An agglomerative, instead of a divisive, hierarchical algorithm that optimizes
the concept of modularity, introduced in [29], is presented by Newman in [26]. The
modularity is the fraction of edges inside communities minus the expected value of



World Wide Web (2013) 16:545–565 547

the fraction of edges, if edges fall at random without regard to the community struc-
ture. Values approaching 1 indicate strong community structure. Thus the algorithm
computes the modularity of all the clusters obtained by applying the hierarchical
approach, and returns as result the clustering having the highest value of modularity.
A faster version of the method, based on the same strategy, is described in [4].

Recently, some studies [9] have indicated that the optimization of modularity has a
main disadvantage. It can fail in finding communities smaller than a fixed scale, even
if these modules are well defined. The scale depends on the total size of the network
and the interconnection degree of the modules. This resolution limit can constitute a
weakness for all those methods whose objective to optimize is modularity.

Wakita and Tsurumi [37] improved the method of [4] by identifying the cause
of inefficiency of this latter agglomerative method in the strategy adopted to merge
communities. To this end they introduced three metrics that try to balance the size of
the communities to be merged. The modularity criterion enriched with these metrics
allows for a sensible improvement of the algorithm efficiency.

Radicchi et al. [32] proposed a divisive hierarchical algorithm to identify commu-
nities based on the concept of edge-clustering coeff icient, defined in analogy with
the node clustering coefficient.1 The edge-clustering coefficient is the number of
triangles an edge participates, divided by the number of triangles it might belong to,
given the degree of the adjacent nodes. Their algorithm works like that of Newman
and Girvan, but it is faster. The main difference is that instead of choosing to remove
the edge with the highest edge betweenness, the removed edges are those having
the smallest value of edge-clustering coefficient. However, a quantitative measure
for the evaluation of the dendrograms generated by the hierarchical approach is
not defined. Thus the choice of a solution with respect to another must rely on the
intuitive concept of community that a user has.

Pons and Latapy [31] introduced an agglomerative hierarchical algorithm to
compute the community structure of a network. The algorithm starts from a partition
of the graph in which each node is a community, and then merges the two adjacent
communities (i.e. having at least a common edge) that minimize the mean of the
square distances between each vertex and its community. The distances between
communities are recomputed and the previous step is repeated until all the nodes
belong to the same community. In order to decide the best partitioning to choose,
the modularity criterion of Girvan and Newmann is adopted.

Blondel et al. [3] presented a method that partitions large networks based on
the modularity optimization. The algorithm consists of two phases that are repeated
iteratively until no further improvement can be obtained. At the beginning each node
of the network is considered a community. Then, for each node i, all its neighbors j
are considered and the gain in modularity of removing i from its community and
adding it to the j community is computed. The node is placed in the community for
which the gain is positive and maximum. If no community has positive gain, i remains
in its original group. This first phase is repeated until no node move can improve the

1The clustering coefficient has been defined by [38]. Given a node i, let ni be the number of links
connecting the ki neighbors of i to each other. The clustering coefficient of i is Ci = 2ni/ki(ki − 1).
ni represents the number of triangles passing through i, and ki(ki − 1)/2 the number of possible
triangles that could pass through node i. The clustering coefficient a graph is the average of the
clustering coefficients of the nodes it contains.
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modularity. The second phase builds a network where the communities obtained are
considered as the new nodes and a link between two communities a, b exists if there
is an edge between a node belonging to a and a node belonging to b . The network
can be weighted, in such a case the weight of the edge between a and b is the sum
of the weights of the links between nodes of the corresponding communities. At this
point the method can be reiterated until no more changes can be done to improve
modularity. The method is very accurate, however, it is unable to detect modules at
a particular scale.

Approaches to community detection based on Genetic Algorithms can be found
in [7, 13, 22, 35]. In [35] the authors present a genetic algorithm that uses as fitness
function the network modularity proposed by Newmann and Girvan. An individual is
constituted by N genes, where N is the number of objects. The ith gene corresponds
to the ith node, and its value is the community identifier of node i. They use a non
standard one-way crossover operation in which, given two individuals A and B, a
community identifier j is chosen at random, and the identifier j of the nodes j1, . . . jh
of A is transferred to the same nodes of B.

Gog et al. [13] proposed a collaborative evolutionary algorithm that uses also the
modularity as fitness function to optimize. The main novelty of this approach is that
each individual is endowed with the knowledge about the best potential solution
already obtained during the search process, and the value of its best ancestor.
The sharing of this information helps the method to find significative community
structure. Both the two above methods could fail to uncover community structure
when the network contains modules satisfying the conditions of the limit resolution
property stated in [9].

