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Abstract—Several approaches have been presented in the literature to cluster Protein-Protein Interaction (PPI) networks. They can

be grouped in two main categories: those allowing a protein to participate in different clusters and those generating only

nonoverlapping clusters. In both cases, a challenging task is to find a suitable compromise between the biological relevance of the

results and a comprehensive coverage of the analyzed networks. Indeed, methods returning high accurate results are often able to

cover only small parts of the input PPI network, especially when low-characterized networks are considered. We present a

coclustering-based technique able to generate both overlapping and nonoverlapping clusters. The density of the clusters to search for

can also be set by the user. We tested our method on the two networks of yeast and human, and compared it to other five well-known

techniques on the same interaction data sets. The results showed that, for all the examples considered, our approach always reaches

a good compromise between accuracy and network coverage. Furthermore, the behavior of our algorithm is not influenced by the

structure of the input network, different from all the techniques considered in the comparison, which returned very good results on the

yeast network, while on the human network their outcomes are rather poor.

Index Terms—Coclustering, biological networks, protein-protein interaction networks, protein complexes, hub proteins.

Ç

1 INTRODUCTION

PROTEINS are the building blocks of all the organisms and
play a fundamental role in executing and regulating

many biological processes. Recently, great attention has
been addressed to the whole set of protein-protein interac-
tions (PPI) of a given organism, known as interactome or
protein-protein interaction network. Indeed, there is evidence
that, to understand cell activity, proteins cannot be
analyzed independently from the other proteins they
interact with [44]. Advances in technology have allowed
researchers to derive, through experimental and in-silico
methods, the collection of all the interactions among the
proteins of an organism. The availability of protein-protein
interaction networks has thus stimulated the search for
automated and accurate tools to analyze pairwise protein
interactions, with the aim of understanding how proteins
work together to perform their tasks, and also for predicting
the function of unknown proteins [10]. Several studies have
recognized that biological systems are structured as inter-
acting and separable modules [21], [23], [38], [41], [45].
Modularity means that a group of physically or functionally
related proteins join together to accomplish distinct func-
tions [10]. Thus, proteins can be grouped in clusters such
that the proteins in the same cluster share common

biological features, such as participating in the same
processes, having similar functions, belonging to the same
cellular compart. The detection of such clusters provides
important knowledge about the organization of biological
systems and cellular processes, giving a valuable help in
understanding how organisms behave.

Some proteins present the characteristic of being con-
nected to a high number of other proteins, often participating
in multiple biological processes and performing different
functions. To detect such multifacets proteins, recent techni-
ques search for overlapping clusters, where a protein is
allowed to belong to several clusters (e.g., [6], [22], [26], [31]).

More in general, clustering techniques should be able to
single out biologically relevant clusters without neglecting
to explore any significative part of the input network. Thus,
an important problem is that of finding a solution
constituting a suitable compromise between high accuracy
and comprehensive coverage of the analyzed networks.

1.1 A Brief Overview

In the last few years, there has been an increasing interest in
studying clustering methods able to detect groups of
proteins densely interconnected. PPI networks clustering
approaches can be broadly categorized as distance-based
and graph-based ones [27]. Distance-based clustering ap-
proaches apply traditional clustering techniques, such as
hierarchical clustering, by employing the concept of distance
between two proteins [7], [11], [32]. Graph-based clustering
techniques consider the topology of the network. These
techniques find the clusters by applying different strategies.

A first strategy searches for subgraphs having maximum
density [4], [6], [9], [17], [22], [28], [31], [34], [35]. In such a
case, a subgraph can be considered dense according to
different notions of density. For example, Bader and Hogue
[9] apply the concepts of k-core and core clustering
coefficient to define the weight of a node. A k-core is a

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 3, MAY/JUNE 2012 717

. C. Pizzuti is with the Institute for High Performance Computing and
Networking (ICAR), National Research Council of Italy (CNR), Via
P. Bucci 41C, 87036 Rende (CS), Italy. E-mail: pizzuti@icar.cnr.it.

. S.E. Rombo is with the Institute for High Performance Computing and
Networking (ICAR), National Research Council of Italy (CNR), and with
the Department of Electronics, Computer Science and Systems (DEIS),
University of Calabria, Via P. Bucci 42C, 87036 Rende (CS), Italy.
E-mail: simona.rombo@deis.unical.it.

Manuscript received 20 Apr. 2011; revised 2 Dec. 2011; accepted 8 Dec. 2011;
published online 22 Dec. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2011-04-0100.
Digital Object Identifier no. 10.1109/TCBB.2011.158.

