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A Multiobjective Genetic Algorithm to Find
Communities in Complex Networks

Clara Pizzuti

Abstract—A multiobjective genetic algorithm to uncover com-
munity structure in complex network is proposed. The algo-
rithm optimizes two objective functions able to identify densely
connected groups of nodes having sparse inter-connections. The
method generates a set of network divisions at different hierar-
chical levels in which solutions at deeper levels, consisting of a
higher number of modules, are contained in solutions having a
lower number of communities. The number of modules is auto-
matically determined by the better tradeoff values of the objective
functions. Experiments on synthetic and real life networks show
that the algorithm successfully detects the network structure and
it is competitive with state-of-the-art approaches.

Index Terms—Complex networks, multiobjective clustering,
multiobjective evolutionary algorithms.

I. Introduction

COMPLEX NETWORKS constitute an efficacious for-
malism to represent the relationships among objects

composing many real-world systems. Collaboration networks,
the Internet, the world-wide-web, biological networks, com-
munication and transport networks, social networks are just
some examples. Networks are modeled as graphs, where nodes
represent the objects and edges represent the interactions
among these objects.

An important problem in the study of complex networks
is the detection of community structure [25], also referred
to as clustering [21], i.e., the division of a network into
groups of nodes, called communities or clusters or modules,
having dense intra-connections, and sparse inter-connections.
This problem, as pointed out in [21], is meaningful only if
the graph modeling the network is sparse, i.e., the number
of edges is much less than the possible number of edges,
otherwise it becomes similar to data clustering [31]. Clustering
on graphs differs from data clustering since clusters in graphs
are based on edge density, while in data clustering they are
groups of points close with respect to a distance or similarity
measure. The concept of community in a network, however,
is not rigorously defined since its definition is influenced by
the application domain of interest. Thus, the intuitive notion
that the number of edges inside the same community should
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be much higher than the number of edges connecting to the
remaining nodes of the graph, constitutes a general advice
for community definition. This intuitive definition pursues
two different objectives: maximizing the internal links and
minimizing the external links.

Multiobjective optimization is a problem solving technique
that successfully finds a set of solutions when multiple and
conflicting objectives must be optimized. These solutions are
obtained through the use of Pareto optimality theory [15]
and constitute global optimum solutions satisfying all the
objectives as best as possible. Evolutionary algorithms to
solve multiobjective optimization problems revealed success-
ful because of their population-based nature which allows
the simultaneous production of multiple optima and a good
approximation of the Pareto front [5].

Community detection, thus, could be formulated as a mul-
tiobjective optimization problem and the framework of Pareto
optimality can provide a set of solutions corresponding to the
best compromise among the objectives to optimize. In fact,
there is a tradeoff between the two above-mentioned objectives
because when the community structure is constituted by the
overall network the number of external links is null, thus it is
minimized, however the cluster density in not high.

In the last few years, many approaches have been proposed
to employ multiobjective techniques for data clustering. Most
of these proposals cluster objects in metric spaces [14], [17],
[18], [28], [38], [39], [49], [51], though a method for parti-
tioning graphs has been presented in [8] and a graph clustering
algorithm of web user sessions is described in [12].

In this paper, a multiobjective approach, named multiobjec-
tive genetic algorithms for networks (MOGA-Net), to discover
communities in networks by employing genetic algorithms
is proposed. The method optimizes two objective functions
introduced in [32] and [44] that revealed both efficacious in
detecting modules in complex networks. The first objective
function employs the concept of community score to measure
the quality of the division in communities of a network. The
higher the community score, the more dense the clustering ob-
tained. The second defines the concept of fitness of the nodes
belonging to a module and iteratively finds modules having
the highest sum of node fitness, in the following referred to as
community fitness. When this sum reaches its maximum value,
the number of external links is minimized. Both the objective
functions have a positive real-valued parameter controlling the
size of the communities. The higher the value of the parameter,
the smaller the size of the communities found. MOGA-Net
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exploits the benefits of these two functions and obtains the
communities present in the network by selectively exploring
the search space, without the need to know in advance the
exact number of groups. This number is automatically deter-
mined by the optimal compromise values of the two objectives.

An interesting result of the multiobjective approach is that
it returns not a single partitioning of the network, but a set
of solutions. Each of these solutions corresponds to a differ-
ent tradeoff between the two objectives and thus to diverse
partitionings of the network consisting of various numbers of
clusters. Experiments on synthetic and real life networks
showed that the set of Pareto optimal solutions uncovers
the hierarchical organization of the network, where solutions
with a higher number of clusters are included in solution
having a lower number of communities. This peculiarity of
the multiobjective approach gives a great chance to analyze the
network at different hierarchical levels and study communities
with different modular levels.

This paper is organized as follows. In the next section,
the concept of community is defined and the community
detection problem is formalized. Section III describes the main
approaches to community detection. Section IV formulates the
community detection problem as a multiobjective optimization
problem. Section V describes the method, the genetic represen-
tation adopted, and the variation operators used. In Section VI,
the results of the method on synthetic and real life networks
and a comparison with some of the state-of-the-art approaches
are reported. Section VII, finally, discusses the advantages of
the multiobjective approach and concludes this paper.

II. Community Definition

A network N can be modeled as a graph G = (V, E), where
V is a set of objects, called nodes or vertices, and E is a
set of links, called edges, that connect two elements of V .
A community (also called cluster or module) in a network is
a group of vertices (i.e., a sub-graph) having a high density
of edges within them, and a lower density of edges between
groups. This definition of community is rather vague and there
is no general agreement on the concept of density. A more
formal definition has been introduced in [48] by considering
the degree ki of a generic node i, defined as ki =

∑
j Aij ,

where A is the adjacency matrix of G. A is such that an entry
at position (i, j) is 1 if there is an edge from node i to node j,
0 otherwise. Let S ⊂ G be the subgraph where node i belongs
to, the degree of i with respect to S can be split as

ki(S) = kin
i (S) + kout

i (S)

where

kin
i (S) =

∑
j∈S

Aij

is the number of edges connecting i to the other nodes in S,
and

kout
i (S) =

∑
j /∈S

Aij

is the number of edges connecting i to the rest of the network.
A subgraph S is a community in a strong sense if

kin
i (S) > kout

i (S), ∀i ∈ S.