A different approach is described in [7] where a random walk distance measure
between graphs is integrated in a genetic algorithm to cluster networks. The repre-
sentation used is the k-medoids, where each cluster center is represented by one of
the nodes of the network. The fitness function tries to minimize the sum of all the
pair-wise distances between nodes. The main limitation of this approach is that the
number k of clusters must be known in advance.

An agglomerative clustering method based on Genetic Algorithms has been pro-
posed by Lipczak et al. [22]. In this approach each individual represents a single com-
munity, instead of the whole clustering solution. Two fitness functions are consid-
ered. The former considers the normalized cut, i.e. it assumes that a graph is divided
into two disjoint sets A and B, and defines the score of this division as the fraction
of all the connections between A and B with respect to the number of connections
involving A and B separately. The other fitness function is essentially the modularity
of Girvan and Newman. The authors compared their approach with U PGMA [34],
a well known hierarchical method, and showed the good performance of their
approach. A main difference of this approach with respect to the other GA-based
methods is the representation used. In fact Lipczak et al. proposed to represent each
cluster with a chromosome, thus a solution is represented by the whole population.
The motivation of this choice, as stated from the authors, was to reduce the size of
an individual and the fitness computational cost. This kind of representation implies
that the method, in order to obtain a partitioning of the network in k clusters, needs
to use a population of k individuals. Thus the method must be executed for an
increasing number of clusters, and thus a population of increasing size, to find the
best result. Another drawback comes from the variable length of the individuals. In
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order to perform crossover, a mapping to the fixed-length representation of the two
individuals involved in the crossover operation is needed. The mapping of a parent
adds null genes in places of genes present in the other parent. This strategy partially
destroys the objective of reducing the size of individuals.

Recently, the problem of community detection has been tackled by means of
particle swarm optimization (PSO) [40]. In this approach a fixed number of particles
are deployed onto the search space and move according to their velocity vector.
Each particle has size equal to the number of nodes of the network and represents a
partitioning. At each iteration, the fitness of particles is computed, and that having
the best fitness is stored as the current best solution. The fitness function adopted
is the modularity. The particles then update their position and velocity vector, and
repeat the same steps until the stop condition is not reached.

3 Community detection problem

A network N can be modeled as a graph G = (V, E) where V is a set of n =| V |
objects, called nodes or vertices, and E is a set of m =| E | links, called edges, that
connect two elements of V. In the following, without loss of generality, the graph
modeling a network is assumed to be undirected. A community in a network is a
group of vertices (i.e. a sub-graph) having a high density of edges within them, and a
lower density of edges between groups. In [8] it is observed that a formal definition
of community does not exist because this definition often depends on the application
domain. In this paper we assume the intuitive definition given by Radicchi et al.
[32] of weak community. A weak community is interpreted as a set of nodes having
the total number of intra-connections higher than the number of inter-connections
among different communities. The partitioning of the graph G, modeling a network
N , in k weak communities {S1, . . . , Sk}, can be transformed into that of partitioning
the adjacency matrix A of G in k sub-matrices, such that the sum of densities of the
sub-matrices is maximized.

A naive density measure for a sub-matrix of n rows/columns is the number of ones
(i.e. interactions) it contains. The higher the number of ones, the more connected the
n nodes. However, counting the number of interactions does not give any information
about the interconnections among the nodes. A quality measure of a community S
that maximizes the in-degree of the nodes belonging to S can be defined as follows.

score(S) =
∑

i∈S

( 1
|S|

∑
j∈S Aij

)r

|S| ×
∑

i, j∈S

Aij

where | S | is the cardinality of S, 1
|S|

∑
j∈S Aij is the fraction of edges connecting

node i to the other nodes in S, and
∑

i, j∈S Aij is the double of the number of edges
connecting vertices inside S, i.e the number of 1 entries in the adjacency sub-matrix
of A corresponding to S.

The community score of a clustering {S1, . . . Sk} of a network is defined as

CS =
k∑

i

score(Si)
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The community score gives a global measure of the network division in com-
munities by summing up the local scores of each module found. The problem of
community identification can then be formulated as the problem of maximizing CS .

