
Boosting the Detection of Modular Community Structure
with Genetic Algorithms and Local Search

Clara Pizzuti
Institute for High Performance Computing and Networking

National Reasearch Council of Italy
Via P. Bucci 41C, 87036 Rende (CS), Italy

Email: pizzuti@icar.cnr.it

ABSTRACT
The discovery of modular communities to uncover the complex
interconnections hidden in networks is an intensively investigated
problem in recent years. Many approaches optimize a quality func-
tion, modularity, that is also a validation measure of a network par-
tition in clusters. The paper proposes an approach, based on Ge-
netic Algorithms, that reveals community structure in networks by
optimizing modularity. The method boosts the modularity of the
partition obtained by the genetic algorithm by performing a local
greedy search step on this partition. Experiments on synthetic and
real life networks show that the method is able to successfully re-
veal highly modular network structure.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications —Data
Mining; I.2.2 [Artificial Intelligence]: Automatic Programming;
I.5.3 [Computing Methodologies]: Pattern Recognition—Cluster-
ing

General Terms
Algorithms

Keywords
Complex Networks, Modularity, Genetic Algorithms, Local Search

1. INTRODUCTION
The tangled relationships between objects of many artificial and

natural systems can be represented by networks of nodes and edges
where objects are denoted by nodes, and interactions by edges con-
necting nodes. Complex networks can be analyzed at different lev-
els of granularity. The node level is the smallest scale to study. At
this level the node degree can give valuable information on the role
played by the objects participating in the network. More interest-
ingly, the community or sub-graph level investigates the division
of a network into groups (also called clusters or modules) having
dense intra-connections, and sparse inter-connections. This parti-
tioning is typical to many networks, thus the study of community

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

structure can give important information and useful insights to un-
derstand how the structure of ties affects individuals and their re-
lationships. In fact, members of a community interact with each
other, they share information, and can have a remarkable influence
on the behavior of the other objects of the community.

The problem of community detection has been receiving a lot
of attention in the last few years, and many different approaches,
coming from different fields such as physics, statistics, data mining,
have been proposed [1, 2, 4, 21, 23, 26, 30, 13, 25, 9, 15, 32].

One of the most known approaches is that of Newman and Gir-
van [26], where the introduction of the modularity concept fulfills
a twofold objective. It gives a definition of modular structure, thus
providing a validity index to measure the density of the links in-
side a community with respect to the links between communities,
and, at the same time, a quality function that drives the search for
modules.

Finding the partitioning of a network that maximizes modularity
has been hypothesized to be NP-Hard by Clauset et al. [4], and
the decision version of modularity maximization has been proved
to be NP-Complete by Brandes et al. [3]. Thus, since its intro-
duction, many different heuristic techniques have been proposed to
optimize its value. Greedy strategies are used in [2, 4, 23], spectral
division in [25, 30, 34], simulated annealing in [17, 31], extremal
optimization in [7], and Genetic Algorithms in [8, 9, 15, 32, 28].

Among the above approaches, the method of Blondel et al. [2] is
a fast and accurate algorithm that locally maximizes modularity by
searching in the neighborhood of each node.

In this paper an algorithm, named GAMod, to discover commu-
nities in networks by combining Genetic Algorithms (GAs) [16] and
local search is proposed. The approach searches for an optimal par-
titioning of a network by running the genetic algorithm for a fixed
number of steps. The fitness function adopted is the modularity.
The dense and modular communities present in the network struc-
ture are obtained at the end of the algorithm by selectively explor-
ing the search space. At this point, a greedy local search, similar
to that employed by Blondel et al. [2], is applied. For each node i,
the neighbors j are considered and the gain in modularity when i
is moved from its community to that of j is computed. If the gain
is positive, then i is assigned to the community for which the gain
is maximum. It is worth to note that Blondel et al. [2] iteratively
apply this strategy until a local maximum is reached. GAMod, in-
stead, finds a locally optimal solution by running the genetic algo-
rithm, and then performs a final local greedy step to further boost
modularity of the solution already obtained by the GA.

Experiments on synthetic and real life networks show that the
combination of the genetic approach with local search sensibly im-
proves modularity values.