A subgraph S is a community in a weak sense if∑
i∈S

kin
i (S) >

∑
i∈S

kout
i (S).

Thus, in a strong community, each node has more connec-
tions within the community than with the rest of the graph.
In a weak community, the sum of the degrees within the
subgraph is larger than the sum of degrees toward the rest
of the network. In the following, we adopt the concept of
weak community, thus a community is interpreted as a set of
nodes having a total number of intra-connections higher than
the number of inter-connections among different clusters.

III. Related Work

Many different algorithms, coming from different fields
such as physics, statistics, data mining, and evolutionary com-
putation have been proposed to detect communities in complex
networks. The approaches adopted can broadly be classified
into three different types: divisive hierarchical methods, ag-
glomerative hierarchical methods [31], and optimization meth-
ods. The divisive hierarchical methods start from the complete
network, detect the edges that connect different communities,
and remove them. Examples of these approaches can be found
in [3], [25], [35], [41], [42], and [48]. Agglomerative ap-
proaches consider each node a cluster and then merge similar
communities recursively until the whole graph is obtained [4],
[34], [40], [45], [47], [58]. Optimization methods define an
objective function that allows the division of a graph in sub-
graphs, and try to maximize this objective in order to obtain
the best partitioning of the network [1], [32], [53]. Among the
optimization methods, several approaches have been developed
by using evolutionary techniques. In particular, [18], [20], [26],
[29], [34], [44], [55] applied genetic algorithms. Many other
proposals employ multiobjective evolutionary algorithms to
partition graphs or cluster objects in metric spaces [8], [12],
[14], [17], [28], [38], [39], [49], [51].

In the following, we first review the main proposals coming
from physics and data mining fields, and then a description
of the multiobjective evolutionary clustering approaches is
reported.

A. Community Detection in Networks

The community detection problem has been studied by
several researchers, and a complete description of the state-of-
the-art proposals is beyond the scope of this paper. Extensive
and detailed overviews of community identification methods
in complex networks can be found in [6], [21], and [23].

One of the most famous algorithms to detect communities
has been presented by Newman and Girvan [25]. The method
iteratively splits the network by removing edges. The edges
to be removed are chosen by using the betweenness measure.
The idea underlying the edge betweenness comes from the
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observation that if two communities are joined by a few inter-
community edges, then all the paths from vertices in one
community to vertices in the another must pass through these
edges. Paths determine the betweenness score to compute for
the edges. By counting all the paths passing through each
edge, and removing the edge scoring the maximum value, the
connections inside the network are broken. This process is
repeated, thus dividing the network into smaller components
until no edges remain.

The same authors in [42] proposed a divisive hierarchical
method based on different betweenness measures. In this
paper, Newman and Girvan point out the need of having
a measure of the quality of the network division found by
an algorithm. To this end, they introduce the concept of
modularity. Informally, the modularity is the fraction of edges
inside communities minus the expected value of the fraction of
edges, if edges fall at random without regard to the community
structure (a formal definition of modularity is given in the
next section). Values approaching 1 indicate strong community
structure. Thus, the algorithm computes the modularity for
each split of the network in communities, and the authors show
that, when community structure is known a priori, high values
of modularity closely correspond to the expected network
division.

Newman [40] argued that since high values of modularity
correspond to good network division, an approach to find the
best possible partitioning of a network could be to simply
optimize it. Thus, he presented an agglomerative hierarchical
method that searches for optimal values of modularity. New-
man observed that an exhaustive search of all the possible
divisions to obtain the optimal value of modularity is unfea-
sible for networks constituted by more than 20 vertices, thus
approximation methods are needed. He proposed a greedy ap-
proach that joins communities producing the greatest increase
in modularity value. A faster method version, based on the
same strategy, was described in [4] by Clauset, Newman, and
Moore.

Blondel et al. [3] presented a method that partitions large
networks based also on the modularity optimization. The algo-
rithm consists of two phases that are repeated iteratively until
no further improvement can be obtained. At the beginning,
each node of the network is considered a community. Then,
for each node i, all its neighbors j are considered, and the gain
in modularity for removing i from its community and adding
it to the j community is computed. The node is placed in the
community for which the gain is positive and maximum. If no
community has positive gain, i remains in its original group.
This first phase is repeated until no node move can improve
the modularity. The second phase builds a network where the
communities obtained are considered as the new nodes, and a
link between two communities a, b exists if there is an edge
between a node belonging to a and a node belonging to b.
The network can be weighted, in such a case the weight of
the edge between a and b is the sum of the weights of the
links between nodes of the corresponding communities. At
this point, the method can be reiterated until no more changes
can be done to improve modularity. The algorithm returns all
the clusterings found at different hierarchical levels.

Pons and Latapy [45] introduced an agglomerative hierar-
chical algorithm, named Walktrap, to compute the community
structure of a network. The approach is based on the concept
of random walk on a graph and on the idea that random walks
tend to get trapped in densely connected parts of the graph. A
new definition of distance between two nodes is introduced by
exploiting the properties of random walks, and this definition
is generalized to compute the distance between communities.
The algorithm thus starts from a partition of the graph in
which each node is a community, and then merges the two
adjacent communities (i.e., having at least a common edge)
that minimize the mean of the squared distances between each
vertex and its community. The distances between communities
are recomputed and the previous step is repeated until all
the nodes belong to the same community. In order to decide
the best partitioning to choose, the modularity criterion of
Newman and Girvan is adopted.

