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An Evolutionary Multiobjective Approach for
Community Discovery in Dynamic Networks

Francesco Folino, Clara Pizzuti

Abstract—The discovery of evolving communities in dynamic networks is an important research topic that poses challenging tasks.

Evolutionary clustering is a recent framework for clustering dynamic networks that introduces the concept of temporal smoothness

inside the community structure detection method. Evolutionary-based clustering approaches try to maximize cluster accuracy with

respect to incoming data of the current time step, and minimize clustering drift from one time step to the successive one. In order to

optimize both these two competing objectives, an input parameter that controls the preference degree of a user towards either the

snapshot quality or the temporal quality is needed.

In this paper the detection of communities with temporal smoothness is formulated as a multiobjective problem and a method based

on genetic algorithms is proposed. The main advantage of the algorithm is that it automatically provides a solution representing the

best trade-off between the accuracy of the clustering obtained, and the deviation from one time step to the successive. Experiments

on synthetic data sets show the very good performance of the method when compared with state-of-the-art approaches.

Index Terms—Evolutionary clustering, complex networks, dynamic networks, community discovery.
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1 INTRODUCTION

The adaptability of networks to represent many real world

complex systems, including those undergoing dynamic shifts

of their structure, is generating a growing interest in the study

of their topological features. Networks are modeled as graphs,

where nodes represent individual objects, and edges represent

interactions among these objects. Individuals in a network

interact with each other and exchange information by forming

communities. The detection of community structure, i.e. the

organization of nodes into groups having many connections

inside the same cluster and relatively sparse connections

between vertices of different communities, is a fundamental

research topic in the study of complex networks. An important

standpoint to analyze in networks is their dynamic behavior,

i.e. the evolutions they go through over time.

Dynamic networks, in fact, capture the modifications of

interconnections over time, allowing to trace the changes of

network structure at different time steps. Many approaches

have been proposed for the analysis and temporal evolution of

dynamic networks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],

[11], [12]. Some of these methods [2], [5], [10], [3] employ the

concept of evolutionary clustering, introduced by Chakrabarti

et al. in [13], to catch the evolution of clusters in temporal

data.

Evolutionary clustering groups data coming at different time

steps to produce a sequence of clusterings by introducing

a framework called temporal smoothness. This framework

assumes that abrupt changes of clustering in a short time

• F. Folino is with National Research Council of Italy (CNR), Institute for

High Performance Computing and networking (ICAR), Via Pietro Bucci,

41C, 87036 Rende (CS), Italy, Email: {ffolino}@icar.cnr.it

• Clara Pizzuti is with National Research Council of Italy (CNR), Institute for
High Performance Computing and networking (ICAR), Via Pietro Bucci,

41C, 87036 Rende (CS), Italy, Email: {pizzuti}@icar.cnr.it

period are not desirable, thus it smooths each community

over time. Smoothness is realized by trading-off between two

different criteria. The first, called snapshot quality, is that

the clustering should reflect as accurately as possible the

data coming during the current time step. The second, called

temporal cost, is that each clustering should not dramatically

shift from one time step to the next one.

In this paper a multiobjective approach, named DYNMOGA

(DYNamic MultiObjective Genetic Algorithms), to discover

communities in dynamic networks by employing genetic algo-

rithms [14], is proposed. The detection of community structure

with temporal smoothness, in fact, can be formulated as a

multiobjective optimization problem. The first objective is the

maximization of the snapshot quality, that measures how well

the clustering found represents the data at the current time. The

second objective is the minimization of the temporal cost, that

measures the distance between two clusterings at consecutive

time steps. In order to maximize the snapshot quality to mea-

sure the goodness of the division in communities of a network,

different quality measures, used in the literature to capture

the intuition of network community [15], are considered. In

particular, we fix the attention on the concept of modularity,

introduced by Newman and Girvan in [16].

To minimize the temporal cost we compute the Normalized

Mutual Information (NMI for short), a well known entropy

measure in information theory that measures the similarity of

two clusterings, between the community structure obtained at

the current time step with that obtained at the previous one

[17].

DYNMOGA exploits the benefits of these two functions and

discovers the communities in the network by selectively ex-

ploring the search space, without the need to know in advance

the exact number of groups. This number is automatically

determined by simultaneously optimizing the objectives.

Experiments on synthetic and real life networks show the
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capability of the multiobjective genetic approach to correctly

detect communities with results competitive w.r.t. the state-of-

the-art approaches.

It is worth to note that, though multiobjective evolutionary

algorithms have been proposed for partitioning static graphs

[18], [19], [20], and for data clustering [21], their use for

dynamic networks, however, has not been explored very much

[22].

The main contributions of the paper can be summarized as

follows:

• The detection of community structure in dynamic net-

works is formalized as a multiobjective optimization

problem. The first objective searches for highly modular

structures at the current time step, the second objective

tries to minimize the differences between the community

structure at the current time step and that obtained at the

previous time step.

• The approach proposed can be considered as a general

framework for evolutionary clustering. In fact, it is suf-

ficient to change one of the two objective functions (or

both) to implement and test different quality functions for

analyzing dynamic networks.

• The method is parameter free. It does not need neither the

parameter introduced by Chi et al. [2] to give different

weight to the snapshot and temporal costs, nor the number

of clusters to find. The former parameter is automatically

determined by the multiobjective method, while the num-

ber of communities to find at each time step is determined

by the genetic representation employed.

The paper is organized as follows. In Section 2 the concept

of dynamic network is defined and the evolutionary clus-

tering problem is formalized. Section 3 gives a review of

the evolutionary clustering approaches. Section 4 formulates

the community detection problem in dynamic networks as a

multiobjective optimization problem. Section 5 describes the

method, the genetic representation adopted and the variation

operators used. In section 6 the results of the method on syn-

thetic and real life networks are presented, and a comparison

with the approaches of [5] and [3] is reported. Section 7,

finally, concludes the paper.

2 PROBLEM FORMULATION

Let {1, . . . , T} be a finite set of time steps and V = {1, . . . , n}
be a set of individuals or objects. A static network N t at time

t can be modeled as a graph Gt = (V t, Et) where V t is a set

of objects, called nodes or vertices, and Et is a set of links,

called edges, that connect two elements of V t at time t. Thus

Gt is the graph representing a snapshot of the network N t at

time t. V t ⊆ V is a subset of individuals V observed at time

t. An edge (ut, vt) ∈ Et if individuals u and v have interacted

at time t.

A community (also called cluster or module) in a static

network N t is a group of vertices V t
i ⊆ V t having a high

density of edges inside the group, and a low density of edges

with the remaining nodes V t/V t
i . Let Ct denote the sub-graph

representing a community.

A clustering, or community structure, CRt = {Ct
1, . . . C

t
k}

of a network N t at time t is a partitioning of Gt in groups

of nodes such that for each couple of communities Ct
i and

Ct
j ∈ CRt, V t

i ∩ V t
j = ∅.

A dynamic network is a sequence N = {N 1, . . . ,N T } of

static networks, where each N t is a snapshot of individuals

and connections among these individuals at time t.