1545-5963/12/$31.00 � 2012 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



subgraph in which each vertex has degree at least k. The
highest k-core of a graph is the most densely connected
subgraph. The core-clustering coefficient of a node is the
density of the highest k-core of the vertices directly
connected to it, including itself. The weight of a node is
then defined as the product of the node core-clustering
coefficient and the highest k-core of its neighborhood. Palla
et al. [31] and Adamcsek et al. [4] use the concept of k-
clique, i.e., a complete subgraph constituted by k nodes
such that there is an edge between each pair of nodes. They
consider two k-cliques adjacent if they have k� 1 common
nodes. A k-clique-community is then defined as the union
of all the k-cliques that can be reached through adjacent k-
cliques. Altaf et al. [6] discover protein complexes in large
interaction graphs by using the concepts of density and
neighborhood. The authors introduce the definitions of cluster
property and node weight that take into account the common
neighbors of nodes belonging to the same cluster. Lubovac
et al. [28] identify dense subgraphs by introducing two
network measures that combine functional information
with topological properties of the networks. These mea-
sures, weighted cluster coefficient and weighted nearest
neighbors degree, compute the strengths of interactions
between the proteins by using their semantic similarity
based on the Gene Ontology (GO) terms of the proteins.
Georgii et al. [22] define the density of a module as the
average pairwise weight of the nodes belonging to the
module, where the weight is a value below or equal to 1.
Fixed a density threshold, the authors find all the modules
whose density is above the threshold. Another approach
partitions the graph by optimizing a cost function [25], [41].
The concept of flow simulation, though applied in different
ways, is exploited in [15], [16], [19], [24], [33]. A statistical
approach to protein clustering is taken instead in [20], [39].
A method that models protein relationships as a signal
transduction model is described in [24]. Many other
clustering algorithms have been proposed [13], [38], [42],
[46]. A complete list of all the proposals is beyond the aim
of this paper. Surveys describing and comparing a number
of methods presented in the literature can be found in [5],
[12], [27], [36], [37]. All the above methods are able to
separate relevant dense clusters. However, different meth-
ods return diverse results. Barabasi et al. [10] observed that
obtaining multiple results is not only a limitation of present
clustering methods, but it is also due to the network’s
hierarchical modularity. Indeed, modules have not a precise
size, thus a network can be divided in many small modules,
or in larger, fewer clusters. At present, however, there are
no objective mathematical criteria to decide that one
outcome is better than another. As they pointed out,
the identification of groups of proteins of various sizes that
together accomplish specific cellular functions is a key issue
in network biology.

1.2 Contributions

We propose a technique based on a coclustering approach
[29] to search for, possibly overlapping, dense clusters in
protein-protein interaction networks. We model a protein-
protein interaction network by an undirected graph and
represent it as the binary adjacency matrix A of this graph,
where rows and columns correspond to proteins and a

1 entry at the position (i; j) means that the proteins i and j
interact. By drawing inspiration by previous successfully
coclustering approaches [34], [35], we present RANCoC, a
coclustering algorithm based on the search of dense
submatrices in A, that suitably shifts its rows and columns
in order to optimize a special notion of quality of a
submatrix. Indeed, high-quality submatrices should corre-
spond to modules of the input interactome whose proteins
share important biological features (e.g., they participate in
the same processes, they have similar functions, they
belong to the same cellular compart). The algorithm starts
with an initial random solution constituted by a single
protein and expands it by adding/removing connected
proteins that best contribute to improve the quality
function. Differently from the previous techniques [34],
[35], a new heuristics is introduced to avoid entrapment in
local optima. The basic process is repeated until all the
proteins are assigned to any group.

The main contributions of the algorithm can be summar-
ized as follows:

. RANCoC automatically derives the number of
modules present in the interaction network. This
number is determined by the local optimal value of
the quality function.

. A peculiarity of the quality function is that it has a
positive real-valued resolution parameter that con-
trols the size of the groups obtained in output. The
higher the value of the parameter, the smaller the
size of the clusters found. This gives the user the
opportunity to analyze the network at different
hierarchical levels.

. RANCoC can work in two different modes: the
nonoverlapping mode, where proteins are allowed
to belong to only one cluster, and the overlapping
mode, where clusters can overlap. Thus, besides
partitioning and isolating groups of proteins corre-
sponding to the most compact sets of interactions,
our approach is also able to identify overlapping
modules in which a protein is involved, each group
being distinguished by different biological proper-
ties. Such characteristic allows multifacets proteins
to be recognized and clustered with a number of
distinct groups.

RANCoC has been evaluated on two well-known PPI
networks: the Saccharomyces cerevisiae network and the Homo
sapiens network. Though the first network has been deeply
studied in many approaches, many interactions of the
second have not yet been discovered and/or studied. A
comparison of RANCoC with six well-known protein
clustering methods, Molecular COmplex DEtection
(MCODE) [9], Restricted Neighborhood Search Clustering
(RNSC) [25], Markov CLuster (MCL) [19], CFINDER [31],
Dense Module Enumeration (DME) [22], and IPCA [26],
shows comparable results on the Saccharomyces cerevisiae
network, still finding a good compromise between the
quality of the discovered clusters and the percentage of
network that has been covered by the clustering process.
Regarding the Homo sapiens network, the other approaches
performed rather poorly, mainly when the overlapping
modules are requested. RANCoC, instead, behaves very well
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for both the overlapping and nonovelapping case, thus
outperforming all the other approaches. This points out that
our method is robust in analyzing different PPI networks,
also when they are not completely characterized and thus
more sparse.

As a further validation campaign, RANCoC has been
tested on the manually curated MIPS [30] known complexes
for both yeast and human. A comparison with the other
state-of-the art approaches shows the ability of the method
in correctly classifying most of the considered benchmark
complexes, with results better than those obtained by the
comparison methods.

The software we developed is available at http://
wwwinfo.deis.unical.it/~rombo/co-clustering/.

1.3 Organization of the Paper

The paper is organized as follows. In the next section, a
description of our method is given. In Section 3, an extensive
experimental study on the two mentioned networks is
reported along with a comparison between our approach
and the others. Section 4 finally draws some conclusions.