Pujol et al. [47] proposed an agglomerative hierarchical
method that combines spectral analysis and modularity op-
timization to obtain efficiency and accuracy in clustering
a network. They used the same concept of random walk
adopted by Pons and Latapy [45] to produce an initial partition
of the network, then an agglomerative hierarchical method
that iteratively joins two communities is applied. In order to
merge two clusters, the group of nodes that gives the least
contribution to the total modularity is selected and it is joined
with the group that maximizes the increment of modularity.

Lancichinetti et al. [32] proposed a method to detect
overlapping and hierarchical community structure based on
the concept of community fitness of a module S. Let kin

i (S)
and kout

i (S) be the internal and external degrees of the nodes
belonging to a community S. The community fitness P(S) of
S is then defined as follows:

P(S) =
∑
i∈S

kin
i (S)

(kin
i (S) + kout

i (S))α

where α, called resolution parameter, is a positive real-valued
parameter controlling the size of the communities. When
kout
i (S) = 0 ∀i, P(S) reaches its maximum value for a fixed

α. The community fitness has been used by [32] to find
communities one at a time. The authors introduced the concept
of node fitness with respect to a community S as the variation
of the community fitness of S with and without the node i,
that is

Pi(S) = P(S ∪ {i}) − P(S − {i}).
The method starts by picking a node at random, and

considering it as a community S. Then a loop over all the
neighbor nodes of S not included in S is performed, in order to
choose the neighbor node to be added to S. The choice is done
by computing the node fitness for each node, and augmenting
S with the node having the highest value of fitness. At this
point the fitness of each node is recomputed, and if a node
turns out to have a negative fitness value it is removed from S.
The process stops when all the not-yet-included neighboring
nodes of the nodes in S have a negative fitness. Once a
community has been obtained, a new node is picked and the
process restarts until all the nodes have been assigned to at
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least one group. The authors found that the partitions obtained
for the resolution parameter α = 1 are relevant. However,
they introduced a criterion to choose a partition based on the
concept of stability. A partition is considered stable if it is
delivered for a range of values of α. The length of this range
determines the more stable partition, which is deemed the best
result.

B. Multiobjective Clustering Methods

The application of multiobjective optimization to clustering
data has recently obtained an increasing interest [14], [17],
[28], [38], [39], [49], [51], though few proposals regard the
partitioning of networks [8], [12].

A reference approach to multiobjective clustering algo-
rithms for numerical and categorical data is that proposed by
Handl and Knowles [28], and named multiobjective clustering
with automatic K-determination (MOCK). The first objective
of MOCK is to minimize the overall deviation of a partition-
ing, i.e., the summed distances between data items and the
center of the cluster they have been assigned. The second
objective is the minimization of the cluster connectedness,
which evaluates for each cluster data point how many of
its nearest neighbors have been placed in the same cluster.
The algorithm adopts the locus-based adjacency representa-
tion proposed by Park and Song [43], described in the next
sections and employed also by MOGA-Net, and uses a special
initialization of the solutions based on the minimum spanning
tree that reduces execution times. MOCK contains also a
final step for selecting the best solution from the Pareto front
approximations that automatically delivers the optimal number
of clusters.

MOCK is not specialized for partitioning networks, though
it can be adapted to clustering on graphs by considering the
adjacency matrix of a network as a (dis)similarity matrix.

A proposal for graph partitioning that optimizes three differ-
ent objectives was proposed by Datta et al. [8]. The objectives
minimize the net loss in edge values when two connected
nodes are placed in different groups, the difference in size of
the groups, and the spread of clusters. The authors emphasized
on the concept of zone in the graph, intended as group of
adjacent nodes. Thus a chromosome is a collection of nodes,
where each node is specified by its location in the graph. The
algorithm is able to divide the graph in a variable number of
zones, however the range of zones and of the number of nodes
per zone must be fixed as input parameter.

More recently, a multiobjective evolutionary algorithm, spe-
cialized for clustering Web user sessions, has been proposed
by Nildem et al. [12]. The clusters obtained are then used in a
Web recommendation system for representing usage patterns.
The sequences of Web pages visited by a user are represented
as a weighted undirected graph where each sequence is a node,
and the weight of an edge connecting two sequences is the
computed similarity between the two nodes. Their algorithm,
named GraSC, uses the same representation of MOCK, but the
conflicting objectives to optimize are the min-max cut [13]
and the silhouette index [50]. The former tries to optimize
the intra-cluster similarity and to minimize the inter-sub-graph
similarity, the latter computes the average silhouette index of

vertices belonging to the same cluster. The silhouette index of
a node i is the normalized value of the difference between the
minimum average dissimilarity between node i and the nodes
of the other clusters, and the average dissimilarity among i

and the vertices in the same cluster.
In the next section, the community detection problem is

formalized as a multiobjective optimization problem.

IV. Community Detection as a Multiobjective

Optimization Problem

Many problems in different fields are naturally formulated
with multiple objectives. In particular, the division of a net-
work in subgroups of nodes having dense intra-connections
and sparse interconnections has two competing objectives. The
first is to maximize the links among the nodes belonging to
the same module, the second is to minimize the number of
connections between the communities. Thus, the problem of
community detection cannot adequately be represented as a
single objective augmented with constraints to try to implicitly
satisfy the other. A more suitable approach is to formalize this
problem as a multiobjective clustering problem [19], [28].

A multiobjective clustering problem (�,F1,F2, . . . ,Ft) is
defined as

minFi(S), i = 1, . . . , t, subject toS ∈ �

where � = {S1, . . . ,Sk} is the set of feasible clusterings of a
network, and F = {F1,F2, . . . ,Ft} is a set of t single criterion
functions. Each Fi : � → R is a different objective function
that determines the feasibility of the clustering obtained.
Since F is a vector of competing objectives that must be
simultaneously optimized, there is not one unique solution to
the problem, but a set of solutions are found through the use
of Pareto optimality theory [15]. Given two solutions S1 and
S2 ∈ �, solution S1 is said to dominate solution S2, denoted
as S1 ≺ S2, if and only if

∀i : Fi(S1) ≤ Fi(S2) ∧ ∃ i s.t. Fi(S1) < Fi(S2).