3 RELATED WORK

Analyzing networks and their evolution is recently receiving

increasing interest from researchers [7], [23], [24]. In fact,

the representation of many complex systems through a static

graph, even when the temporal dimension describing the

varying interconnections among nodes is available, does not

allow to study the network dynamics and the changes it

incurs over time. Kumar et al. [4] studied the evolution of

network properties of two large blogosphere networks, and

tried to classify members of each network into groups and their

changes. Sun et al. [9] introduced GraphScope, an efficient

parameter-free method, based on the Minimum Description

Length principle, to discover communities in evolving graphs.

Asur et al. [1] have characterized the evolution of communities

by defining critical events that occur in dynamic graphs.

Tang et al. [25] studied multimode networks and introduced

a spectral clustering framework to discover communities and

find out how they evolve. There are several other methods for

detecting communities in dynamic networks, not mentioned

here. For a recent survey see [26]. Many of the proposed

approaches divide the community detection step from the

temporal analysis of the network, i.e. first the communities

are extracted, and then the structural differences over time are

analyzed in order to determine the correspondences among

communities in two consecutive time steps.

A different methodology, known as evolutionary cluster-

ing, has been proposed by Chakrabarti et al. in [13]. Since

our method has been inspired by the evolutionary clustering

framework, in the following lines a more detailed description

of evolutionary clustering approaches is reported.

Chakrabarti et al. in [13] observe that, often, changes of

connections in short time periods could be caused by noise.

Thus, though clustering mainly depends on the current object

connections, in many dynamic application domains, abrupt

drifts from the most recent history should not be expected.

At each time step a new clustering must be produced by

simultaneously optimizing two conflicting criteria. The first

is that the clustering should reflect, as accurately as possible,

the data coming during the current time step. The second

is that each clustering should not shift dramatically from

one time step to the successive. To satisfy this last property

a framework, called temporal smoothness, is defined. This

framework assumes that abrupt change of clustering in a short

time period is not desirable, thus it smooths each community

over time. For smoothing, a cost function composed by two

sub-costs, the snapshot cost (SC) and the temporal cost (T C),

is defined. The snapshot cost SC measures how well a commu-

nity structure CRt represents the data at time t. The temporal

cost T C measures how similar the community structure CRt
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is to the previous clustering CRt−1. As pointed out by the

authors, the clustering algorithm must trade-off the benefit of

maintaining a consistent clustering over time (temporal cost)

with the cost of deviating from an accurate representation

of the current data (snapshot cost) [13]. The framework of

evolutionary clustering is apt in those situations in which the

clustering result is frequently and regularly consumed by a

user. Thus mild changes are preferred over dramatic shifts

because in such a way the user is not required to learn a

new data segmentation. Evolutionary clustering will provide a

smooth view of the transition for successive time steps. In this

setting it is possible to associate clusters within the historical

context, and thus to trace their evolution. Though evolutionary

clustering is robust to noise, it does not allow that the number

of communities varies over time, neither that new communities

may appear, nor that existing communities may dissolve.

Chakrabarti et al. proposed the framework for generic

data clustering, and applied it to two well known clustering

methods, k-means and agglomerative hierarchical clustering,

to deal with evolving data. Thus they introduced the cost

function for generic data objects. A specialized version of this

function in the context of dynamic networks has been first

introduced by Chi et al. [2] and adopted also by Lin et al. [5],

and Kim and Han [3]. Chi et al. [2] define the cost function

as follows:

cost = α · SC + (1 − α) · T C (1)

where α is an input parameter used by the user to emphasize

one of the two objectives. When α = 1 the approach returns the

clustering without temporal smoothing. When α = 0, however,

the same clustering of the previous time step is produced, i.e.

CRt = CRt−1. Thus a value between 0 and 1 is used to

control the preference degree of each sub-cost. The authors

proposed two evolutionary spectral clustering algorithms by

using the normalized cut concept of Shi and Malik [27]. The

two methods differ in how the temporal cost T C is measured.

An evolutionary-based framework for analyzing communi-

ties and evolutions in dynamic networks, named FacetNet,
has been proposed by Lin et al. [5]. The framework employs

a stochastic block model for generating communities, and a

probabilistic model based on the Dirichlet distribution to catch

community evolutions. The authors define the snapshot cost by

using the KL-divergence between the observed node similarity

matrix at time t and an approximate community structure

computed by using a mixture model. FacetNet thus, at each

iteration, updates the values of the approximate structure in

order to decrease the cost function. Convergence to a local

optimal solution is guaranteed by the monotonic decrease of

the cost function. FacetNet discovers communities that max-

imize the fit to the observed data and the temporal evolution.

Kim and Han [3] proposed a particle-and-density based

clustering method based on the evolutionary approach of

Chakrabarti et al. [13], extended to deal with a variable number

of communities between different time steps. The method

introduces the concept of nano-community and l-clique-by-

clique (l-KK) to discover a variable number of communities

that can evolve, form, and dissolve. A nano-community cap-

tures the evolution of a dynamic network over time at particle

level. A community is modeled as a dense subset of nano-

communities and l-KK. A biclique is a complete bipartite

graph such that two nodes are connected if and only if they

are in different partites. Being complete, each node in a partite

is connected with all the nodes in the other partite. An l-

clique-by-clique is an extension of a biclique to a number l

of bicliques. A cost embedding technique to allow temporal

smoothing and a density-based clustering method to find local

clusters by optimizing the clustering modularity are proposed.

Furthermore, to map communities between consecutive time

periods, the mutual information concept among the clusterings

obtained at time t − 1 and t is employed, by purifying the

link distributions between consecutive networks in order to

maximize the mutual information. The mapping can determine

the stage of each community as evolving, forming, splitting. It

is worth to note that the approach does not take into account

neither the possibility of a community to split into multiple

communities, nor that multiple communities merge into only

one.

The described methods present two main limitations. The

first regards the number of clusters to find, the second is

relative to the value α to choose in order to apply temporal

smoothness. The approach of Chi et al. allows for a varying

number k of communities between successive time steps,

however the value of k must be given as input parameter.

Some heuristics are argued by the authors in order to determine

its optimal value. FacetNet assumes a fixed number k of

communities over time, though the authors suggest that, to

detect the best community number at time t, the algorithms

could be executed for a range of different k values, and that

giving the best value of modularity could be chosen. Kim and

Han’s approach does not need the number of communities,

however, since their approach is density-based, they must set

the density parameters. Another problem is the value to use for

the temporal smoothness. All the approaches must give it as

input parameter in order to control the preference degree of a

user with respect to either the snapshot quality or the temporal

quality. The two quality functions, however, are competing. In

fact, optimizing one produces a degradation of the other.

In the following we propose a parameter-free method that

automatically determines both the number k of communities,

and the optimal α value.