In order to better explain the meaning of community score, let S be a group
of nodes having ns nodes and ms edges, i.e. mS = {(u, v) | u ∈ S, v ∈ S}. Note that∑

i, j∈S Aij = 2mS. When r = 1,

score(S) =
∑

i, j∈S Aij

|S|2 ×
∑

i, j∈S

Aij = 2mS

n2
S

× 2mS =
(

2mS

nS

)2

Thus the score of a community measures the density of the edges with respect
to the number of nodes. This implies that, if the community S has a high density
of edges, and it is contained in another community S of lower density, the score of
S can be higher than that of S, and the larger community could be split in many
smaller communities. Figure 1 shows the scores of communities constituted by an
increasing number of nodes nS = 8, 16, 32, 64, 128, 256 when the number of edges
augments from 2 to the maximum number of possible edges nS × (nS − 1)/2. The
figure points out that smaller and highly dense clusters can reach a score higher than
larger, but less dense, groups of nodes. For example, consider the score of an 8-nodes
community of maximum density equal to 1, i.e. a clique of 8 nodes. Its score, which
is 0.875, is higher than the score of a community of 16 nodes having edge density less
than 0.95. In the latter case, in fact, the score would be ≤ 0.8461. Thus the 8-clique
is preferred over the 16-nodes cluster. This behavior is emphasized when r > 1 and
damped when r < 1, thus r controls the size of a community S. In fact, since the
quantity 1

|S|
∑

j∈S Aij ≤ 1, the higher the value of r, the lower the value of score(S)
and, consequently, the lower the value of CS . Thus, increasing r biases CS towards

Figure 1 Scores of
communities with
nS = 8, 16, 32, 64, 128, 256 and
increasing number of edges.
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matrices containing a low number of zeroes but of lower volume, and communities of
smaller size are found. Its value can be set on the base of the resolution level desired.
In the experimental result section we show that varying the value of r allows for an
analysis of the network at different hierarchical levels.

4 Genetic representation and operators

Genetic Algorithms [14] are a class of adaptive general-purpose search techniques
inspired by natural evolution. They have been proposed by Holland [16] in the early
1970s as computer programs that simulate the evolution process in nature. In the last
few years genetic algorithms revealed competitive alternative methods to traditional
optimization and search techniques and they have been applied to many problems
in diverse research and application areas such neural nets evolution, planning and
scheduling, machine learning and pattern recognition. A standard Genetic Algorithm
(GA) evolves a constant-size population of elements (called chromosomes) by using
the genetic operator of reproduction, crossover and mutation. Each chromosome
represents a candidate solution to a given problem and it is associated with a f itness
value that reflects how good it is, with respect to the other solutions in the population.
Generally, a chromosome is encoded as a string of bits from a binary alphabet.
The reproduction operator copies elements of the current population into the next
generation with a probability proportionate to their fitness (this strategy is also
called roulette wheel selection scheme). The crossover operator generates two new
chromosomes by crossing two elements of the population selected proportionate to
their fitness. The mutation operator randomly alters the bits of the strings.

In the following we give a description of the algorithm GA-Net, the representation
adopted for partitioning the network, and the genetic operators used.

Genetic representation Our clustering algorithm uses the locus-based adjacency
representation proposed in [30]. In this graph-based representation an individual of
the population consists of N genes g1, . . . , gN and each gene can assume allele values
j in the range {1, . . . , N}. Genes and alleles represent nodes of the graph G = (V, E)

modelling a network N , and a value j assigned to the ith gene is interpreted as a link
between the nodes i and j of V. This means that in the clustering solution found i
and j will be in the same cluster. Suppose to have the network showed in Figure 2a.
It consists of eleven nodes numbered from 1 to 11. The network can be partitioned
in the three groups visualized by different colors and shapes of the nodes. Out of the
many possible genotypes, that showed in Figure 2b, corresponds to the graph division
given in Figure 2c. It is worth to note that the locus-based representation naturally fits
with the problem of community detection since its decoding automatically identifies
the number k of connected components, i.e. of communities. The nodes participating
in the same component are assigned to one cluster. Furthermore, with respect to
other approaches, such as [13, 35], that adopt a chromosome of length N storing the
identifier of the community which nodes belong to, it has a complexity of the search
space that reduces from NN of the cluster based representation, to

∏N
i=1 ki where ki is

the degree of node i. Since often networks are sparse, the solution space is narrower,
thus the locus-based representation can sensibly improve the efficiency of the genetic
approach.
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Figure 2 (a) A network modelled as a graph; (b) the locus-based representation of a genotype;
(c) the graph-based structure of the genotype.

Objective function We are interested in identifying a partitioning that optimizes the
community score because this guarantees highly intra-connected and sparsely inter-
connected communities. The objective function is thus

CS =
k∑

i

score(Si)

Initialization The initialization process assigns to each each node i one of its
neighbors j. This guarantees a division of the network in connected groups of nodes.