A dominated solution is not interesting because an im-
provement can be attained in all the objectives. Instead, a
nondominated solution is one in which an improvement in
one objective requires a degradation of another. Multiobjective
optimization aims to the generation and selection of nondomi-
nated solutions, these solutions are called Pareto-optimal. The
goal is therefore to construct the Pareto optima. More formally,
the set of Pareto-optimal solutions � is defined as

� = {S ∈ � : � ∃S′ ∈ � with S′ ≺ S}.
The vector F maps the solution space into the objective

function space. When the nondominated solutions are plotted
in the objective space, they are called the Pareto front. Thus,
the Pareto front represents the better compromise solutions
satisfying all the objectives as best as possible. It is worth
noting that the Pareto-optimal solutions as outlined in [28]
always include the optimal solutions of the clustering problems
with a single objective to optimize.
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A. Objective Functions

Our aim is to partition a network in groups of vertices
{S1, . . . Sk} such that the density of edges within them is
higher than the density of edges between the groups. To
this end, we need an objective function that maximizes the
number of connections inside each community, and another
objective function that minimizes the number of links between
the modules found.

A quality measure of a community S that maximizes the in-
degree of the nodes belonging to S has been introduced in [44].
On the other hand, a criterion that minimizes the out-degree
of a community is defined in [32]. Both the approaches adopt
the definition of weak community described above. We now
first recall the definitions of these measures, and then show
how they can be exploited in a multiobjective approach to
find communities. In the following, without loss of generality,
the graph modeling a network is assumed to be undirected.

Let μi denote the fraction of edges connecting node i to the
other nodes in S. More formally

μi =
1

| S |k
in
i (S)

where | S | is the cardinality of S.
The power mean of S of order r, denoted as M(S), is defined

as

M(S) =

∑
i∈S(μi)r

|S| .

Notice that, in the computation of M(S), since 0 ≤ μ ≤ 1, the
exponent r increases the weight of nodes having many con-
nections with other nodes belonging to the same module, and
diminishes the weight of those nodes having few connections
inside S.

The volume vS of a community S is defined as the number
of edges connecting vertices inside S, i.e., the number of 1
entries in the adjacency sub-matrix of A corresponding to S

vS =
∑
i,j∈S

Aij.

The score of S is defined as score(S) = M(S)×vS . Thus, the
score takes into account both the fraction of interconnections
among the nodes (through the power mean) and the number
of interconnections contained in the module S (through the
volume). The community score of a clustering {S1, . . . Sk} of
a network is defined as

CS =
k∑

i=1

score(Si).

The first objective to maximize is then the community score
CS.

As described in Section III, Lancichinetti et al. [32] intro-
duced the concept of community fitness of a module S as

P(S) =
∑
i∈S

kin
i (S)

(kin
i (S) + kout

i (S))α
.

The second objective is thus carried out by the community
fitness by summing up the fitnesses of all the Si modules.
The parameter α, that tunes the size of the communities, has

been set to 1 because, as the authors observed, in most cases
the partitioning found for this value are relevant. The second
objective to minimize is thus

k∑
i=1

P(Si).

In the next section, we propose a multiobjective community
detection approach that optimizes both these two objectives.

V. Algorithm Description

In this section, we give a description of the multiobjective
algorithm MOGA-Net, the representation adopted for partition-
ing the network, and the variation operators used. In the last
few years many efforts have been devoted to the application
of evolutionary computation to the development of multiob-
jective optimization algorithms. Evolutionary algorithms, in
fact, proved to be very successful to solve multiobjective
optimization problems because of the population-based nature
of the approach that allows the generation of several elements
of the Pareto set in a single run [5], [10].

A. Genetic Representation

Our clustering algorithm uses the locus-based adjacency
representation proposed in [43] and employed by [28] and
[38] for multiobjective clustering. In this graph-based repre-
sentation, an individual of the population consists of N genes
g1, . . . , gN and each gene can assume allele value j in the
range {1, . . . , N}. Genes and alleles represent nodes of the
graph G = (V, E) modeling a network N , and a value j

assigned to the ith gene is interpreted as a link between the
nodes i and j of V . This means that in the clustering solution
found i and j will be in the same cluster. A decoding step,
however, is necessary to identify all the separate components
of the corresponding graph. The nodes participating to the
same component are assigned to one cluster. As observed
in [28], the decoding step can be done in linear time. A
main advantage of this representation is that the number k

of clusters is automatically determined by the number of
components contained in an individual and determined by
the decoding step. Fig. 1(a) shows a network of ten nodes
partitioned in two groups. The nodes of the two partitions
are depicted as circles and squares, respectively. Among the
possible encoded genotypes, that shown in Fig. 1(b) is decoded
in the two connected components reported in Fig. 1(c). These
two components correspond to the partitioning of the graph.

B. Initialization

The initialization process takes into account the effective
connections of the nodes in the network. A random individual
is generated. However, if in the ith position there is an allele
value j, but the edge (i, j) does not exist, the individual j is
substituted with one of the neighbors of i. For example, in
Fig. 2(a) in the positions 3 and 10 the corresponding allele
values are 9 and 5, respectively. However the edges (3, 9) and
(10, 5) are not present in the network shown in Fig. 1(a), thus
9 is substituted by 4, and 5 is substituted by 7.
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Fig. 1. (a) Network of ten nodes partitioned in two communities
{1, 2, 3, 4, 5, 6} and {7, 8, 9, 10}. (b) Locus-based representation of a geno-
type. (c) Graph-based structure of the genotype.

Fig. 2. (a) Genotype where the couples (3, 9) and (10, 5) are not edges of
the graph reported in Fig. 1(a). (b) Modified genotype.