4 MULTIOBJECTIVE CLUSTERING

Given a static network N t, a multiobjective evolutionary

clustering problem (Ω,F1,F2, . . . ,Fh) can be defined as

min Fi(CR
t), i = 1, . . . , h subject to CRt ∈ Ω

where Ω = {CRt
1, . . . , CR

t
k} is the set of feasible clusterings

of N t at time stamp t, and F = {F1,F2, . . . ,Fh} is a

set of h single criterion functions. Each Fi : Ω → R is

a different objective function that determines the feasibility

of the clustering obtained. Since F is a vector of competing

objectives that must be simultaneously optimized, there is not

one unique solution to the problem, but a set of solutions are

found through the use of Pareto optimality theory [28]. Given
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two solutions CR1 and CR2 ∈ Ω, solution CR1 is said to

dominate solution CR2, denoted as CR1 ≺ CR2, if and only

if

∀i : Fi(CR1) ≤ Fi(CR2) ∧ ∃ i s.t. Fi(CR1) < Fi(CR2)

Instead, a nondominated solution is one for which an

improvement in one objective requires a degradation of an-

other. These solutions are called Pareto-optimal. The goal is

therefore to construct the Pareto optima. More formally, the

set of Pareto-optimal solutions Π is defined as

Π = {CR ∈ Ω : 6 ∃CR′ ∈ Ω with CR′ ≺ CR}

The vector F maps the solution space into the objective

function space. When the nondominated solutions are plotted

in the objective space, they are called the Pareto front. Thus

the Pareto front represents the compromise solutions satisfying

all the objectives as best as possible.

In the last few years many efforts have been devoted to the

application of evolutionary computation to the development

of multiobjective optimization algorithms. Evolutionary algo-

rithms, in fact, proved very successful to solve multiobjective

optimization problems because of the population-based nature

of the approach that allows the generation of several elements

of the Pareto set in a single run [29], [14].

In the next section we propose a multiobjective evolutionary

community detection approach that tries to optimize both the

snapshot cost and the temporal cost without the need to fix

the control parameter α. The solutions contained on the Pareto

front of the multiobjective optimization problem will represent

the best compromise satisfying both the snapshot and temporal

costs.

It is worth to note that the word evolutionary has a

different meaning with respect to the context in which it is

used. For Chakrabarti et al. in [13] the term evolutionary is in-

tended as temporal evolution. In the context of multiobjective

optimization it means evolutionary algorithms implementing

the concept of Darwinian biological evolution [30].

5 THE DYNMOGA ALGORITHM

The MultiObjective Genetic Algorithm (MOGA) we used is the

Nondominated Sorting Genetic Algorithm (NSGA-II) proposed

by Srinivas and Deb in [31] and implemented in the Genetic

Algorithm and Direct Search Toolbox of MATLAB. NSGA-II

builds a population of competing individuals and ranks them

on the basis of nondominance (for a detailed description of the

approach see [14]). In order to employ NSGA-II, DYNMOGA

has been adapted with a customized population type that

suitably represents a partitioning of a network and endowed

with two complementary objectives. In the following, we first

give a brief introduction to Genetic Algorithms, and than the

objective functions selected, the genetic encoding adopted,

and the modified variation operators used to work with this

encoding are described.

Genetic Algorithms (GAs) are a class of adaptive general-

purpose search techniques inspired by natural evolution pro-

posed by Holland [32] in the early 1970s as computer

programs that simulate the evolution process in nature. A

standard Genetic Algorithm evolves a constant-size population

of individuals (called chromosomes) by using the genetic

operators of reproduction, crossover and mutation. Each chro-

mosome is composed by a number of genes and represents

a candidate solution to a given problem. An individual is

associated with a fitness value that reflects how good it is, with

respect to the other solutions in the population. Reproduction

operator copies elements of the current population into the next

generation with a selected strategy. Crossover generates two

new chromosomes by crossing two elements of the population.

Mutation randomly alters genes of individuals.

Objective Functions: As described in the previous section,

we are interested in optimizing the cost function (formula

(1)) composed by the two competing objectives, the snapshot

cost SC and the temporal cost T C. Since SC measures how

well a community structure Ct represents the data at time

t, we need an objective function that maximizes the number

of connections inside each community while minimizing the

number of links between the communities. To this end we

employ four quality measures, well known in the community

detection field [15], that formalize the intuitive concept of

community.

Let CRt = {Ct
1, . . . C

t
k} be a clustering of a network Gt =

(V t, Et) at time t with n nodes and m edges, Ct a cluster

having ns nodes and ms edges, ms(u) = {v | v ∈ Ct} be the

number of nodes in Ct connected with u, cs = {(u, v) | u ∈
Ct, v /∈ Ct} be the number of edges on the boundary of Ct,

ls the total number of edges joining vertices inside the module

Ct
s, and ds the sum of the degrees of the nodes of Ct

s.

The scores we consider are modularity [16], conductance
[33], normalized cut [27], and community score [22]. Their

definition is as follows:

Q =

k∑

s=1

[
ls

m
− (

ds

2m
)2] (2)

In modularity Q [16] the first term of each summand of is

the fraction of edges inside a community, while the second

one is the expected value of the fraction of edges that would

be in the network if edges fall at random without regard to

the community structure. Values approaching 1 indicate strong

community structure.

CO =

k∑

s=1

cs

2ms + cs

(3)

Conductance CO [33] measures the fraction of edges point-

ing outside the clustering.

NC =

k∑

s=1

cs

2ms + cs

+
cs

2(m − ms) + cs

(4)

Normalized Cut NC [27] measures the fraction of total edge

connections to all the nodes in the graph.

CS =

k∑

s=1

(
∑

u∈Ct

(
ms(v)

ns

)2) ×
2ms

ns

(5)

Community Score CS [22] measures the fraction of internal

edges of each cluster per nodes.
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Fig. 1. A network of 7 nodes partitioned in two communi-

ties {1, 2, 3, 4} and {5, 6, 7}, and the corresponding locus-
based representation.

The second objective must minimize the temporal cost T C,

thus we need a metric to measure how similar the community

structure CRt is to the previous clustering CRt−1. To this

end we employ the Normalized Mutual Information, a well

known entropy measure in information theory [17]. Given two

partitionings A = {A1, . . . , Aa} and B = {B1, . . . , Bb} of a

network in communities, let C be the confusion matrix whose

element Cij is the number of nodes of the community Ai ∈
A that are also in the community Bj ∈ B. The normalized

mutual information NMI(A, B) is defined as:

NMI(A, B) =
−2

∑
cA

i=1

∑
cB

j=1
Cij log(CijN/Ci.C.j)∑

cA

i=1
Ci.log(Ci./N) +

∑
cB

j=1
C.j log(C.j/N)

(6)

where cA (cB) is the number of groups in the partitioning A
(B), Ci. (C.j) is the sum of the elements of C in row i (column

j), and N is the number of nodes. If A = B, NMI(A, B) =
1. If A and B are completely different, NMI(A, B) = 0. Thus

our second objective at a generic time step t is to maximize

NMI(CRt, CRt−1).

DECODE(I)

1) for each vertex i ∈ V
2) MAKESET(i)

3) for each edge (i, gi)
4) r1=FINDSET(i); r2=FINDSET(gi );

5) if r1 6= r2

6) UNION(r1 , r2)

MAKESET(i)

1) p[i]=i;

2) rank[i]=0;

UNION(r1 , r2)

1) if rank(r1) > rank(r2)
2) p(r2)=r1;

3) else

4) p(r1)=r2;

5) end if

6) if (rank(r1)==rank(r2))

7) rank(r2)=rank(r1)+1;

8) end

FINDSET(i)

1) while (i 6= p(i))

2) i=p(i);

3) end while

4) return p(i);

Fig. 2. The pseudo-code of the Decode procedure.