2 METHODS

A protein-protein interaction network P can be modeled as
an undirected graph G ¼ ðV ;EÞ, where the nodes V
correspond to the proteins and the edges E correspond to
the pairwise interactions. If the network is constituted by N
proteins, the associated graph can be represented with its
N �N adjacency matrix A, where the entry at position ði; jÞ
is 1 if there is an edge from node i to node j, 0 otherwise.
Since the graph G is undirected, the adjacency matrix is a
square symmetric matrix. The problem of finding dense
regions of a network P can thus be transformed in that of
rearranging the rows/columns of A to find dense sub-
graphs of the graph G associated with P and, consequently,
dense square symmetric submatrices of the adjacency
matrix A corresponding to G. We would like to find as
many proteins as possible having the highest number of
interactions. This corresponds to identify highly dense
square submatrices, i.e., containing as many 1 values as
possible. The higher the number of ones, the more likely
those proteins are to be functionally related.

Searching for dense submatrices of a matrix A can be
viewed as a special case of coclustering a binary data

matrix, where the set of rows and columns represents the
same concept. Coclustering [29], also known as biclustering,
differently from clustering, tries to simultaneously group
both the dimensions of a data set. To better understand the
concept of coclustering, consider the protein interaction
graph shown in Fig. 1 and the corresponding adjacency
matrix (Fig. 2a), where we considered the rows in the order
P1, P6, P2, P7, P3, P8, P4, P9, P5, P10. Coclustering this
matrix means rearranging its rows/columns to obtain dense
maximal submatrices, possibly sharing elements, i.e., over-
lapping. For the example, the reordering of its rows that at
best accounts for the intuitive idea of dense maximal
submatrices is that shown in Fig. 2b, where now the two
dense submatrices constituted by the rows/columns 1-6
and 6-10, corresponding to the two subgraphs composed by
the proteins P1-P6 and P6-P10, are clearly discernible.
Note that the protein P6 belongs to both the clusters
because it has a number of significant interactions with
proteins of the two groups. Hence, a module S in a PPI
network is a cocluster S, i.e., a submatrix, constituted by a
subset I of the rows of A satisfying a quality measure. The
more natural choice of quality function is to consider
submatrices of maximum size having the maximum
number of ones. In the next section, we introduce a quality
function that fulfills both these requirements.

2.1 Optimization Function

Let A be the adjacency matrix modeling a network. A
quality function that find dense and maximal submatrices,
introduced in [34], can be defined as

QðSÞ ¼MrðSÞ � vS;

where S is a submatrix constituted by a subset I ¼
fI1; . . . ; Ihg of rows of A, vS ¼

P
i2I;j2I aij is the number of

1 entries aij such that i; j 2 I and

MrðSÞ ¼
P

i2IðaiIÞ
r

jIj ;

where aiI ¼ 1
jIj
P

j2I aij denotes the mean value of the ith row
of the submatrix S.

The parameter r controls the size of the groups found.
When r ¼ 1, MrðSÞ coincides with the standard mean. The
higher its value, the lower the size of the clusters found. In
fact, since aiI < 1, Mrþ�ðSÞ �MrðSÞ �Mr��ðSÞ, for � > 0,
thus the higher the value of r, the lower the value of MrðSÞ,
and, consequently, the lower the value of QðSÞ. This implies
that, given a submatrix S, if rows containing a low number
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Fig. 1. An example protein-protein interaction graph.

Fig. 2. Two different adjacency matrices corresponding to the graph in
Fig. 1.



of ones are added to S, then the quality function get trapped
earlier in local maxima for increasing values of r. Thus,
increasing r biases the quality function toward matrices
containing a low number of zeroes but of lower volume,
because the number of proteins that can be assigned to a
cluster diminishes. The choice of r allows to take into
account both the coverage of the network, and the goodness
of the solution found in terms of sufficiently high number of
interactions among the proteins belonging to the module.

In the next section, the PPI network Coclustering-based
algorithm RANCoC is presented. The method uses the
concept of quality to find maximally dense regions in the
binary data adjacency matrix. Then, in Section 3, we will
show how different values of r allow an analysis of the
network at different hierarchical levels.

2.2 The Algorithm RANCoC

The algorithm RANCoC is an extension of the methods
proposed in [34], [35] that allows a more efficient search of
the solution space by changing the strategy that avoids to
get trapped in local optima. The pseudocode of the
algorithm is shown in Fig. 3. The method receives in input
an adjacency matrix A, the maximum number of iterations
maxIter, a probability value p, and the option to find
overlapping clusters.

RANCoC is constituted by two main loops. The external
loop is executed until all the proteins have been assigned to
at least one cluster (steps 1-20), the internal loop (steps 4-15)
starts with an initial random cocluster S constituted by a
single protein (a row in step 3), and expands the cocluster
with new proteins until either a preset of maximum number
of iterations maxIter is reached, or the solution cannot
further be improved, i.e., the quality function QðSÞ does not
increase any more because trapped into a local maximum
(steps 8-11).