C. Uniform Crossover

MOGA-Net uses a standard uniform crossover operator.
First, a crossover mask of length N, i.e., the number of nodes,
is randomly generated. Each value on the mask is either 0 or
1. An offspring is generated by selecting from the first parent
the genes where the mask is a 0, and from the second parent
the genes where the mask is a 1. The main motivation of using
uniform crossover is that it guarantees the maintenance of the
effective connections of the nodes in the network in the child
individual. In fact, because of the biased initialization, each
individual in the population is such that if a gene i contains
a value j, then the edge (i, j) exists. Since the child at each
position i contains a value j coming from one of the two
parents, then the edge (i, j) exists. Fig. 3 shows an example
of uniform crossover.

D. Mutation

The mutation operator that randomly changes the value j

of a ith gene causes a useless exploration of the search space,
because of the same above observations on node connections.
Thus, the possible values an allele can assume are restricted to

Fig. 3. Example of uniform crossover.

the neighbors of gene i. For example, considering the network
of Fig. 1(a), the allowed allele values of the gene in the third
position are 2, 4, 5, 6. This mutation guarantees the generation
of a mutated child in which each node is linked only with one
of its neighbors.

E. Model Selection

Multiobjective clustering returns the set of Pareto-optimal
solutions. Each of these solutions corresponds to a different
tradeoff between the two objectives and thus to diverse parti-
tioning of the network consisting of various numbers of clus-
ters. This gives a great chance to analyze several clusterings
at different hierarchical levels. However, a criterion should be
established to automatically select one solution with respect
to another. To this end, we adopt the concept of modularity,
introduced by Newman and Girvan [42]. Modularity is the
most used and known function to assess the quality of a
partitioning obtained by a clustering method. Let k be the
number of modules found inside a network, the modularity is
defined as

Q =
k∑

s=1

[
ls

m
− (

ds

2m
)2

]

where ls is the total number of edges joining vertices inside
the module s, and ds is the sum of the degrees of the nodes
of s. The first term of each summand of the modularity Q

is the fraction of edges inside a community, the second one
is the expected value of the fraction of edges that would be
in the network if edges fall at random without regard to the
community structure. Values approaching 1 indicate strong
community structure. We thus select, among the solutions
found on the Pareto front, that having the highest value of
modularity.

Fig. 4 reports the pseudo-code of MOGA-Net. Given a
network N and the graph G modeling it, MOGA-Net starts
with a population initialized at random. Every individual
generates a graph structure in which each component is a con-
nected subgraph of G. For a fixed number of generations the
multiobjective genetic algorithm evaluates the objective values,
assigns a rank to each individual according to Pareto domi-
nance and sorts them. Then a new population is generated by
applying the specialized variation operators described above.
At the end of the procedure, MOGA-Net returns, among the
set of solutions contained in the Pareto front, that having the
highest value of modularity. In the next section, experimental
results will prove the ability of MOGA-Net in partitioning
a network, and we show that the Pareto optimal solutions
exhibit a hierarchical structure in which solutions with a higher
number of communities are contained in solutions having a
lower number of modules.
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Fig. 4. Pseudo-code of the MOGA-Net algorithm.

VI. Experimental Results

In this section, we study the effectiveness of our approach
on a synthetic data set. Then we compare the results obtained
by MOGA-Net with other state-of-the-art approaches on some
real-world networks for which the partitioning in communities
is known. In both cases, we show that our algorithm success-
fully detects the network structure and it is competitive with
the other approaches.

The MOGA-Net algorithm has been written in MATLAB,
using the Genetic Algorithms and Direct Search Toolbox 2.
The multiobjective genetic algorithm (MOGA) we used is the
nondominated sorting genetic algorithm (NSGA-II) proposed
by Deb et al. [11] and implemented in the GA Toolbox
of MATLAB. NSGA-II builds a population of competing
individuals and ranks them on the basis of nondominance
(for a detailed description of the approach see [10]). It is
known that setting parameter values is a challenging research
problem in evolutionary algorithms [16]. Recently, Smith and
Eiben [54] found that it is possible to find good parameter
values for a set of problems, but general tuning that allows
for good performance on a wide range of problems raises
specific difficulties. As regards MOGA-Net, we employed
a trial-and-error procedure and then selected the parameter
values giving good results for the benchmark data sets. Thus,
we set crossover rate 0.8, mutation rate 0.2, elite reproduction
10% of the population size, roulette selection function. The
population size was 300, the number of generations 100.

A. Evaluation Metrics

Community detection methods are supposed to identify
good partitions [21]. In order to determine what good partition
means, validity indices must be defined to assess the quality
of the results obtained by an algorithm. A validity index,
also called quality function, is a function that assigns a score
to each partition of a network. The higher the score, the
better the partition obtained. Validity indices can be internal,
i.e., they rely on the connections and separation between
the communities, or external, through the use of additional
domain knowledge to assess the clustering outcomes. The
most popular internal quality function is the modularity of

Newman and Girvan, described in the previous section, thus it
has been used as internal validity index. On the other hand, the
normalized mutual information (NMI) is an external measure
to estimate the similarity between the true partitions and the
detected ones, that has been proved more appropriate for
network partitioning by Danon et al. [7].

The normalized mutual information is a well-known entropy
measure in information theory [37]. Given two partitions A

and B of a network in communities, let C be the confusion
matrix whose element Cij is the number of nodes of commu-
nity i of the partition A that are also in the community j of
the partition B. The normalized mutual information I(A, B) is
defined as follows:

I(A, B) =
−2

∑cA

i=1

∑cB

j=1 Cijlog(CijN/Ci.C.j)∑cA

i=1 Ci.log(Ci./N) +
∑cB

j=1 C.jlog(C.j/N)

where cA (cB) is the number of groups in the partition A (B),
Ci. (C.j) is the sum of the elements of C in row i (column j),
and N is the number of nodes. If A = B, I(A, B) = 1. If A

and B are completely different, I(A, B) = 0.