Genetic representation: Our clustering algorithm uses

the locus-based adjacency representation proposed in [34],

adopted in [21] for data clustering and in [20] for community

detection in static networks. In this graph-based representation,

an individual of the population consists of n genes g1, . . . , gn,

where n is the number of nodes. Each gene can assume a

value j in the range {1, . . . , n}. Genes represent nodes of

the graph G = (V, E) modeling a network N , and a value

j assigned to the i-th gene is interpreted as a link between

the nodes i and j of V . This means that in the clustering

solution found, i and j will be in the same cluster. A decoding

step, however, is necessary to identify all the components

of the corresponding graph. The nodes participating in the

same component are assigned to one cluster. A main advan-

tage of this representation is that the number k of clusters

is automatically determined by the number of components

contained in an individual and determined by the decoding

step. Figure 1 shows a network partition and the corresponding

encoded genotype. Figure 5 reports the decoding step pseudo-

code to compute the connected components, i.e. the clustering

represented by an individual. The procedure DECODE receives

in input an individual I = {g1, . . . , gn} of n genes. Each

couple (i, gi) is an edge belonging to one of the components of

the graph G. Components can be efficiently obtained by using

a disjoint-set data structure [35] that maintains a collection of

disjoint dynamic sets, where each set is identified by one of

its members, called representative. The detection of connected

components involves three main operations: MAKESET(i) cre-

ates a new set whose only member is i, UNION(i,j) merges the

dynamic sets containing i and j, FINDSET(i) returns a pointer

to the representative of the unique set containing i. In order to

improve the implementation, each disjoint set is represented

by a rooted tree, where the root contains the representative

and each node i of the tree points only to its parent p(i).
The collection of rooted trees is represented by a disjoint-set

forest. The UNION operation is critical for obtaining efficiency,

thus the heuristics union by rank can be adopted. The idea

underlying this heuristic is to maintain an upper bound, named

rank, on the height of each node so that the the root of the

tree having less nodes points to the root of the tree having

more nodes. To implement a disjoint forest with union-by-

rank heuristic, each node i thus maintains an integer value

rank(i).
At the beginning, DECODE associates each vertex with its

own set (steps 1-2 in Figure 5) by executing the MAKE-

SET operation. MAKESET(i) (steps 1-2 of the MAKESET

procedure) sets the value of the parent of i with i itself,

and assigns a zero value to rank(i). Then, for each edge

(i, gi) of a individual I , it merges the sets r1=FINDSET(i) and

r2=FINDSET(gi) containing i and gi (steps 3-6), if they do not

coincide. FINDSET(i) visits the tree back until it finds the root

of the tree i belongs to (steps 1-4 of the FINDSET procedure).

The union of two trees must consider two different cases. If

the rank of the two roots is different, the root having higher

rank becomes the parent of the other one (steps 1-4 of the

UNION procedure). If the ranks are the same, one of the two

is chosen as parent and its rank is augmented by one (steps

6-7).

Initialization: A population of random individuals is gen-

erated such that for each node i, the value of gi is randomly
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Input: Given a dynamic network N = {N 1, . . . ,NT }, the sequence

of graphs G = {G1, . . . , GT } modeling it, and the number T
of time steps.

Output: A clustering for each network N i of N .

Method: Perform the following steps:
1 Generate an initial clustering CR1 = {C1

1
, . . . C1

k} of the

network N 1 without smoothing by optimizing only the first

objective;

2 for t = 2 to T
3 Create a population of random individuals whose

length equals the number n =| V t | of nodes of Gt;

4 while termination condition is not satisfied do

5 Decode each individual I = {g1, . . . , gn} of the

population to generate the partitioning

CRt = {Ct
1
, . . . , Ct

k} of the graph Gt in k
connected components;

6 Evaluate the two fitness values of the translated

individuals;

7 Assign a rank to each individual and sort them

according to nondomination rank;

8 Create a new population of offspring by applying the

variation operators;

9 Combine the parents and offspring into a new pool

and partition it into fronts;

10 Select points on the lower front (with lower rank) and

apply the variation operators on them to create

the next population;

11 end while

12 return the solution CRt = {Ct
1
, . . . Ct

k} of the

Pareto front having the maximum modularity value;

13 end for

Fig. 3. The pseudo-code of the DYNMOGA algorithm.

chosen among one of its neighboring nodes j. This means that

the edge (i, j) exists.

Uniform Crossover: Given two parents, a random binary

mask is created. Uniform crossover (see Table 1) then selects

the genes where the mask is a 0 from the first parent, and

the genes where the mask is a 1 from the second parent,

and combines the genes to form the child. The child at each

position i contains a value j coming from one of the two

parents. Thus uniform crossover maintains node connections

in the child individual since the edge (i, j) exists.

TABLE 1
Example of uniform crossover.

Parent1 : 4 3 2 2 6 5 6

Parent2 : 3 3 1 5 4 7 6

Mask : 0 1 1 0 0 1 1

Offspring 4 3 1 2 6 7 6

Mutation: The mutation operator, similarly to initialization,

for each node i randomly changes the value of gi with one of

the neighbors of i. This mutation guarantees the generation of

a mutated child in which each node is linked only with one

of its neighbors.

The pseudo-code of DYNMOGA is reported in Figure 3.

Given a dynamic network N = {N 1, . . . ,N T } and the se-

quence of graphs G = {G1, . . . , GT } modeling it, DYNMOGA

finds a partitioning of the network N 1 by running the genetic

algorithm that optimizes only the first objective. For a given

number of time steps, the multiobjective genetic algorithm

creates a population of random individuals whose length is
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Fig. 4. Normalized mutual information for different com-

binations of crossover and mutation rates for sysnthetic

dataset #1.

the number of nodes of the current graph Gt. Then, for a

fixed number of generations, it decodes the individuals to

generate the partitioning at time step t, evaluates the objective

values, assigns a rank to each individual according to Pareto

dominance and sorts them. A new population is generated by

applying the specialized variation operators described above.

Parents and offspring are then combined, and the new pool is

partitioned into fronts. The individuals with the lower rank are

selected and variation operators are applied on them to create

the new population. At the end of each time step DYNMOGA

returns a set of solutions, i.e. all those contained in the

Pareto front. Each of these solutions corresponds to a different

trade-off between the two objectives and thus to diverse

partitioning of the network consisting of various number of

clusters. A criterion should be established to automatically

select one solution with respect to another. To this end, we

choose the partitioning having the highest value of modularity.

This choice is motivated by the fact that, since the Pareto

front already selected the nondominated solutions that satisfy

the snapshot and the temporal cost at the best, a solution

presenting a better community structure is preferable.