RANCoC is based on the concept of local search; thus, it
evolves S by adding or removing rows from A (step 7) in
order to maximize the quality functionQðSÞ. It is known that
the main problem in applying local search methods is that the
search space presents many local optima and, consequently,
the algorithm could get trapped at local minima. The

heuristics employed by RANCoC to overcome this problem
consists in removing from S, with a fixed probability p, a row
at random, even if the value of the quality function
diminishes (step 13). This strategy is more efficient in terms
of computation than that applied in the methods [34], [35],
that eliminated the row scoring the minimum decrease of
QðSÞ, and it is more efficacious in avoiding entrapments in
local optimal solutions since it allows the method to move
from a solution to another possibly far one, and thus to better
explore the space of candidate solutions. At the end of the ith
internal loop, the obtained cocluster Si is added to S (step 16)
and its rows/columns are removed from A (steps 17-19),
unless the user requires overlapping clusters. In such a case,
the number of clusters a protein can belong to cannot exceed
its degree k, that is, the number of other proteins it is
connected with. In such a way, a protein can be reconsidered
in the computation and assigned to multiple clusters,
provided that its contribution to the quality function is
effective, i.e., it is the choice that produces the best
improvement. At this point, a new random cocluster is
generated, and the process is repeated until all the rows/
columns have been assigned.

3 RESULTS

We validated our approach by testing it on two different
PPI networks, the budding yeast Saccharomyces cerevisiae
network and the Homo sapiens (also referred in the following
as human) network. The two networks have been down-
loaded from the MINT database [14], that is one of the
resources of the International Molecular interaction Ex-
change (IMEx) consortium of molecular interaction data-
bases [1]. Since such databases provide reliability values
associated with the protein-protein interactions, depending
on the nature of the techniques exploited to obtain such
interactions, low-reliable interactions have not been in-
cluded in the input PPI networks we considered (we chose
a cutoff value equal to 0.1 for the MINT confidence score).
In particular, the yeast protein-protein interactions data
include 5,443 proteins and 36,251 interactions, while the
human network has 6,716 nodes and 16,322 interactions.

All the experimental evaluations have been performed
by running RANCoC 50 times on each network, and then
considering the mean values of the validation measures
described below over the 50 executions. RANCoC needs
two input parameters, p and maxIter. In particular, p
represents the probability to remove a row, and maxIter
determines the maximum number of iterations allowed. We
set the former to 0.1, and the latter to 1,000. It is worth to
note that 1) a low value of probability p is preferable to
avoid the disruption of the greedy steps; 2) the number of
maximum iterations has never been reached, in fact on
average not more than 50 iterations were executed before
reaching a local optimum.

3.1 Validation Measures

To assess the quality of the results, we considered both the
biological relevance of the returned clusters and the ability
of the method to cover a significant portion of the analyzed
networks. To measure cluster biological significance, we
referred at first to the Gene Ontology Consortium Online

720 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 3, MAY/JUNE 2012

Fig. 3. The algorithm RANCoC.



DataBase [8]. For each cluster, the GO annotations and the
corresponding p-values, that evaluates the probability that a
given cluster occurs by chance, have been computed by
exploiting the software modules available at http://
search.cpan.org/dist/GO-TermFinder/, according to [7].
Such a tool attempts to determine whether an observed
level of annotation for a group of genes/proteins is
significant within the context of annotation for all genes/
proteins of the genome, also providing suitable correction
factors for the obtained p-values. In our validation, we used
all the three vocabularies provided by the Gene Ontology
database, that are, molecular function, cellular component, and
biological process.

In the following, we provide a short description of all the
measures we considered.

p-value. The p-value is a commonly used measure of the
functional homogeneity of a cluster. It gives the probability
that a given set of proteins occurs by chance. In particular,
given a cluster of size n with m proteins sharing a particular
biological annotation, then the probability of observing m or
more proteins that are annotated with the same GO term
out of those n proteins, according to the Hypergeometric
Distribution, is

p-value ¼
Xn

i¼m

M
i

� �
N�M
n�i
� �

N
n

� � ;

where N is the number of proteins in the database with M
of them known to have that same annotation. Thus, the
closer the p-value to zero, the more significant the
associated GO term. The biological significance of a group
is settled by using a cutoff value to distinguish significant
from insignificant groups. If the p-value of a cluster is above
the cutoff that cluster is considered insignificant.

As observed by [43], it is interesting to have a global
measure of an obtained clustering, instead of the p-value of
a single group. The following measure is useful to this aim.

Clustering score. The clustering score of a clustering is
defined as

c-score ¼ 1�
PnS

i minðpiÞ þ ðnI � cutoffÞ
nI þ nS

;

where minðpiÞ is the smallest p-value of the partition i,
cutoff is the threshold imposed on the p-value to distinguish
significant from insignificant groups, nS is the number of
significant partitions, and nI is the number of insignificant
partitions. In our evaluations, we adopted a cutoff equal to
0.05, which is that commonly employed in the literature.

The meaning of clustering score is that of evaluating the
clustering obtained by an algorithm, by computing the
probability that the output clusters of proteins could occur
by chance. The clustering score alone, however, could be
misleading since it does not take into account the
percentage of proteins involved in a clustering. Thus, it
could happen that a method has a high clustering score but
only a small portion of all the proteins contained in the PPI
network have been grouped. To measure how much a
method is able to cover a considerable portion of the
network under analysis, during the clustering process, we
introduce the coverage percentage. Given a network of
n nodes, let n0 be the number of proteins that a clustering

method did not assign to any of the returned clusters. Then,
the coverage percentage is given by1

cp ¼ n� n
0

n
:

High coverage is important since, as pointed out by
Sharan et al. [40], an approach to functional annotation of
proteins is based on assigning the function that is prevalent
in a group of proteins, obtained by dividing the PPI
network in dense, possibly overlapping, clusters. A mea-
sure that takes into account both the biological meaning of
the clusters obtained and the coverage percentage can be
defined as follows.