B. Synthetic Data Set

In order to check the ability of our approach to successfully
detect the community structure of a network, we use the
benchmark proposed by Lancichinetti et al. [33], which is
an extension of the classical benchmark proposed by Girvan
and Newan [25]. The network consists of 128 nodes divided
into four communities of 32 nodes each. Every node has an
average degree of 16 and shares a fraction γ of links with the
nodes of its community, and 1 − γ with the other nodes of
the network. γ is called the mixing parameter. When γ < 0.5
the neighbors of a node inside its group are more than the
neighbors belonging to the other three groups. We generated
ten different networks for values of γ ranging from 0.1 to 0.5,
and used the normalized mutual information to measure the
similarity between the true partitions and the detected ones.

Figs. 5 and 6 show the normalized mutual information and
modularity, averaged over the ten runs, for different values
of the exponent r when the mixing parameter γ increases
from 0.1 to 0.5. Fig. 5 points out that, independently the
value of r, MOGA-Net is able to recover more than the 80%



PIZZUTI: A MULTIOBJECTIVE GENETIC ALGORITHM TO FIND COMMUNITIES IN COMPLEX NETWORKS 425

Fig. 5. Normalized mutual information obtained by MOGA-NET on the
synthetic network for different values of the exponent r when the mixing
parameter varies from 0.1 to 0.5.

Fig. 6. Modularity obtained by MOGA-NET on the synthetic network for
different values of the exponent r when the mixing parameter varies from 0.1
to 0.5.

of community structure when for each node, the number of
neighbors inside its group is lower with respect to that toward
other groups (until γ ≤ 0.2). However, when the mixing
parameter increases, higher values of r help in the retrieval
of the true community structure. Notice that for γ = 0.5,
each node has half of the links inside its community and
the other half with the rest of the network, thus it is very
difficult to identify the hidden groups, being the communities
mixed each other. As expected, the modularity values of the
communities obtained reflect the corresponding normalized
mutual information.

C. Real-Life Data Sets

We now show the application of MOGA-Net on four real-
world networks, the Zachary’s Karate Club, the Bottlenose
Dolphins, the American College Football, and the Krebs’

books on American politics, well studied in the literature (see
http://www-personal.umich.edu/∼mejn/netdata/), and compare
our results with those obtained by three algorithms coming
from network analysis, Blondel et al. [3] (referred to as
BGLL), Clauset et al. [4] (referred to as CNM), and Pons and
Latapy [45] (referred to as PL), and other two coming from
the evolutionary computation field that apply multiobjective
optimization, Handl and Knowles [28] (MOCK), and Nildem
et al. [12] (GraSC). In the following, we first repot a brief
description of each data set used.

The Zackary’s Karate Club network was generated by
Zachary, who studied the friendship of 34 members of a karate
club over a period of two years. During this period, because
of disagreements, the club divided in two groups almost of the
same size.

Bottlenose Dolphins is a social network of 62 bottlenose
dolphins living in Doubtful Sound, New Zealand, compiled
by Lusseau [36] from seven years of dolphins behavior. A
tie between two dolphins was established by their statistically
significant frequent association. The network split naturally
into two large groups, the number of ties being 159.

The American College Football network [25] comes from
the United States college football. The network represents the
schedule of Division I games during the 2000 season. Nodes
in the graph represent teams and edges represent the regular
season games between the two teams they connect. The teams
are divided in conferences. The teams, on average, played four
inter-conference matches and seven intra-conference matches,
thus teams tend to play between members of the same con-
ference. The network consists of 115 nodes and 616 edges
grouped in 12 teams.

Krebs’ books on American politics is a network of political
books compiled by V. Krebs. The nodes represent 105 recent
books on American politics brought from Amazon.com, and
edges join pairs of books frequently purchased by the same
buyer [41]. Books were divided by Newman [41] according to
their political alignment (conservative or liberal), except for a
small number of books (13) having no clear affiliation.

All the algorithms have been executed ten times. As regards
the algorithms of Clauset et al. [4], Blondel et al. [3], and
Pons and Latapy [45], at each run the solution having the
best modularity value is selected and the corresponding NMI
value is computed. As regards MOCK [28], GraSC [12], and
MOGA-Net, each run generates a set of solutions, those of
the Pareto front. Among these optimal solutions we adopted
the same selection criterion, thus the solution having the
maximum modularity value is chosen and the corresponding
NMI computed. The average and standard deviation values
over these ten runs of both modularity and normalized mutual
information are calculated and reported in Tables I and II. In
MOGA-Net the value of the parameter r for the computation
of the community score has been set to 2 because we exper-
imented that the communities found are relevant. However,
it is worth noting that the multiobjective approach implicitly
explores the search space by finding solutions that could be
obtained for different values of r.

The tables clearly show the very good performance of
MOGA-Net with respect to the other approaches. In fact,
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TABLE I

Best Modularity Results and Corresponding Normalized Mutual Information Obtained by MOGA-Net and the Other Algorithms

for the Real-Life Networks Zakary’s Karate Club and Bottlenose Dolphins

Zakary’s Karate Club Bottlenose Dolphins
Method Modularity NMI Modularity NMI
MOGA-Net 0.416 (0.740e-16) 0.602 (0.117e-15) 0.505 (0.0095) 0.506 (0.0468)
BGLL (Blondel et al. [3]) 0.415 0.707 0.495 0.450
CNM (Clauset et al. [4]) 0.380 0.692 0.495 0.573
PL (Pons and Latapy [45]) 0.394 0.562 0.517 0.675
MOCK (Handl and Knowles [28]) 0.326 (0.0347) 0.549 (0.1203) 0.419 (0.0271) 0.437 (0.0805)
GraSC (Nildem et al. [12]) 0.120 (0.0292) 0.198 (0.0217) 0.073 (0.0106) 0.096 (0.0333)