Computational Complexity: DYNMOGA uses the Non-

dominated Sorting Genetic Algorithm (NSGA-II) proposed by

Deb et al. in [36]. NSGA-II builds a population of competing

individuals and ranks them on the basis of nondominance. In

[37] Jensen proposed an efficient algorithm for nondominated

sorting that can be applied for NSGA-II. Jensen showed

that the run-time complexity of the NSGA-II algorithm is

O(gp logh−1 p), where g is the number of generations, p is the

population size, and h is the number of objective functions.

Since DYNMOGA optimizes two objectives, its complexity

will be O(gp log p). At each generation, however, genetic

operators must be executed. In particular, crossover needs

O(n) time, mutation O(1) time, while fitness computation is

composed of three terms: decoding of an individual, mod-

ularity and NMI computation. Decoding can be efficiently

performed by using the disjoint set algorithm described in

Figure , that represents sets by rooted trees, where each set

corresponds to a community. With this data structure the

decoding step requires O(n log n) time [35].

To compute modularity we need to consider, for each node

i its di neighbors, thus the time complexity is O(m), where

m is the number of edges. As regards normalized mutual

information, it has been shown [38] that it can be efficiently
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computed in O(n) time. Fitness computation can thus be real-

ized in O(n log n)+O(m)+O(n) time. Therefore, the overall

complexity of DYNMOGA is O((gp log p)× (n log n + m)).
In the next section we show that DYNMOGA is able to find

meaningful network structure for both synthetic and real life

data sets.

6 EXPERIMENTAL RESULTS

In this section we study the effectiveness of our approach

by first employing modularity as objective function that op-

timizes the snapshot cost, and compare the results obtained

by DYNMOGA w.r.t. the algorithm of Lin et al. [5] and Kim

and Han [3] on synthetic networks for which the partitioning

in communities is known. In such a case we show that

our multiobjective genetic algorithm successfully detects the

network structure and it is very competitive with respect to the

other approaches. In Section 6.7 we then show the behavior of

the method when conductance, normalized cut and community

score are applied, and report the results obtained by each

objective. Finally, we apply our method on two real-world

networks.

The DYNMOGA algorithm has been written in MATLAB,

using both the Genetic Algorithms and Direct Search 2 tool-

boxes. Parameter setting is a challenging research problem in

evolutionary algorithms. In [39] the problem has been deeply

investigated and the authors proved that, though it is possible

to find good parameter values for a set of problems, general

tuning that allows for good performance on a wide range of

problems is difficult. As regards DYNMOGA, we employed

a trial-and-error procedure on one of the synthetic dataset

described below (dataset #1) by computing the normalized

mutual information for different combinations of crossover and

mutation rates. Figure 4 shows the obtained values. It can be

observed that they do not present high variation, thus we set

crossover rate = 0.8 and mutation rate = 0.2, since, in general,

high crossover rate and low mutation rate are suggested in the

literature. Furthermore, we fixed elite reproduction = 10% of

the population size, roulette selection function, population size

= 100, and number of generations 100.

6.1 Evaluation measures

In order to compare DYNMOGA and the other approaches

on the synthetic data sets, two validation measures, the nor-

malized mutual information (NMI), already described in the

previous section, and the error rate are employed. The error

rate, as reported in [5], is computed by considering an n × k
indicator matrix Z storing, for each of the n nodes, the

community membership to one of the k communities obtained

by the algorithm, and a similar indicator matrix G built for

the ground truth. The error rate is then defined as the norm

|| ZZT − GGT ||, which measures the distance between the

community structures represented by Z and G.

6.2 Synthetic dataset #1

The first dataset we consider is the benchmark adopted by

Lin et al. in [5]. This data set is generated by the authors

analogously to the classical benchmark proposed by Girvan

and Newman in [40]. The network consists of 128 nodes

divided into four communities of 32 nodes each. Every node

has a fixed average degree avgDegree, and shares a number

z of links with the nodes not belonging to its community.

Increasing z augments the noise level of the network. Two

different values of avgDegree and z have been considered.

When avgDegree = 16 a less dense network is generated,

while with avgDegree = 20 we have a denser network. As

regards z, a value z = 5 generates a more distinct commu-

nity structure, while fixing z = 6, the community structure

becomes less clear. Edges are placed with higher probability

between a pair of nodes in the same community, and with

lower probability between nodes in different communities.

These probabilities depend on the value of z. In order to

introduce dynamics in G, nC% of nodes are moved among

communities. To this purpose, two different cases have been

considered. In the former, the community structure presents

soft changes, thus the 10% of nodes are randomly selected

from each community, and randomly assigned to the other

three communities. In the second case the changes are more

substantial, thus the 30% of nodes change their community at

each time step. We considered 20 time steps and the values

averaged over 50 experiments are reported.

Figures 5 and 6 show the error rate and the normalized

mutual information obtained by DYNMOGA and FacetNet
for the different networks built with the parameter values

described. The results for FacetNet have been obtained for

α = 0.8, value chosen by the authors in their paper [5]. In

particular, Figure 5 reports the error rates when (a) z = 5

and percentage of node changes nC = 10%, (b) z = 5 and

percentage of node changes nC = 30%, (c) z = 6 and nC =

10%, (d) z = 6 and nC = 30%. Figure 6 reports the normalized

mutual information for the same configuration. These two

figures point out that DYNMOGA obtains lower error rate for

all the 4 synthetic networks, at each time step. As regards the

NMI, when the fuzziness is low and the community structure

changes are mild (Figure 6(a)), the NMI of the two methods

are comparable. However, when the fuzziness increases, thus

the networks present more dramatic changes, DYNMOGA

is able to better detect the true community structure. This

behavior is clear in Figures 6(c) and (d).

FacetNet needs that the parameter α be fixed by the user.

Lin et al. [5] point out that automatically finding the best

value of α has not been investigated, and that setting a value

pushes the algorithm to prefer a result more biased towards

either snapshot quality or temporal smoothness. Figure 7

shows the error rate obtained by FacetNet when the average

degree has been fixed to 20, for increasing values of the

parameter α, compared with that obtained by DYNMOGA.

Figure 7(a) shows the results for z = 5 and nC = 30%, while

Figure 7(b) for z = 6 and nC = 30%. In the former case,

DYNMOGA outperforms FacetNet when α ≤ 0.7. In the

latter case, the errors obtained by DYNMOGA are always

lower, independently of the value of α, except for slight

differences at three time steps for α ≥ 0.8. The figure points

out that the choice of α is not an easy task because it influences

the quality of the results. As already emphasized, DYNMOGA
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Fig. 5. Error rate on synthetic dataset #1 when avgDegree = 16: (a) z = 5 and nC = 10%, (b) z = 5 and nC = 30%, (c)
z = 6 and nC = 10%, (d) z = 6 and nC = 30%.
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Fig. 6. NMI on synthetic dataset #1 when avgDegree = 16: (a) z = 5 and nC = 10%, (b) z = 5 and nC = 30%, (c) z = 6

and nC = 10%, (d) z = 6 and nC = 30%.
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Fig. 7. Error rate on synthetic dataset #1 when avgDegree = 20: (a) z = 5 and nC = 30%, (b) z = 6 and nC = 30%, and

α varying between 0.1 and 0.9. FN0.i, i=1,...9, stands for FacetNet result with input α = 0.i

is able to automatically determine the best tradeoff between

the two competing objectives.