Uniform crossover and mutation The kind of crossover operator adopted is uniform
crossover. Given two parents, a random binary vector is created. Uniform crossover
then selects the genes where the vector is a 0 from the first parent, and the genes
where the vector is a 1 from the second parent, and combines the genes to form
the child. The main motivation of using uniform crossover is that it guarantees
the maintenance of the effective connections of the nodes in the network in the
child individual. In fact, because of the biased initialization, each individual in the
population is such that if a gene i contains a value j, then the edge (i, j) exists. Since
the child at each position i contains a value j coming from one of the two parents,
then the edge (i, j) exists. Figure 3 shows an example of crossover. Two parents,
individuals A and B, and their graph-based representations are reported. Uniform
crossover of A and B gives the child C. The mutation operator, analogously to the
initialization process, randomly assigns to each node i one of its neighbors.
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Figure 3 Uniform crossover of two individuals A and B, their genotype, their graph-based
representation, and the child generated C.

The algorithm works as follows. Given a network N and the graph G modeling
it, GA-Net starts with a population initialized at random but such that each node
is linked with one of its neighbors. Every individual generates a graph structure
in which each component is a connected subgraph of G. For a fixed number of
generations the genetic algorithm computes the fitness function of each individual
and applies the specialized variation operators described above to produce the new
population. The individual having the best community score is returned as solution.

5 Experimental results

In this section we study the effectiveness of our approach on a synthetic data set.
Then we test the results obtained by GA-Net on some real-worlds networks for which
the partitioning in communities is known and compare it with the methods of [4]
(referred as CNM), [3] (referred as BGLL), [31] (referred as PL). Furthermore the
results obtained by Xiaodong et al. in [40] with their particle swarm optimization
approach (referred as PSO) are also reported. Finally GA-Net and BGLL are
compared on some real-life networks for which the network division is not known.

In all the cases we show that our genetic algorithm successfully detects the network
structure and is competitive with the other approaches. The GA-Net algorithm has
been written in MATLAB 4.3 R2010a, using the Genetic Algorithms and Direct
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Search Toolbox 2. In order to set parameter values, a trial and error procedure has
been employed and then the parameter values giving good results for the benchmark
data sets have been selected. Thus we set crossover rate to 0.8, mutation rate to
0.2, elite reproduction 10% of the population size, roulette selection function. The
population size was 100, the number of generations 100. For all the data sets,
the statistical significance of the results produced by GA-Net has been checked
by performing a t-test at the 5% significance level. The p-values returned are, on
average, below 0.05E-10, thus the significance level is very high since the probability
that a community computed by GA-Net could be obtained by chance is very low.

5.1 Evaluation metrics

The quality of the partitioning obtained can be evaluated by using validity indices.
The validity indices can be internal, i.e. they rely on the connections and separation
between the groups, or external, through the use of additional data to assess the
clustering outcomes. In this paper, an external measure, the Normalized Mutual
Information (NMI), has been adopted to estimate the similarity between the true
partitions and the detected ones, and an internal one, the modularity introduced by
Girvan and Newman, to measure the density of the links inside a community with
respect to the links between communities.

The Normalized Mutual Information is a similarity measure proved to be reliable
by [5]. Given two partitions A and B of a network in communities, let C be the
confusion matrix whose element Cij is the number of nodes of community i of the
partition A that are also in the community j of the partition B. The normalized
mutual information NMI(A, B) is defined as :

NMI(A, B) = −2
∑cA

i=1
∑cB

j=1 Cijlog(CijN/Ci.C. j)
∑cA

i=1 Ci.log(Ci./N) + ∑cB
j=1 C. jlog(C. j/N)

where cA (cB) is the number of groups in the partition A (B), Ci. (C. j) is the sum
of the elements of C in row i (column j), and N is the number of nodes. If A = B,
NMI(A, B) = 1. If A and B are completely different, NMI(A, B) = 0.

The modularity of [29] is a well known quality function to evaluate the goodness
of a partition. The idea underlying the modularity is that a random graph has not
a clustering structure, thus the edge density of a cluster should be higher than the
expected density of a subgraph whose nodes are connected at random. This expected
edge density depends on a chosen null model. Modularity can be written in the
following way:

Q = 1
2m

∑

ij

(Aij − Pij)δ(Ci, C j)

where A is the adjacency matrix of the graph, m is the number of edges of the graph,
and Pij is the expected number of edges between nodes i and j in the null model.
δ is the Kronecker function and yields one if i and j are in the same community,
zero otherwise. When it is assumed that the random graph has the same degree
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distribution of the original graph, Pij = kik j

2m , where ki and k j are the degrees of nodes
i and j respectively. Thus the modularity expression becomes:

Q = 1
2m

∑

ij

(

Aij − kik j

2m

)

δ(Ci, C j)

Since only the pairs of vertices belonging to the same cluster contribute to the
sum, the modularity can be rewritten as

Q =
k∑

s=1

[
ls

m
−

(
ds

2m

)2
]

where k is the number of modules found inside a network, ls is the total number of
edges joining vertices inside the module s, and ds is the sum of the degrees of the
nodes of s. Thus the first term of each summand is the fraction of edges inside a
community, and the second one is the expected value of the fraction of edges that
would be in the network if edges fall at random without regard to the community
structure. Values approaching 1 indicate strong community structure.