The paper is organized as follows. The next section provides

226

the necessary background to formalize the problem and defines the
modularity concept. In section 3 a description of the method along
with the representation adopted and the variation operators used are
provided. In section 4 the results of the method on synthetic and
real life data sets are presented. Finally, section 5 concludes the
paper.

2. PRELIMINARIES
A network N can be modelled as a graph G = (V, E) where V

is a set of objects, called nodes or vertices, and E is a set of links,
called edges, that connect two elements of V . Let n =| V | be
the number of nodes, and m =| E | the number of edges of G.
C = {C1, . . . , Ck} denotes a partitioning, also called clustering,
of V . Each Ci i = 1, . . . , k is a group of vertices (i.e. a sub-graph)
of G. A community Ci in a network is a group of nodes having
high intra-cluster density of edges, and lower inter-cluster density
[11].

2.1 Definition of Modularity
The modularity introduced by Newman and Girvan [26] is a

quality index to evaluate the goodness of a partition, widely rec-
ognized from the researcher community. The idea underlying the
modularity is that a random graph has not a clustering structure,
thus the edge density of a cluster should be higher than the expected
density of a subgraph whose nodes are connected at random. This
expected edge density depends on a chosen null model. Modularity
can be written in the following way:

Q =
1

2m

X

ij

(Aij − Pij)δ(Ci, Cj)

where A is the adjacency matrix of the graph G, m is the number
of edges of the graph, and Pij is the expected number of edges
between nodes i and j in the null model. δ is the Kronecker
function and yields one if i and j are in the same community, zero
otherwise. When it is assumed that the random graph has the same

degree distribution of the original graph, Pij =
kikj

2m
, where ki

and kj are the degrees of nodes i and j respectively. Thus the
modularity expression becomes:

Q =
1

2m

X

ij

(Aij − kikj

2m
)δ(Ci, Cj)

Since only the pairs of vertices belonging to the same cluster
contribute to the sum, the modularity can be rewritten as

Q =
kX

s=1

[
ls
m

− (
ds

2m
)2]

where k is the number of modules found inside a network, ls
is the total number of edges joining vertices inside the module s,
and ds is the sum of the degrees of the nodes of s. Thus the first
term of each summand is the fraction of edges inside a community,
and the second one is the expected value of the fraction of edges
that would be in the network if edges fall at random without regard
to the community structure. Values approaching 1 indicate strong
community structure.

2.2 Approaches to Modularity Maximization
The concept of modularity has been introduced by Newman and

Girvan [26] to evaluate the quality of network partitioning gener-
ated by community detection algorithms, and has become a popular

(a)

1 2 3 4 5 6 7 8 9

2 4 1 2 4 7 6 6 6

(b)

(c)

Figure 1: A network modelled as a graph; (b) locus-based
representation of network division in the two communities
{1, 2, 3, 4, 5} and {6, 7, 8, 9}; (c) graph-based structure of the
chromosome.

objective function to optimize after Newman proposed an agglom-
erative hierarchical method that maximizes modularity value of a
clustering [23].

One of the most efficient and efficacious methods that partitions
networks based on the modularity optimization, is the algorithm
of Blondel et al. [2], in the following referred as BGLL. The
algorithm consists of two phases that are repeated iteratively until
no further improvement can be obtained. At the beginning each
node of the network is considered a community. Then, for each
node i, all its neighbors j are considered and the gain in modularity
of removing i from its community and adding it to the j community
is computed. The node is placed in the community for which the
gain is positive and maximum. If no community has positive gain,
i remains in its original group. This first phase is repeated until no
node move can improve the modularity. The second phase builds a
network where the communities obtained are considered as the new
nodes and a link between two communities A, B exists if there is
an edge between a node belonging to A and a node belonging to B.
At this point the method can be reiterated until no more changes
can be done to improve modularity.

In the next section a method based on genetic algorithms en-
riched with a local search step, analogous to that employed by
BGLL, is presented and shown to enhance the modularity of net-
work division obtained by the algorithm.