6.3 Synthetic dataset #2

The second synthetic dataset has been generated by taking into

account some main events that may characterize the evolution

of dynamic networks [7], [41], [1], [42]. To this end we

assumed four types of events, as introduced by Greene et al.

in [42]. The events are the following:

• Birth and death: from the second time step on, 10% of

new communities are created by removing nodes from

other existing communities, and randomly removing 10%

of the existing communities.

• Expansion and contraction: 10% of communities are

randomly selected and expanded or contracted by 25%

of their size. When expanded, the new nodes are chosen

at random from the other communities.

• Intermittent communities: 10% of communities from the

first time step are hide.

• Merging and splitting: at each time step, 10% of com-

munities are split, 10% of communities are chosen, and

couples of communities are merged.

We generated four synthetic data sets for the four different

types of events, for 20 time steps. The parameters to the

generator have been set such that each network is constituted

by 1000 nodes having mean degree of 15 and maximum

degree 50, number of communities between 20 and 50, and

mixing parameter (percentage of edges between communities)

0.2. Figures 8 and 9 depict the error rate and the normalized

mutual information on the four different data sets. The figures

clearly show that DYNMOGA outperforms FacetNet on all

these four types of networks. In particular, it is worth to note

that the error rate of DYNMOGA is the same or higher than

that obtained by FacetNet at the first time step. However,

from the second time step on, the error rate of DYNMOGA is
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Fig. 8. Error rate on synthetic dataset #2: (a) birth and death, (b) expansion and contraction, (c) intermittent

communities, (d) merging and splitting.
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Fig. 9. Normalized mutual information on synthetic dataset #2: (a) birth and death, (b) expansion and contraction, (c)

intermittent communities, (d) merging and splitting.
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Fig. 10. NMIs on Derek-Green’s expansion and contraction datasets while varying α.

sensibly lower, and the NMI value is notably higher. Note that

that the behavior of FacetNet is rather different with respect

to the type of event that can occur. In particular, in the case of

birth/death of communities (Figure 9(a)) its NMI drastically

decreases from 0.99 to 0.4 over the 20 time steps, while

DYNMOGA maintains an NMI value near to 1. As regards the

other three events, the NMI obtained by FacetNet diminishes

in a more soft way, reaching a value not less than 0.80, while

DYNMOGA does not obtain values lower than 0.92.

As already reported, the results for FacetNet have been

obtained by fixing α = 0.8. In order to check the influence

of different values of α also on this kind of data set, Figure

10 shows the NMI values obtained when α assumes the

values 0, 0.4, 0.6, and 1, respectively, in case of expansion

and contraction events. When α = 0 the NMI obtained by

FacetNet drastically decreases, since the cost function biases

the method to find solutions more similar to the previous

time step, completely disregarding the current snapshot. The

opposite behavior is obtained when α = 1. Although in this

case FacetNet has to find the community structure that best

fits the current snapshot, independently from the previous time

step, it obtains NMI values between 0.97 and 0.83, which are
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Fig. 11. Error (a) and Normalized Mutual Information (b)

on power law synthetic dataset (merging and splitting).

lower than that obtained by DYNMOGA (above 0.98 from the

second time step on).

6.4 Power-law networks

Lancichinetti et al. [43] proposed a new class of bench-

marks (LFR benchmark) that extend the Girvan and Newman

benchmark by introducing power law degree distributions and

different community size. In [44] it has been experimented that

many community detection algorithms perform well on the
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Fig. 12. Degree distribution in log-log scale on power law

synthetic dataset (merging and splitting).

Girvan and Newman benchmark, but give poor results on the

LFR benchmark. Although the network generator of Greene

et al. in [42] is based on binary network generation tools

proposed in [44], it does not allow to fix the exponent of the

power law distribution from which assigning degrees to nodes.

Thus, we generated an LFR benchmark constituted by 1000

nodes, average node degree 20, maximum node degree 50,

exponent of degree distribution -2, community size distribution

-1, and mixing parameter 0.3. The generated networks have

only one node with maximum degree 50, while almost 70% of

nodes have degree lower than the average degree 20. In order

to introduce dynamics, for 5 time steps, 10% of communities

were chosen in a random way, and repeatedly they were split

(steps 2, 4) and merged (steps 3, 5).

Figure 11(a) and Figure 11(b) show error and normalized

mutual information obtained by FacetNet and DYNMOGA.

We can notice that, after the first time step, DYNMOGA is able

to better recover the true evolving community structure, and

it works well also on power law networks. Figure 12 reports

the degree distribution of networks. The figure clearly shows

the typical long tail of power law distribution.

6.5 Synthetic dataset #3

In this section we compare DYNMOGA with the method of

Kim and Han [3]. It is worth to point out that the results

reported for this latter approach are those appearing in [3], and

provided by the authors. The comparison has been performed

on two kinds of data sets. The first one is a dynamic network

of a fixed number of communities (named SYN-FIX). The

second one is a dynamic network with a variable number of

communities (named SYN-VAR).

SYN-FIX is similar to the synthetic dataset #1. The network

consists of 128 nodes divided into four communities of 32

nodes each. Every node has an average degree of 16 and shares

a number z of links with the other nodes of the network. In

order to introduce dynamics, 3 nodes are randomly selected

from each community in Gt−1 and randomly assigned to the

other three communities. SYN-VAR is obtained by modifying

the generation method of SYN-FIX to introduce the forming

and dissolving of communities and the attaching and detaching

of nodes. The initial networks contains 256 nodes, divided in

4 communities of 64 nodes each. 10 consecutive networks

are generated by choosing 8 nodes from each community and

generating a new community with these 32 nodes. This is

done for 5 timestamps, then the nodes return to the original

communities. Thus, the number of communities for the 10

timestamps is 4, 5, 6, 7, 8, 8, 7, 6, 5, 4. The average degree

of each node in a cluster is set to the half of the size of this

cluster. Furthermore, at each time step 16 nodes are randomly

deleted and 16 new nodes are added to the network.

We generated 10 different networks for 10 timestamps, run

DYNMOGA on them, and computed the Normalized Mutual

Information to measure the similarity between the true parti-

tions and the detected ones.

Figure 13 shows the average normalized mutual information

over the 10 timestamps for SYN-FIX when z = 3 (Figure

13(a)) and z = 5 (Figure 13(b)), for SYN-VAR when z = 3
(Figure 13(c)) and z = 5 (Figure 13(d)).

The figure shows the significantly better results obtained by

DYNMOGA with respect to Kim and Han’s algorithm. In fact,

for SYN-FIX and SYN-VAR, when z = 3, DYNMOGA obtains

a value which is almost always 1, while the values obtained

by Kim and Han’s algorithm are around 0.9 for SYN-FIX and

aroud 0.7 for SYN-VAR. The differences, however, are much

more remarkable when z = 5. In this case DYNMOGA obtains

values above 0.9 for all the timestamps, while Kim and Han

method fails to uncover the community structure. In fact, it

returns values of normalized mutual information between 0.1

and 0.2.
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Fig. 14. Error and Normalized Mutual Information on syn-

thetic dataset #2 (merging and splitting), single objective
versus multiobjective.