Normalized Clustering Score. The normalized clustering
score for a given clustering returned by a method applied
on a PPI network is defined as

nc-score ¼ c-score� cp:

Since for both yeast and human the MIPS databases [30]
provide known protein complexes, it is possible to evaluate
the effectiveness of a method in detecting such known
complexes by comparing the predicted clusters with the
true known complexes. To this end, we employ the same
validation measures used in [6], [9], [26]. Such measures are
described below.

Overlapping Score. The overlapping score between a
predicted cluster Pc and a known complex Kc is defined as

OSðPc;KcÞ ¼
jVPc \ VKc

j2

jVPc j � jVKc
j ;

where jVPc \ VKc
j is the size of the intersection set of the

predicted cluster and the known complex, jVPc j is the size of
the predicted cluster and jVKc

j is the size of the known
complex.

A known complex and a predicted cluster are considered
a match if their overlapping score is equal to or larger than a
specific threshold �OS .

Other two important measures to estimate the perfor-
mance of algorithms for detecting protein complexes are
sensitivity and specificity.

Sensitivity. Sensitivity is the fraction of the true-positive
predictions out of all the true predictions, defined as

Sn ¼
TP

TP þ FN ;

where TP (true positive) is the number of the predicted
clusters matched by the known complexes with
OSðPc;KcÞ � �OS , and FN (false negative) is the number
of the known complexes that are not matched by the
predicted clusters.

Specificity. Specificity is the fraction of the true-positive
predictions out of all the positive predictions, defined by
the following formula:

Sp ¼
TP

TP þ FP ;

where false positive (FP ) equals the total number of the
predicted clusters minus TP .
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According to [26], a predicted cluster and a known
complex are considered to be a match if OSðPc;KcÞ � �OS .

3.2 Analysis of the Parameter r

As a first series of experiments, we studied how the
algorithm behaves in terms of both biological meaning and
data coverage for different values of the parameter r (see
Section 2). In particular, we run RANCoC in the nonoverlap-
ping mode on the yeast network at first with five different
values of r: 0.5, 1.0, 2.0, 3.0, and 4.0, respectively. Note that,
for values of r lower than 0.5, we obtained a clustering made
of a very large cluster (above 1,000 elements) and almost
singletons. Such results are not much meaningful for our
analysis, and we thus suggest to exploit values of r that are
greater than 0.5. Table 1 illustrates the number and the
maximum size of the returned clusters, and the coverage
percentage of RANCoC, averaged over the 50 runs, for
varying values of r. Also, the standard deviation over the
50 runs is shown within brackets.

As expected, the algorithm returns a greater number of
clusters of smaller size as r increases, while the coverage
percentage decreases for greater values of r. This behavior
is explained by the fact that, when r has a low value,
RANCoC is biased toward less dense groups of proteins;
thus, a higher number of nodes can participate in a cluster.
In particular, according to our experimental campaign,
clusters obtained for greater values of r are contained

(except for one or two proteins) in clusters obtained for
lower values of r.

The low values for standard deviation scored over the 50
runs (from 0.001 to 15.447) confirm the stability of
RANCoC.

In Table 2, the nc-score values obtained w.r.t. the three
different GO vocabularies (called process, component, and
function for short) are shown for both yeast and human. For all
the three vocabularies, the clusters returned for r ¼ 1 are the
most biologically relevant; thus, we set the value of r equal to
1 in the experimental validations concerning GO annotations.

As a further set of evaluations, we computed also the
overlapping score w.r.t. known protein complexes down-
loaded from the MIPS database [2], [3] for different values
of the parameter r. These tests aimed at understanding
which is the optimal value of r in recognizing protein
complexes. We recall that, as already specified before, a
known complex Kc and a predicted cluster Pc are
considered to be a match if their overlapping score
OSðPc;KcÞ is equal to or greater than a specific threshold
�OS . Figs. 4a and 4b show the number of matched
complexes when the overlapping score is greater than �OS
for both yeast and human, respectively. The number of
matched complexes is illustrated for overlapping score
threshold �OS varying from 0.05 to 0.45, and for values of r
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equal to 0.5, 1, 2, 3, and 4. Differently from the previous
tests, where r ¼ 1 resulted to guarantee the best results
according to our purposes, looking around a reasonable
threshold value �OS ¼ 0:2 [26], r ¼ 3 seems to be the
optimal value to be set for protein complexes detection;
thus, we set r ¼ 3 for the analysis we performed on the
MIPS complexes.

We finally note that we used the same values of r also
when RANCoC is executed in the overlapping case since, as
already pointed out, increasing values of r bias the method
toward denser clusters, independently of the multiple
appearing of a protein in different clusters.

3.3 Comparisons with the Other Methods

We compared the results returned by our system with those
of other methods, in both the nonoverlapping and the
overlapping operating mode. For the nonoverlapping case,
we considered MCODE [9], RNSC [25], and MCL [19]. For
the overlapping case, we compared our method with
MCODE, CFINDER [31], DME [22], and IPCA [26]. For all
the considered techniques, we took into account only
clusters with size greater than or equal to two, by neglecting
singletons in our analysis. Furthermore, for each system we
compared with, we set the corresponding parameters by
choosing, among those suggested by the authors, that
configuration corresponding to the best results for the
considered method. We briefly recall the main features of
these methods in the following.