5.2 Synthetic data set

In order to check the ability of our approach to successfully detect the community
structure of a network, we use the benchmark proposed by [19], which is an extension
of the classical benchmark proposed by [11]. The network consists of 128 nodes
divided into four communities of 32 nodes each. Every node has an average degree
of 16 and shares a fraction γ with the other nodes of the network, and 1 − γ of
links with the nodes of its community. γ is called the mixing parameter. When
γ < 0.5 the neighbors of a node inside its group are more than the neighbors
belonging to the other three groups, thus a good algorithm should discover them.
We generated 100 different networks for values of γ ranging from 0.1 to 0.5, and
computed the Normalized Mutual Information to measure the similarity between the
true partitions and the detected ones, and the modularity to evaluate the goodness
of the partitioning obtained.

Figures 4 and 5 show the normalized mutual information and the modularity,
averaged over the 100 runs, for different values of the exponent r when the mixing
parameter γ increases from 0.1 to 0.5. The figure points out that, when the fuzziness
of modules is low (until γ ≤ 0.2), independently of the r value, GA-Net is able to
recover almost 90% of community structure and obtains good modularity values.
However, when the mixing parameter increases, higher values of r help in the re-
trieval of the true community structure. Notice that for γ = 0.5, each node has half of
the links inside its community and the other half with the rest of the network thus it is
very difficult to identify the hidden groups, because the communities are mixed each
other. Tables 1 and 2 reports the average values, over the 100 runs, of the normalized
mutual information and modularity, respectively, along with the standard deviation.
The tables point out the very low values of the standard deviation. This means that
the differences among the clusterings found over the 100 runs are negligible.
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Figure 4 Normalized mutual
information values obtained
by GA-Net on the synthetic
network for different values
of the exponent r when the
mixing parameter γ varies
from 0.1 to 0.5.
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5.3 Real-life networks with known community division

We now show the application of GA-Net on four real-world networks, well studied
in the literature: The Zackary’s Karate Club network [41], Bottlenose Dolphins [24],
Krebs’ books on American politics [27], and The American College Football network
[11], and compare our results with the algorithms of [3, 4, 31]. Furthermore, we report
the modularity results obtained by the PSO approach, published in [40], on three out
of the 4 real-life networks. The number of real-life data sets is low because of the

Figure 5 Modularity values
obtained by GA-Net on the
synthetic network for different
values of the exponent r when
the mixing parameter γ varies
from 0.1 to 0.5.
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Table 1 Normalized mutual information and corresponding standard deviation obtained by GA-Net
on the synthetic data sets

γ r = 1.5 r = 2 r = 2.5 r = 3
NMI stddev NMI stddev NMI stddev NMI stddev

0.1 1 0 1 0 0.992 0.016 0.933 0.041
0.2 0.985 0.025 0.993 0.031 0.929 0.023 0.822 0.047
0.3 0.834 0.052 0.82 0.071 0.700 0.096 0.5686 0.122
0.4 0.1755 0.066 0.422 0.032 0.412 0.025 0.386 0.089
0.5 0.074 0.072 0.185 0.040 0.2748 0.051 0.253 0.026

unavailability in the literature of networks for which the true community division is
known.

For each network we run GA-Net for values of r equals to 0.3, 0.5, 1, 1.5, 2, and
computed the average normalized mutual information and modularity, besides the
best values of NMI and modularity over 100 runs. The other contestant methods
produce a unique result, that optimizing the modularity value.