TABLE II

Best Modularity Results and Corresponding Normalized Mutual Information Obtained by MOGA-Net and the Other Algorithms

for the Real-Life Networks American College Football and Kreb’s Books

American College Football Krebs’ Books
Method Modularity NMI Modularity NMI
MOGA-Net 0.515 (0.0161) 0.775 (0.0234) 0.518 (0.0044) 0.537 (0.0251)
BGLL (Blondel et al. [3]) 0.601 0.926 0.515 0.442
CNM (Clauset et al. [4]) 0.577 0.762 0.502 0.530
PL (Pons and Latapy [45]) 0.602 0.879 0.515 0.543
MOCK (Handl and Knowles [28]) 0.454 (0.0608) 0.721 (0.0648) 0.437 (0.0081) 0.302 (0.1393)
GraSC (Nildem et al. [12]) 0.285 (0.2900) 0.447 (0.3866) 0.036 (0.0391) 0.078 (0.0192)

TABLE III

Best NMI Results Obtained by MOGA-Net on the Real-Life Data

Sets

MOGA-Net
Avg Best NMI Std Best NMI Avg Mod Std Mod

Zackary’s Karate
Club

1 0 0.371 0

Bottlenose
Dolphins

1 0 0.373 0

American College
Football

0.795 0.016 0.497 0.027

Krebs’ books 0.597 0.014 0.470 0.021

though the algorithm of Pons and Latapy [45] obtains a slightly
better modularity value on the Dolphins network (0.517 versus
0.505) and American College Football (0.602 versus 0.536),
the solutions found by MOGA-Net are comparable on these
two data sets and better on the other two. It is worth noting
that the multiobjective methods MOCK and GraSC are not
able to reveal the community structure. However this is
comprehensible, since the objectives they optimize are not
much relevant for the problem of community detection.

Often best modularity does not correspond to the true
network partition. To show that MOGA-Net is effective in
discovering the effective network structure, over the ten runs,
instead of choosing the partitioning having the best modularity
value, we selected that having the best NMI value, and
computed the corresponding modularity. The average values
over these ten runs are reported in Table III. The table reports
the average of the best NMI (avg best NMI) and its standard
deviation (std best NMI), the average modularity value (avg
Mod) corresponding to the solutions having the best NMI and
its standard deviation (std Mod).

The table shows that on the Zackary’s Karate Club and
Bottlenose Dolphins MOGA-Net found the exact solution for

all the ten runs with a modularity value of 0.371 and 0.373,
respectively. On the Krebs’ books network again MOGA-Net
obtained the partitioning more similar to the true one, while
on the Football network the average best NMI is lower with
respect to BGLL and PL.

D. Comparing the Multiobjective Solutions

When dealing with multiobjective optimization, an impor-
tant aspect to consider is the evaluation of the solutions
obtained by an algorithm. In this section, the performances of
MOGA-Net and MOCK are compared with respect to a metric
specialized to assess the quality of the outcomes produced
by multiobjective optimization methods. Zitzler et al. [59]
argued that results of a multiobjective method should meet
three main issues. The distance of the Pareto front generated
by the algorithm from the optimal Pareto front should be
minimized, the solutions should be uniformly distributed over
the solution space, and the number of elements of the Pareto
optimal set should be maximized. Metrics that try to measure
the last issue, like error rate [57] and generational distance
[56], or all the three issues, like space covered [60], assume
the knowledge of the Pareto optimal front, which could not
be available for real-life problems. Zitlzer and Thiele [60]
proposed also a metric, named coverage metric, that evaluate
whether the outcomes of an algorithm dominate the results of
another algorithm. This metric is not apt to compare MOGA-
Net and MOCK since the objectives optimized by the two
methods are not the same. Schott [52] introduced a metric
called spacing that measures the distribution of the solutions
over the nondominated front. Spacing between solutions is
computed as

S =

√√√√ 1

Q

|Q|∑
i=1

(di − d)2
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Fig. 7. (a) Pareto front of one run. (b) Network corresponding to the exact solution [node number (3) on the Pareto front]. (c) Network corresponding to
(6). (d) Network corresponding to (8).

where di = mink∈Q and k �=i

∑M
m=1 | f i

m − f k
m | and f i

m (f k
m

resp.) is the mth objective value of the ith (kth) solution
in the nondominated solution set Q. d is the mean value
of all the di. The nearer the value of S to zero, the more
uniformly distributed the solutions found over the Pareto-
optimal front. When the values of the objective values vary
widely, a normalization of these values is necessary to avoid
wrong results. To this end, the term | f i

m − f k
m | is divided by

| Fmax
m − Fmin

m | where Fmax
m and Fmin

m are the maximum and
minimum values of the mth objective.

This measure fails to measure a distribution when there is a
large gap between two nondominated solutions. To overcome
this problem, Bandyopadhyay et al. [2] defined a modified
measure, called minimal spacing (in the following referred to
as MS), that considers the distance from a solution to the
nearest neighbor not already considered.

Table IV shows the average minimal spacing values and the
corresponding standard deviation over the ten runs obtained
by MOGA-Net and MOCK. The table points out that the
nondominated solutions found by MOGA-Net are distributed
more uniformly than those obtained by MOCK. In fact, the
average MS is much lower than that computed for MOCK.

TABLE IV

Minimal Spacing Values Obtained by MOGA-Net and MOCK on

the Real-Life Data Sets

MOGA-Net MOCK
Avg MS Std MS Avg MS Std MS

Zackary’s Karate Club 0.0201 0.0032 0.0788 0.0231
Bottlenose Dolphins 0.0096 0.0016 0.01903 0.0039
American College Football 0.0075 0.0014 0.0179 0.0043
Krebs’ books 0.0128 0.0042 0.0188 0.0073

E. Hierarchical Pareto Front Solutions

As already observed, the solutions of the Pareto front have
a hierarchical structure that allows the analysis of the network
at different organization levels. To show this characteristics,
Fig. 7(a) displays the Pareto front in one out of the ten runs
for the Zackary’s Karate Club, and the networks (3), (6), and
(8) corresponding to the best value of NMI [solution (3)] and
the best two values of modularity [(6), (8)]. Network (3),
visualized in Fig. 7(b), corresponds to the true partitioning
of the Zackary’s Karate Club in two groups. These two
main groups, actually, could be spilt into tighter sub-groups.
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Fig. 8. 85 communities obtained by MOGA-Net for the Director Boards network. Different colors identify different modules.