MCODE: Molecular COmplex DEtection [9] is a method
that detects dense and connected regions by weighting
nodes on the basis of their local neighborhood density.
MCODE performs three main steps. In the first step, nodes
are weighted. In the second step, the vertex with the highest
weight is selected as seed cluster, and neighborhoods nodes
are included in the cluster if their weight is above a fixed
threshold. The neighbors of this node are recursively
checked to verify if they can be part of the complex. When
no more nodes can be added to the cluster, the process stops
and it is repeated for the next-highest unexamined node.
Postprocessing is finally optionally executed to filter
proteins according to certain connectivity criteria. The
method can be exploited to extract both overlapping and
nonoverlapping clusters. We run it, in both cases, with the
best parameter configuration reported by Brohèe and van
Helden in [12], that is 0 for the node score percentage and
0.2 for complex fluffing.

RNSC: The Restricted Neighborhood Search Clustering
Algorithm [25] searches for a low-cost clustering by first
composing an initial random clustering, and then iteratively
moving one node from one cluster to another in a
randomized fashion to improve a specific cost function.
The RNSC approach resembles our approach, however,
RNSC uses two different cost functions. The first one
computes the number of bad connections incident with a
node. The second one measures the size of the area that a
node effects in the clustering. RNSC is able to detect only
nonoverlapping clusters.

MCL: The Markov CLuster algorithm [19] exploits
algebraic processes defined on stochastic matrices to
manage alternate expansions and contractions of flow
simulations of the input graphs. The heuristics underlying

such an approach is the expectation that flow between
dense regions, which are sparsely connected, will evapo-
rate. The input graph can be both weighted and directed.
The input parameters requested by both MCL and RNSC
have been set by using the best values obtained by Brohèe
and van Helden in [12].

CFINDER: Palla et al. [31] presented a method based on
locating all cliques (maximal complete subgraphs) of an
input network and then identifying the clusters (called
communities) by carrying out a standard component analysis
of the clique-clique overlap matrix. In particular, the
algorithm first determines from the degree-sequence the
largest possible clique size in the input network. Then,
starting with such a clique size, CFINDER repeatedly
chooses a node, extracts every clique of such a largest size
containing that node, and deletes the node and its edges.
When no nodes are left, the clique size is decreased by 1 and
the clique finding procedure is restarted on the original
graph. CFINDER allows for overlapping clustering.

DME: Dense Module Enumeration [22] is the most recent
method of the considered approaches for extracting dense
modules from a weighted interaction network. It allows to
incorporate constraints with respect to additional data
sources. DME detects all the node subsets that satisfy a
user-defined minimum density threshold. The method
returns only locally maximal solutions, i.e., modules where
all the direct supermodules (containing one additional
node) do not satisfy the minimum density threshold. The
obtained modules are ranked according to the probability
that a random selection of the same number of nodes
produces a module with at least the same density.

IPCA: This method [26] is a variation of the method
DPCLUS, previously proposed in [6], that searches for
subgraph structures having small diameters, i.e., small
average vertex distance. Analogously to DPCLUS, IPCA
starts by assigning a weight to each vertex on the base of the
number of shared neighbors. Nodes are then ordered with
respect to their weight, and considered as seeds for cluster
detection, by picking at first the highest weighted vertices.
Then, a cluster is extended by recursively adding neighbor-
ing nodes that satisfy a property of being strongly
connected with the current cluster. The concept of strong
connection between a node v and a cluster S is defined as
the ratio between the number of edges between the vertexes
v and S, and the number of nodes in S. If this ratio is above
a threshold Tin, then the node is added to the cluster.

3.3.1 Nonoverlapping Case

We first analyze the nonoverlapping case for both the yeast
and the human networks. Table 3 shows the coverage
percentage, the number of returned clusters and the size of
the greatest cluster for each of the compared methods. From
such table, it is possible to see that MCL and RANCoC
obtained the highest values for the coverage percentage,
and they returned comparable number of clusters with
comparable maximum size for both the yeast and the
human networks. In Fig. 5, both the clustering score and the
normalized clustering score for the three GO vocabularies
(process, component, and function, for short) are graphi-
cally illustrated for the four considered methods on the
yeast and human data sets. Figs. 5a and 5b show that
RANCoC is below MCODE for both process and compo-
nent annotations w.r.t. the clustering score on yeast, while
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MCL is slightly better for the function annotations. The
worst method in this evaluation is RNSC, which scored
very low values of clustering score almost on the process
annotations. For the normalized clustering score, instead,
on the yeast network RANCoC performed the best values
for both the process and component annotations, while it is
outperformed by MCL for the function annotations. Any-
way, we can say that both RANCoC and MCL returned
significantly better results than the other two methods. As
regards the human network, as shown in Figs. 5c and 5d,
RANCoC results are again below MCODE for the clustering
score, but RANCoC and MCL obtain a normalized cluster-
ing score much higher than that obtained by MCODE and

RNSC. In particular, the former is the best for both process

and function annotations, while the latter is the best for the

component vocabulary.
Looking again at Table 3, we can argue why MCODE

obtained very high values for the clustering score but not

for the normalized clustering score. Indeed, this tool is more

accurate but it is able to cover only a small portion of the

input network. Finally, as regards RNSC, we observe that it

returned many clusters of small sizes, and this possibly

caused the lower clustering score and normalized clustering

score w.r.t. the other three techniques.
We also point out that RANCoC was able to correctly

separate groups of proteins whose functions are known
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TABLE 3
The Nonoverlapping Case for Yeast and Human

Fig. 5. Clustering Score and Normalized Clustering Score, in the Nonoverlapping Case for: (a-b) yeast; (c-d) human.



from the literature. For example, in the nonoverlapping
mode, RANCoC found the well-characterized group of
proteins participating to actin cytoskeleton organization and
biogenesis, as discussed by [18]. MCODE, CFINDER, and
RNSC failed in grouping together such proteins, or
clustered them in groups scoring worse p-value than those
obtained by RANCoC.