Table 3 shows the good performance of GA-Net with respect to the others
approaches. On the Karate club network GA-Net obtains the highest normalized
mutual information of 0.826 for r=0.3 and 0.5, and a best modularity value of
0.419 for r=1,1.5, 2. As regards Bottlenose Dolphins the best NMI value of 0.888
is returned by GA-Net with r=0.3, though GA-MOD obtains a modularity value of
0.519. On the Krebs’ book network GA-Net finds best values of NMI and modularity
of 0.590 and 0.525, respectively, for r=0.3. Finally, on the American College Football
data set, for r=2, GA-Net obtains a best NMI value of 0.924 and best modularity value
of 0.6005 with respect to 0.926 and 0.601 of Blondel et al. The modularity values
obtained by the particle swarm optimization approach on the three first networks,
instead are rather poor, thus establishing the superiority of genetic algorithms. It is
worth to note that the optimization of modularity does not necessarily corresponds
to maximization of the normalized mutual information. In fact, as pointed out by
[15], the optimal partition returned by the best modularity value may not coincide
with the partition that correctly identifies the intuitive community division. These
observations corroborate the belief that the input r parameter is not a limitation, but
rather a means to study community structure. In the next section some suggestions
on the choice of this parameter are provided.

Table 2 Modularity and corresponding standard deviation obtained by GA-Net on the synthetic data
sets

γ r = 1.5 r = 2 r = 2.5 r = 3
Mod stddev Mod stddev Mod stddev Mod stddev

0.1 0.638 0.004 0.638 0.004 0.632 0.016 0.578 0.037
0.2 0.532 0.028 0.535 0.019 0.492 0.013 0.406 0.035
0.3 0.378 0.044 0.357 0.056 0.284 0.037 0.196 0.060
0.4 0.049 0.036 0.163 0.018 0.148 0.022 0.137 0.030
0.5 0.022 0.025 0.092 0.010 0.121 0.003 0.119 0.003
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Table 3 Best NMI results obtained by GA-Net and the other algorithms for the real-life data sets

GA-Net CNM BGLL PL PSO
0.3 0.5 1 1.5 2

Karate avg NMI 0.826 0.719 0.694 0.667 0.648
avg MOD 0.399 0.414 0. 413 0.409 0.400
best NMI 0.826 0.826 0.707 0.707 0.707 0.692 0.707 0.562
best MOD 0.399 0.419 0.419 0.419 0.415 0.380 0.415 0.394 0.231

Dolphins avg NMI 0.888 0.502 0.409 0.409 0.401
avg MOD 0.379 0.482 0.454 0.457 0.429
best NMI 0.888 0.593 0.462 0.454 0.467 0.573 0.450 0.675
best MOD 0.379 0.509 0.486 0.493 0.491 0.495 0.495 0.517 0.331

Krebs avg NMI 0.564 0.489 0.434 0.423 0.406
avg MOD 0.524 0.510 0.489 0.457 0.428
best NMI 0.590 0.518 0.456 0.470 0.448 0.530 0.442 0.543
best MOD 0.525 0.516 0.499 0.484 0.477 0.502 0.515 0.515 0.412

Football avg NMI 0.167 0.820 0.851 0.820 0.904
avg MOD 0.175 0.389 0.548 0.510 0.575
best NMI 0.491 0.879 0.881 0.883 0.924 0.762 0.926 0.879
best MOD 0.378 0.588 0.584 0.565 0.6005 0.577 0.601 0.602

5.4 Study of the r parameter

As pointed out, the r parameter allows for an analysis of the community structure
at different hierarchical levels, each corresponding to a different number of clusters.
The choice of the value to use can be done by a user on the base of the resolution
level desired. A more systematic approach could be that of considering the concept
of stability of a partitioning of a network, as introduced in [2] and employed in
[20]. A partition of a network is considered stable if it can be destroyed only by
sensibly changing the parameter r for which it was obtained. Since varying r different
community structures are found with different modularity values, the plot of the
modularity value with respect to r can present plateaus, the length of the plateau
can give a criterion to choose the better value of r. In order to show the feasibility of
this approach, GA-Net has been executed on the Zackary’s Karate Club network for
values of the exponent r ranging from 0.1 to 2. Figure 6 shows the change in average
modularity value for increasing r, while Figure 7 reports the number of clusters found
with respect to the r values. Figure 6 points out a plateau for 0.5 ≤ r ≤ 0.9, which cor-
respond to the network division in 4 clusters depicted in Figure 8c. Actually this is the
best division found with respect to the modularity value, but if it does not correspond
to the true division of the Karate Club in two groups, displayed in Figure 8a. When
r=0.3 or 0.4 GA-Net finds the three communities showed in Figure 8b. The smaller
one, constituted by the nodes 5, 6, 7, 11, 17 is a subgroup of the community on the
left. By increasing r above 0.9 the modularity value diminishes and a higher number
of groups are produced. For example, the community on the right of Figure 8d is split
in three sub-groups for r=1. Thus studying the stability of a partitioning can provide
an effective criterion in the choice of the r parameter value to use.