6.6 Pareto front solution selection

A characteristic of multiobjective optimization is the genera-

tion of a set of solutions. Thus, a single solution out of this

set must be selected. There has been a lot of research in this

decision making problem, and many different approaches have

been proposed [29]. As already stated, DYNMOGA prefers,

among the Pareto front solutions, that having community

structure with the higher modularity value, since this concept

has been recognized as the most suitable to interpret the

intuitive idea of community. It is worth to note that, the

optimization of the two objectives employed by DYNMOGA,

i.e. modularity and normalized mutual information, does not

produce the same results of optimizing the single objective of

modularity. In fact, in the former case, the Pareto front contains

those non-dominated solutions that try to optimize both the
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Fig. 13. Normalized mutual information on synthetic dataset #3: (a) SYN-FIX when z = 3, (b) SYN-FIX when z = 5,

(c) SYN-VAR when z = 3, (d) SYN-VAR when z = 5.

snapshot cost (modularity) and the temporal cost (NMI), which

is different than optimizing only the snapshot cost (modularity

alone). In order to emphasize that optimizing two objectives

gives better results than optimizing only modularity, Figure

14 compares Error and NMI values obtained by DYNMOGA

for the synthetic dataset #2 (merging and splitting), with those

returned when DYNMOGA is executed by fixing the temporal

cost at zero for all the time steps, thus completely disregarding

NMI. The figure clearly points out the better performance of

the multiobjective approach with respect to the single objective

one.
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Fig. 15. Normalized mutual information on synthetic

dataset #2 with different objective functions: (a) expansion

and contraction, (b) merging and splitting.

6.7 Changing objective function to compute snap-

shot cost

Results presented so far have been obtained by employing

modularity as snapshot cost function. As already pointed out,

DYNMOGA can be considered as a general framework for

evolutionary clustering. In fact, it is sufficient to change one

of the two objective functions (or both), to implement and

test different approaches for analyzing dynamic networks. In

this section we consider the other three quality measures for

community detection introduced in Section 5, and compare

the normalized mutual information values computed by using

these scores.

NMI has been computed for the synthetic dataset #2, in

particular expansion and contraction, and merging and splitting

networks. The results on the other networks are analogous,

thus we do not report them for lack of space. Figure 15

shows that modularity overcomes all the other three objectives,

though community score works quite well and is comparable

with it.

It is worth to notice that it has been shown that the

optimization of modularity has a resolution limit that depends

on the total size of the network and the interconnections of

the modules [45]. This limit implies the important drawback

that, searching for partitioning of maximum modularity, may

lead to solutions in which important structures at small scales

could not be discovered. However, to overcome this problem,

Granell et al. [46] introduced a resolution control parameter γ
in the modularity formulation. The new formula being QR =∑k

s=1[
ls
m − γ( ds

2m )2]. When γ = 1 the original formulation

is obtained, while for increasing values of γ, smaller groups

of nodes can be found. Thus, despite the criticisms regarding

resolution limit problem, the use of modularity as snapshot

cost seems the best choice.
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Fig. 16. Running time of DYNMOGA in

seconds against number of nodes varying as

{128, 256, 512, 1024, 2048, 4096} with corresponding
number of edges {1938, 4018, 8184, 16158, 33026, 65256},

on the synthetic dataset #1, z=5, nC=10%, for different

combinations of population size p and number of
generations g = 50.

6.8 Scalability Analysis

One of the main criticisms in using Genetic Algorithms,

compared with traditional optimization algorithms, is the high

execution time required to generate a solution. The major

limitation of evolutionary algorithms is, in fact, the repeated

fitness function evaluation that, for complex problems could

often be prohibitive. The problem is exacerbated when large

populations of individuals are used, and, in particular for the

multiobjective approach. In our method fitness evaluation is
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Fig. 17. Running time of DYNMOGA in
seconds against number of nodes varying as

{128, 256, 512, 1024, 2048, 4096} with corresponding

number of edges {1938, 4018, 8184, 16158, 33026, 65256},
on the synthetic dataset #1, z=5, nC=10%, for different

combinations of population size p and number of

generations g = 100.
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Fig. 18. Running time of DYNMOGA in
seconds against number of nodes varying as

{128, 256, 512, 1024, 2048, 4096} with corresponding
number of edges {1938, 4018, 8184, 16158, 33026, 65256},

on the synthetic dataset #1, z=5, nC=10%, for different

combinations of population size p and number of
generations g = 200.

rather efficient, thus the main problem comes from the network

size.

To evaluate the scalability of the method we

used the synthetic dataset #1, avgDegree=16, z=5,

nC=10%, with number of nodes increasing as

{128, 256, 512, 1024, 2048, 4096}, and corresponding number

of edges {1938, 4018, 8184, 16158, 33026, 65256}, population

size p, and number of generations g varying in the interval

[50,100, 200].

Figures 16-18 report the time requirements for one time

step, for the different combinations of p and g. The figures

show that the scaling of DYNMOGA is lower than quadratic

in the number of nodes.

We now want to study the influence of population size and

number of generations on the accuracy of the method. It is

worth to point out that population size p can be viewed as a

measure of the parallel search level a GA supports, since p
different solutions are considered at the same time to find the

local optimum. The more complex the problem to solve, the

larger the population to use because the chance of finding

optimal solutions augments with increasing p. Because of

the computation requirements, the choice must balance the
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Fig. 19. Error variation (a) and execution times (b) for
different combinations of population size p and number

of generations g on synthetic dataset #2: merging and

splitting, n=1000, m=7728.

quality of the solution versus the computation times. A similar

reasoning applies to the number of generations. The longer the

algorithm works, the fitter the solution it can obtain. However,

after a number of generations, that depends on the problem,

continuing the execution does not provide any improvement

of the local optimum obtained so far because the algorithm

gets stuck in that local optimum. Figure 19(a) shows how the

error varies for different combinations of population size p
and number of generations g on synthetic dataset #2 (merging

and splitting). In particular both p and g assume values in the

range [50,100, 200]. The figure points out that the error can

drastically drop down from around 9500 with p = 50 and

g = 50 to around 600 if p = 200 and g = 200. However the

running time (Figure 19(b)) sensibly increases. Thus, if the

computing resources are limited, the choice of p and g should

be done by considering the trade-off between execution time

and desired accuracy.

It is worth to point out that, though Genetic Algorithms

are naturally suited to be implemented on parallel architec-

tures [47], the capabilities of the approach to deal with very

large networks could be degraded because of the demanding

computing requirements.

6.9 Real-life data sets

In this section we apply our method to two real-life dynamic

networks: Cell Phone Calls and Enron mail.

Cell Phone Calls: the former data set comes from the VAST

2008 mini challenge 3: Cell Phone Calls 1 and consists of cell

call phone records among the members of the fictitious Paraiso

movement, covering a period of ten days in June 2006. These

records have been used to build a network where each node

corresponds to a unique cell phone, and an edge between two

cell phones is created when a phone call between the two

cell phones occurs. For each edge, the day and time of the

phone call are reported. The number of cell phones is 400.