3.3.2 Overlapping Case

Table 4 shows the coverage percentage, the number of
returned clusters and the size of the greatest cluster for the
five compared methods in the overlapping case. For both
the yeast and the human network, IPCA scores the highest
value of coverage percentage, although RANCoC is able to
reach almost the same values of this measure while
returning a much smaller number of clusters than IPCA.
We also point out that the coverage percentages of the other
methods for the human network are very poor.

Results of clustering score and normalized clustering
score are shown in Figs. 6a and 6b for yeast and in Figs. 6c
and 6d for human, respectively. All the compared methods
scored high values of clustering score on the yeast network,
while DME seems to be the less accurate on the human
network for this measure. For the normalized clustering
score, RANCoC scored the best values on both the yeast and
human networks and for all the three GO vocabularies. In
particular, on the yeast network also MCODE performed
well in terms of normalized clustering score, and the
behavior of all the methods is in general not bad for this
network. On the contrary, for the human network, the
resulting normalized clustering scores of all the other
methods are worse than those of RANCoC, in most cases
also significantly. This confirms the robustness of our
method in analyzing PPI networks independently of how
much characterized they are.

3.3.3 Discussion

We now consider a comparative analysis of all the
considered methods. Figs. 7a and 7b illustrate diagrams of
the normalized clustering score for both the yeast and the
human PPI networks, for the three GO vocabularies. In such
figures, RANCoC-OV and MCODE-OV denote the two
methods in the overlapping mode. For both yeast and
human, RANCoC in the overlapping mode is the best one,
followed by MCODE in the overlapping mode on the yeast
network and by MCL on the human network. For yeast,
RANCoC in both the working modes, MCL and MCODE
overlapping obtain values that are significatively better
than the other tools. For human, only the former three
methods perform the best values of clustering score, while
MCODE has the worst performances on that network.

We can conclude that our technique seems to be the best
one guaranteeing both high biological significance and

network coverage, in both the nonoverlapping and the
overlapping case, and it is robust since its performances are
comparable on both the two analyzed networks.

3.4 MIPS Complexes Validation

We downloaded 975 known and curated complexes for
yeast from [2] and 1,083 known and curated complexes for
human from [3]. The size of each complex can vary from
2 to about 200 proteins, although most of the considered
complexes are quite small, and the same protein can belong
to different complexes. According to the analysis illustrated
in Section 3.2, in the following evaluation, in order to
compare the ability of RANCoC and the other approaches
in predicting known protein complexes, we set equal to
3 the parameter r of RANCoC for both the nonoverlapping
and overlapping mode. Figs. 8a, 8b, 8c, and 8d show a
comparison among the different methods with respect to
the number of matched complexes for the values 0.05, 0.1,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 of the overlapping score
threshold �OS . In particular, Fig. 8a shows the number of
known complexes matched by RANCoC, RNSC, MCL, and
MCODE on the yeast network. The figure points out that
RANCoC predicts a higher number of known complexes
than the other techniques. Fig. 8b shows the same results for
the human network. In such a case, RANCoC and RNSC
alternatively finds the higher number of matched com-
plexes. As regards the methods that obtain overlapped
modules, Fig. 8c shows that DME and RANCoC predict
almost the same number of complexes, much higher than
the other three methods on the yeast network, while on the
human network, Fig. 8d, RANCoC performs the best. Note
that such an analysis has meaning only in comparative
terms, since the reference MIPS complexes do not cover all
the considered PPI networks and some of the many
predicted clusters that may be true complexes, could be
regarded as false positives if they do not match with the
known complexes [26].

Figs. 9a, 9b, 9c, and 9d show the sensitivity and specificity
of all the methods for values of the overlapping score
threshold �OS equal to 0.05, 0.1, 0.15, 0.20, 0.25, and 0.30. The
corresponding values of sensitivity and specificity are those
reported in the figures starting from right to left, and top to
bottom. Fig. 9a points out that RANCoC obtains the higher
values of both these two measures on the yeast network. As
regards the human network (Fig. 9b), MCL obtains higher
values of Sn and Sp for �OS < 0:2, while the sensitivity of
RANCoC is better for �OS � 0:2. Figs. 9c and 9d show that
DME overcome the other overlapping methods as regards
the specificity, but the sensitivity of RANCoC-OV is higher
with respect to all the other methods.

However, we note that specificity is less meaningful than
sensitivity in this kind of analysis, since there could be lots
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Fig. 7. Normalized clustering score of all the methods in both the nonoverlapping and the overlapping case for (a) the yeast PPI network and (b) the
human PPI network.



of complexes that are not yet known and annotated in the
MIPS database.