5.5 Real-life networks with unknown community division

The normalized mutual information and modularity employed to compare GA-Net
with the other approaches, though the most popular, have some limitations. In fact,
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Figure 6 Change in average
modularity for different values
of the exponent r.
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the NMI is applicable only with synthetic networks for which the network partition is
known. On the other hand, the assessment of a method with a criterion that coincides
with the fitness function it optimizes, could bias the validation phase. Recently,
Leskovec et al. [21] have compared a range of community detection methods by
introducing different measures. They observe that the concept of good cluster relies
on two criteria. The first is the number of edges between the members of the cluster,
the second is the number of edges between the members of the cluster and the rest of
the network. Thus they group quality indices in two categories: multi-criterion scores,
that combine both criteria, and single criterion scores, that are based on only one
criterion. Modularity is a single criterion score. In the following we report some of
multi-criterion indices, defined to capture the notion of cluster quality, and gener-
alize them to evaluate network structures with different number of communities. In

Figure 7 Change in the
number of communities found
for different values of the
exponent r.
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Figure 8 (a) True partition of the Karate Club. (b) Network partition with r=0.3 (c) Network
partition with r=0.5 (d) Network partition with r=1.

particular we compare our approach and that of Blondel et al. [3] with respect to
modularity and the multi-criterion scores. The network considered are the adjacency
network of common adjectives and nouns in the novel David Copperfield by Charles
Dickens [28], the network of Jazz musicians [12], and the Metabolic network
C. Elegans [18].

Let G = (V, E) the graph modeling a network with n =| V | nodes and m =| E |
edges. Let S be a cluster of nodes having ns nodes and ms edges, and cs = {(u, v) | u ∈
S, v /∈ S} the number of edges on the boundary of S. Let {S1, . . . , Sk} be the partition
of G in k clusters. The following metrics, reported from [21], that catch the concept
of quality of a community structure are defined.

Conductance it measures the fraction of edges pointing outside a community

Co =
(

k∑

s=1

cs

2ms + cs

)/

k

Expansion it measures the number of edges per nodes that point outside the
community

Ex =
(

k∑

s=1

cs

ns

)/

k
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Internal Density it measures the internal edges density of a community

I D =
(

k∑

s=1

1 − 2ms

ns(ns − 1)

)/

k

Cut Ratio it measures the fraction of all possible edges leaving the
community

CR =
(

k∑

s=1

cs

ns(n − ns)

)/

k

The lower the values of these scores, the better the quality of the community
structure obtained.

Table 4 reports the validity indices computed for GA-Net with different values
of the r parameter, and BGLL. From the table it can be observed that while BGLL
obtains higher values of modularity and conductance for all the networks considered,
GA-Net performs better on Internal Density and Cut Ratio for all the networks,
and on Expansion for Jazz and Adjnoun networks. These results suggest that the
community score adopted by GA-Net finds smaller and highly dense groups of nodes
having few edges towards the remaining network. These clusters substantially differs
from those obtained by optimizing the modularity function, that, as already said,
finds groups of nodes having a density higher than that expected in a random graph.

Table 4 Best scores obtained by GA-Net and BGLL algorithm for real-life data sets

GA-Net BGLL
Mod Co Ex ID CR Mod Co Ex ID CR

Jazz r=0.8(avg) 0.2785 0.5019 4.9646 0.3865 0.0292 0.4431 0.3186 9.0101 0.5946 0.0582
(best) 0.2879 0.3888 2.5290 0.2502 0.0168

nodes r=1.2 (avg) 0.2924 0.4917 4.9760 0.3653 0.0293
198 best 0.4093 0.3621 2.2106 0.2522 0.0150
edges r=1.6 (avg) 0.3623 0.5335 8.6224 0.3957 0.0510
2742 (best) 0.4131 0.3904 7.0741 0.3138 0.0393

r=2 (avg) 0.3505 0.5998 9.3967 0.3860 0.05416
best 0.3912 0.5225 6.2522 0.2646 0.0384

C. Elegans r=0.8(avg) 0.3003 0.5623 3.6616 0.3021 0.008 0.4357 0.3783 3.1646 0.7888 0.0079
(best) 0.3428 0.5362 3.1235 0.2612 0.0071

nodes r=1.2 (avg) 0. 2995 0.5964 4.3041 0.3244 0.0097
453 best 0.3168 0.5735 4.03723 0.3072 0.0091
edges r=1.6 (avg) 0.2830 0.6041 4.2778 0.2913 0.0096
4596 best 0.2950 0.5646 3.7961 0.2677 0.0086

r=2 (avg) 0.2862 0.6014 4.3107 0.2927 0.0097
best 0.3125 0.5487 3.9572 0.2522 0.0089