Thus ten weighted networks can be built by considering the

phone calls for each of the ten days. Each edge is labelled with

the number of phone calls occurred in that day between two

members of Paraiso movement. Five persons are considered

the most important in the network, Ferdinando Catalano (node

201) and his brother Estaban (node 6), David Vidro (node 2),

1. http://www.cs.umd.edu/hcil/VASTchallenge08/
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TABLE 2
Cell dataset statistics: T is the number of time steps (10

days on June 2006), M the modularity, |C| the number of

communities, |V | the number of nodes, |E| the number of
edges, |E|∗ the number of distinct undirected edges (i.e.

number of different phone calls between two members),

Z the average degree, CC the Watts-Strogatz clustering
coefficient, and B the betweenness of network.

T M |C| |V| |E| |E|∗ Z CC B

1 0.6640 32 370 987 525 2.6250 0.0328 0.2992

2 0.6561 35 373 964 499 2.4950 0.0192 0.2532

3 0.6587 30 374 953 509 2.5450 0.0137 0.2594

4 0.6540 31 374 1013 514 2.5700 0.0179 0.2289

5 0.6626 32 373 991 508 2.5400 0.0160 0.2895

6 0.6651 25 373 963 512 2.5600 0.0207 0.2246

7 0.6571 33 367 936 498 2.4900 0.0118 0.2356

8 0.6329 36 365 1005 511 2.5550 0.0203 0.3127

9 0.6538 34 374 982 518 2.5900 0.0290 0.2991

10 0.6467 32 384 1040 530 2.6500 0.0095 0.2253

and his two brothers Jorge and Juan (nodes 3 and 4). These

five core members changed their cell phone numbers between

days 7 and 8, therefore, for the last three days their node

number changed from 201, 6, 2, 3, 4 to 301, 307, 310, 361,

398, respectively.

Some statistical informations regarding the network are

reported in Table 2. Since the true community structure is

not known, we followed the same approach of Lin et al. [5].

We first considered the overall network and computed the

community structure by applying only the first step of our

method. The resulting network division had an average mod-

ularity value of 0.52 and an average number of communities

equal to 25.

After that, the clustering obtained on the overall network

was considered as the ground truth division, and both the

error rate and the normalized mutual information have been

computed by executing DYNMOGA on the ten networks. The

values obtained are reported in Figure 20. It can be observed

that DYNMOGA finds communities that constitute a balance

between the snapshot and the temporal costs. In fact, the

similarity among the groups obtained for the overall network

and those computed for each time step is around 0.5 (Figure

20(a)). It is worth to note that, for each time step, both the

modularity values and the number of communities found are

higher than those computed on the overall network. In fact

we obtained a number of communities between 30 and 36 for

the different time steps, with a modularity value varying from

0.64 to 0.66 (see Table 2). This means that the execution of the

method on the dynamic network provides a more structured

division and allows for a deeper analysis of the network.
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Fig. 20. Normalized mutual information and error rate of

the CELL dataset.

(a) Time step 1

(b) Time step 7

(c) Time step 8

Fig. 21. Community snapshots on CELL data set at

different time steps.

Finally, in Figure 21, the communities of the five most

important members, described above, at the first time step are

visualized, along with the evolution of their communities at

time steps 7 and 8. The three figures clearly point out that

these five persons had a central role until the seventh day,

directly communicating with almost all the other members of

the same group. At the 8th day, instead, this peculiarity is

lost, as expected and obtained by other studies relative to this

network [48].

Enron mail data set: the second real dataset is an email

collection from a US enterprise with potential anomalous

email communications spanning over a time range of about 3

years (i.e., from 1999 to 2002). The original dataset2 contains

around 517,431 emails from 151 users distributed in 3500

2. available at http://www-2.cs.cmu.edu/∼enron/
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Fig. 22. Normalized mutual information and error rate for
the Enron dataset.

TABLE 3

Enron dataset statistics: T is the number of time steps
(2001 monthly partitioning), M the modularity, |C| the

number of communities, |V | the number of nodes, |E| the

number of edges, |E|∗ the number of distinct undirected
edges (i.e. number of different mails between two

employees), Z the average degree, CC the
Watts-Strogatz clustering coefficient, and B the

betweenness of network.

T M |C| |V| |E| |E|∗ Z CC B

1 0.6368 11 96 1070 180 2.3841 0.4415 0.0850

2 0.6803 7 93 1559 204 2.7020 0.5406 0.1002

3 0.6550 12 97 1844 218 2.8874 0.4646 0.0984

4 0.6571 12 108 1869 257 3.4040 0.4430 0.1462

5 0.5699 15 125 1919 292 3.8675 0.4993 0.4384

6 0.6943 10 120 1001 231 3.0596 0.3959 0.1389

7 0.6530 10 109 1325 252 3.3377 0.4882 0.1833

8 0.5356 9 131 2270 396 5.2450 0.4783 0.4331

9 0.6324 10 128 3152 361 4.7815 0.4950 0.3070

10 0.5302 13 135 8693 575 7.6159 0.4957 0.3494

11 0.5707 9 127 6276 469 6.2119 0.5062 0.1915

12 0.6152 8 113 2146 325 4.3046 0.4519 0.2467

folders. For our tests, we considered a cleaned version of this

corpus 3 described in [49], and containing a subset of 252,759

emails from 151 employees. We further reduced the size to

about 50,000 messages by considering only emails exchanged

among Enron’s employees.

In order to perform a monthly-based analysis we concen-

trated on the year 2001 since it encompasses the maximum

number of emails (i.e. more than 33,000). We split it in 12

subsets, one for each month, by following the same approach

used for the CELL dataset. The number of communities

obtained on the overall network has been six. Figure 22 shows

the NMI and Error for the 12 time steps. Also in this case, the

dynamic approach provides a finer division of the network, as

pointed out in Table 3, where some statistical informations

regarding the network for each of the 12 time steps are

reported.

7 CONCLUSIONS

A multiobjective method based on genetic algorithms for

detecting communities in dynamic networks has been pre-

sented. The algorithm, at each time step, provides the solution

representing the best trade-off between the accuracy of the

clustering obtained with respect to the data at the current

time step, and the drift from one time step to the succes-

sive. The proposed approach can be considered as a general

framework for evolutionary clustering since changing one of

3. available at ftp://ftp.isi.edu/sims/philpot/data/enron-mysqldump.sql.gz

the two objective functions (or both) allows to implement and

test different criteria for the analysis of dynamic networks.

Experimental results on several kinds of synthetic data sets

showed the good performance of our approach compared with

other state-of-the-art methods.

It is worth to point out that genetic algorithms, compared

with traditional optimization algorithms, require high execu-

tion time to generate a solution. Experiments showed that

increasing population size p and number of generations g
produces a positively influence on the accuracy of the method.

However the running time sensibly increases. Thus, if the

computing resources are limited, the choice of p and g should

be done by considering the trade-off between execution time

and desired accuracy.
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