In conclusion, this validation campaign showed that
RANCoC can be also usefully exploited in order to
recognize protein complexes in PPI networks.

3.5 Multifunctional Proteins

We now mention some of the multifacets proteins that
RANCoC grouped with other proteins in different clusters,
each characterized by biological relevant meaning. We refer
to proteins discussed by Ucar et al. [43] and to biological
process GO annotations.

As reported in [43], KAP95 is an essential protein with
many functionalities that is known to take part in
nucleocytoplasmatic transport. RANCoC grouped KAP95
with other nine proteins (PBS2, ZDS1, YKL214C, NAP1,
NUP1, NUP60, PCT1, ULP1, NUP2) participating to this
same biological process with p-value 1:60 � 10�10. Further-
more, RANCoC found this protein in other clusters. Among
the most relevant clusters involving KAP95, we mention

one containing 140 proteins participating in macromolecule
metabolic process with p-value 5:16 � 10�26, and another one
containing proteins ATG16, VMA6, VPS5, PSE1, VPS17,
SEC26, TPO1, PEP12, RET3, PMC1, VPH1, CHS5, VMA2,
VAC8, YMR010W, SEC7, HXT1, FTH1, VPS35, DNF1, RET2,
YBT1, ATP14, VMA1, GTR1, ATG27, DOP1, SEC2, DRS2,
HXT2, VPS29, SEC21, SEC27, SFT2, BZZ1, VMA13, COG3,
VMA8, MUP1, TVP15, GLO3, KAP95, VPS26, GTR2, HSP30,
ATG19, AKR1, CTR2, ARF1, MEH1, PDR12, HNM1, NUP1,
VMA5, VMA7, MIA40, COT1, FLC2, VPS68, YIP3 involved
in transport and in establishment of localization with p-value
2:54 � 10�19.

The hub protein LSM8 has been found by Ucar et al. [43]
with other 10 proteins (LSM2, LSM3, LSM5, PRP3, PRP4,
PRP6, PRP21, PRP31, SMB1, SPP381) with biological
process mRNA splicing and p-value 1:2 � 10�12. We found
the same protein in several groups, in particular, it
participates with PUB1, LSM5, LSM3, DHH1, DCP2,
NOT4, KEM1, LSM4, LSM2, EDC3, POP2, PUF4, LSM7,
LSM6, NOT1, LSM1, NOT3, CCR4, NOT2 and NOT5 to the
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mRNA catabolic process with p-value 1:32 � 10�39, and with
PUB1, LSM5, LSM3, DHH1, NOT4, DCP2, CAF40, KEM1,
LSM4, LSM2, DCP1, EDC3, POP2, LSM7, PUF4, LSM6,
NOT1, LSM1, NOT3, NOT2, CCR4, NOT5 to the RNA
catabolic process with p-value 1:05 � 10�41.

CKA1 is a protein involved in several cellular events.
Ucar et al. located CKA1 in three different partitions. One is
annotated with the biological process transcription, DNA-
dependent and p-value 2:3 � 10�19, the second one with
protein amino acid phosphorylation and p-value 1:2 � 10�05,
the third group is annotated with organelle organization and
biogenesis and p-value 3:2 � 10�12. RANCoC found, among
the others, a group with p-value 4:40 � 10�25 and annotation
cellular component organization and biogenesis, the group
CEG1, CKA2, LEO1, SPT16, FKH1, CTR9, HTA1, RTF1,
CKA1, CDC73, CKB2, PAF1, CKB1, HTB1, POB3, CHD1
with p-value 2:98 � 10�12 and annotation regulation of
transcription, DNA-dependent; the group CKA1, CKB2,
CKA2, CKB1 involved in regulation of transcription from

RNA polymerase III promoter with p-value 1:08 � 10�08 and
other two groups involved in response to DNA damage
stimulus and regulation of nucleobase, nucleoside, nucleotide,
and nucleic acid metabolic process with p-value 2:83 � 10�10 and
2:95 � 10�07, respectively.

4 CONCLUSIONS

Overlapping and nonoverlapping clustering of PPI net-
works are important analysis methods that allows to
uncover and understand the complex structure of inter-
connections among proteins. Nonoverlapping clustering is
usually exploited when separating groups of proteins with
different biological meaning is the main aim. On the other
hand, overlapping clustering allows to identify proteins
involved in several biological processes. The algorithm
RANCoC supports both the possibilities and an exploration
of the network at different resolution levels. Indeed, the
choice of the parameter r allows for a suitable tradeoff
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Fig. 9. Comparison of sensitivity and specificity for the nonoverlapping methods for (a) yeast, (b) human, and the overlapping methods for (c) yeast,
(d) human. The values of the overlapping score threshold �OS have been fixed to 0.05, 0.1, 0.15, 0.20, 0.25, and 0.30.



between the coverage of the network and the biological
relevance of the output solution. An extensive experimental
evaluation showed that our method outperforms other
state-of-the-art approaches in finding a good compromise
between accuracy and network coverage. Furthermore, the
behavior of RANCoC is not influenced by how much
characterized (and/or dense) is the input network. Finally,
RANCoC showed to outperform the other considered
approaches in correctly predicting known and manually
curated MIPS complexes.

As future work, we plan to apply our approach to cluster
also other types of biological networks, e.g., metabolic
networks. Furthermore, we think to test also other strategies
to avoid get trapped in local optima, such as, for example,
tabu search and simulated annealing.
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