Adjnoun r=0.8(avg) 0.1266 0.5754 2.6017 5.1774 0.0264 0.2906 0.5420 4.0378 0.7409 0.0422
(best) 0.1626 0.5376 2.3614 0.4182 0.02420

nodes r=1.2 (avg) 0.1845 0.6555 3.738 0.4801 0.0362
112 best 0.2362 0.6322 3.0849 0.3911 0.0303
edges r=1.6 (avg) 0. 2129 0.6913 4.7081 0.4899 0.0447
425 best 0.2357 0.6608 4.0937 0.4350 0.0392

r=2 (avg) 0.2097 0.7024 4.8492 0.4460 0.04583
best 0.2244 0.6915 4.4666 0.4023 0.0424
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6 Discussion

Community detection in complex network has captured a lot of interest in the last
few years, and the introduction by Newman and Girvan [29] of the quantitative
measure of modularity to assess the quality of a partitioning in communities has
stimulated and advanced the research to uncover community structure. Recently,
however, it has been proved that the optimization of modularity has a resolution
limit that depends on the total size of the network and the interconnections of the
modules. In [9] it is showed that modularity has an intrinsic scale such that modules
below this scale, even if tightly connected, cannot be found. This limit implies the
important drawback that, searching for partitioning of maximum modularity, may
lead to solutions in which important structures at small scales are not discovered.

All the methods presented in the previous section, except GA-Net, suffer from this
problem. Suppose to have the network depicted in Figure 9 composed by 4 cliques,
two identical cliques of 10 nodes, and two identical cliques of 5 nodes. Neither of
BGLL, PL, and CNM are capable of distinguishing the two small cliques. They
return a partitioning in which these two small cliques are merged with a maximum
modularity value of 0.5471. It is worth noticing that Blondel et al. [3] state that their
approach seems to elude the limit resolution thanks to the multilevel approach of
their method. However, as the above example shows, they only partially circumvent
the problem. GA-Net, instead, perfectly discriminates the two small cliques obtaining
a modularity value of 0.5356, for values of r ≥ 0.8, and merges them for lower values
of r. This means that the search for communities that maximizes the community
score does not suffer of scale problems and has the main advantage of allowing
the analysis of the network at different granularity levels. A user can thus decide at
which hierarchical depth explore the structure of the network or adopt the strategy
described in the previous section to obtain the most thorough information about
its modular organization. Furthermore, it is worth noting that the other scores
introduced in the previous section pointed out that our approach can outperform
methods optimizing modularity when different metrics are adopted to evaluate the
division of a network in communities.

Finally we want to point out that one of the main criticisms in using genetic
algorithms, compared with traditional optimization algorithms, is the high execution
time required to generate a solution. The major limitation of evolutionary algorithms
is, in fact, the repeated fitness function evaluation that, for complex problems
could often be prohibitive. The problem is exacerbated when large populations of
individuals are used and an high number of generations are executed to obtain an

Figure 9 Network showing the resolution limit of modularity.
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Figure 10 Execution times in seconds of GA-Net when the number of nodes increases from 128 to
1024.

optimal approximated solution. In our approach fitness evaluation is rather simple
and can be computed in linear time, thus the main problem comes from the network
size. Figure 10 shows how the execution time (in seconds) increases when the number
of nodes augments from 128 to 1024. The figure indicates that the running time
increases linearly with the size of the input, thus large sized networks could be used if
more powerful machines are available. Moreover, Genetic Algorithms are naturally
suited to be implemented on parallel architectures [36], and an implementation of
GA-Net on a parallel machine can be easily realized.

7 Conclusions

The paper presented a genetic algorithm for detecting communities in networks. The
approach introduced the concept of community score, and searches for an optimal
partitioning of the network by maximizing the community score. All the dense com-
munities present in the network structure are obtained at the end of the algorithm by
selectively exploring the search space, without the need to know in advance the exact
number of groups. The concept of community score, though simple, revealed very
efficacious. More importantly, it enables to disclose the hierarchical organization
of a network. Experiments on synthetic and real life networks showed the ability
of the genetic approach to correctly detect communities with results comparable to
state of the art approaches. It is worth to note that the real-life data sets presented
in the paper to evaluate the method are rather small respect to the very large
networks available nowadays. It is known that Genetic Algorithms can require high
execution times when large populations of individuals are used. On the other hand,
they are naturally suited to be implemented on parallel architectures. In order to
deal with very large networks and make the approach proposed competitive with
the state of the art methods that detect communities, we are planning to realize an
implementation of GA-Net on a parallel machine.
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