Network (6), shown in Fig. 7(c), for example, contains three
communities, obtained by the division of the community on
the left of Fig. 7(b) in two subgraphs identified by blue squares
(nodes 1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22) and pink triangles
(nodes 5, 6, 7, 11, 17). Network (8), displayed in Fig. 7(d),
consists of four modules obtained by the split of the two
main groups of Fig. 7(b) in two subgroups, respectively. This
division has the highest value of modularity found (0.4020).
Notice the small group constituted by only three nodes (25,
26, 32).

These results show that the multiobjective approach is
effective in dealing with community identification in networks
and has the great advantage, with respect to single objective
methods, to provide at the same time a set of optimal solutions,
that contained in the Pareto front, thus allowing the exploration
of the modular organization of the network.

F. Results on Large Networks

In this section, we further analyze the algorithm MOGA-
Net by considering other three networks modeling different
complex systems, and compare the results with those obtained
by the method proposed by Pujol et al. [47], referred to as PDB
after the initials of the authors, and the Newman’s algorithm
described in [40], referred to as Newman. The three networks
are the Erdös collaboration network [46], the citation Scien-
tometrics network [30], and the affiliation network among the
Spanish top directors board [24]. In Table V, the network size,
the number of communities found (NC), and the modularity

TABLE V

Comparison Between Best Modularity Value and Number of

Communities Obtained by MOGA-Net, PBD, and Newman

Algorithms

MOGA-Net PBD Newman
Network Size Mod NC Mod NC Mod NC
Erdös 6927 0.5502 302 0.6817 20 0.6723 57
Scientometrics 2678 0.2879 148 0.5629 10 0.5555 24
Directors Board 1130 0.8253 85 0.8273 16 0.8046 21

values (Mod) obtained by MOGA-Net, PBD and Newman

algorithms, respectively, are reported. The values of the last
two methods are those published in [47]. The table points
out that when the size of the network is large, the number
of communities found by MOGA-Net is much higher than
the number of communities found by PBD and Newman.
Furthermore, the modularity values of the last two methods
are higher for Erdös and Scientometrics networks, while as
regards the Directors Board MOGA-Net it reaches almost the
same value of PBD and it is higher than Newman. It is worth
noting that both these two methods, as described in Section III,
are agglomerative hierarchical methods that merge groups of
nodes when the modularity value is optimized.

Recently, Fortunato and Barthélemy [22] proved that the
optimization of modularity has a resolution limit that depends
on the total size of the network and the interconnections
of the modules. This implies that partitions obtained by the
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maximization of modularity could fail to obtain modules below
this scale, even if tightly connected. Thus, important structures
at small scales, hidden within large groups having higher
modularity value, could not be discovered. This problem is
further discussed by Good et al. [27], where it is argued
that optimal modularity partitions may not coincide with the
intuitive partition that correctly detects the modular structure
of a network. In particular, they state that high modularity
values mean that the partitioning obtained is very different
from a random graph with the same degree sequence, and not
necessarily that the partitioning is highly modular.

Since MOGA-Net does not optimize the modularity value,
the partitioning it finds differs from those obtained by the
other two methods. Consider Fig. 8 where the Director Boards
network is depicted. Different colors of the nodes indicate the
85 different communities obtained by MOGA-Net.1 It is clear
from the figure that the low number of groups obtained by
PBD (16) and Newman (21) indicates that the two algorithms
suffer of the resolution limit problem, since the many small
intuitive groups present in the network are merged together in
few large communities. MOGA-Net, instead, though for some
networks obtains partitioning of lower modularity value, has
no scale problems and allows the analysis of the network at
local level.

VII. Discussion and Conclusion

This paper proposed the formalization of the problem of
community detection in complex networks as a multiobjective
clustering problem, and presented an evolutionary multiobjec-
tive approach to uncover community structure. The method
maximizes the intra-connections inside each community and
minimizes inter-connections between different communities.
A main characteristic of the algorithm is that it automatically
affords a network partitioning without the need of knowing
a priori the precise number of clusters. This is particularly
useful in all those applications where no information about
the group division is available. The approach has been tested
on synthetic and real life networks, showing to be able
to correctly detect communities and to be competitive with
state-of-the-art methods. The multiobjective approach has the
advantage, with respect to single objective approaches, to
contemporarily optimize multiple criteria and to provide, not
a single partitioning, but a set of solution, each corresponding
to a different number of clusters, constituting the best tradeoff
between the competing objectives. Experiments showed that
the nondominated solutions contained in the Pareto front are
meaningful and allow the analysis of the community structure
at different hierarchical levels. The investigation of the net-
work properties at various resolution levels is very important
since often organizations are arranged in a hierarchical form,
where small groups aggregate to produce larger communities.
The choice of one model with respect to another can be done
by adopting an internal criterion of quality, like that adopted
by the approaches described in this paper, i.e., selecting the

1The figure has been realized by using Pajek [9]. It is worth noting that this
visualization program uses at most 40 colors. When the number of clusters
is above, Pajek cycles through the first forty colors again.

partitioning with the highest modularity value, or it can be
delegated to a expert on the base of the application domain.

It is known that genetic algorithms can require high exe-
cution times when large populations of individuals are used.
Though fitness computation of the two objectives can be done
in linear time with respect to the number of network nodes,
the multiobjective approach employed has a time complexity
quadratic in the population size [11]. On the other hand,
genetic algorithms are naturally suited to be implemented on
parallel architectures. In order to deal with very large networks
and make the approach proposed competitive with the state-
of-the-art methods that detect communities, we were planning
to realize an implementation of MOGA-Net on a parallel
machine.
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