3. ALGORITHM DESCRIPTION
In the following we give a description of the algorithm GAMod,

the representation, and the variation operators used.
Genetic representation: Our algorithm uses the locus-based

adjacency representation proposed in [27]. In this graph-based
representation an individual of the population consists of n genes
g1, . . . , gn and each gene can assume allele values j in the range

227

node 1 2 3 4 5 6 7 8 9

Parent1: 2 1 4 1 9 7 9 9 8
Parent2: 2 4 1 2 4 7 6 6 6
Mask: 0 1 0 1 0 0 1 1 1
Offspring: 2 4 4 2 9 7 6 6 6

Figure 2: Example of uniform crossover

{1, . . . , n}. Genes and alleles represent nodes of the graph G =
(V, E) modelling a network N , and a value j assigned to the ith
gene is interpreted as a link between the nodes i and j of V . This
means that in the clustering solution found i and j will be in the
same cluster. A main advantage of this representation is that the
number k of clusters is automatically determined by the number of
connected components contained in an individual. Suppose to have
the network shown in figure 1(a). It consists of nine nodes. The
network can be partitioned in the two groups C1 = {1, 2, 3, 4, 5}
and C2 = {6, 7, 8, 9}. The chromosome shown in figure 1(b), rep-
resents the partition of the graph in these two groups. Thus, for
example, in this chromosome node 1 is connected to node 2, node
2 is connected to node 4, and so on. The two connected compo-
nents corresponding to this individual are depicted in figure 1(c).
Each connected component thus provides a grouping of nodes, and
all the components constitute a partition of the network.

Initialization: The initialization process of each individual in
the population should generate a division of the network in con-
nected groups of nodes. We experimented that connecting each
node at random with one of its neighbors hampers the genetic al-
gorithm to converge to high quality solutions. A way to overcome
this drawback is to connect each node i with the neighbor j sharing
the maximum number of neighbors. However, this could cause the
generation of a population of almost equal individuals, thus a bal-
ance between these two opposite requirements must be obtained.
To this end, after a trial and error procedure, we initialized half
population with the former random strategy and the other half with
the latter one.

Uniform Crossover: We used uniform crossover because it guar-
antees the maintenance of node connections in the child individual.
Given two parents, a random binary vector is created. Uniform
crossover then selects the genes where the vector is a 0 from the
first parent, and the genes where the vector is a 1 from the second
parent, and combines the genes to form the child. Since the child at
each position i contains a value j coming from one of the two par-
ents, the edge (i, j) exists. Figure 2 shows an example of uniform
crossover. Consider node 5 that is connected to node 9 in Parent1
and to node 4 in Parent2, since the mask has a 0 in the 5th position,
then the offspring will have 9 in that position.

Mutation: The mutation operator randomly changes the value
j of i-th gene to one of its neighbors. This mutation guarantees
the generation of a mutated child in which each node is linked only
with one of its neighbors.

Given a network N and the graph G modelling it, GAMod starts
with a population initialized as described above, such that each
node is linked with one of its neighbors. Every individual I gen-
erates a graph structure in which each component is a connected
subgraph of G. For a fixed number of generations the genetic algo-
rithm computes the fitness function (i.e. modularity) of the current
partitioning, and applies the specialized variation operators to pro-
duce the new population. The individual having the best modularity
value is returned as solution. At this point a local greedy search is
performed. For each node i, the neighbors j are considered and
the gain in modularity when i is moved from its community to that

of j is computed. If the gain is positive, then i is assigned to the
community for which the gain is maximum. In the next section
we show that the combination of genetic and local search provides
network division having high modularity values.

4. EXPERIMENTAL RESULTS
In this section we study the effectiveness of our approach on two

different benchmarks of synthetic data sets. Then we test the re-
sults obtained by GAMod on some real-worlds networks. We show
that our genetic algorithm successfully detects the network struc-
ture and it is competitive with other approaches. The GAMod algo-
rithm has been written in MATLAB 4.3 R2010a, using the Genetic
Algorithms and Direct Search Toolbox 2. In order to set parameter
values, a trial and error procedure has been employed and then the
parameter values giving good results for the benchmark data sets
have been selected. Thus we set crossover rate to 0.8, mutation
rate to 0.6, elite reproduction 10% of the population size, roulette
selection function. The population size is 300, the number of gen-
erations 100. For all the data sets, the statistical significance of
the results produced by GAMod has been checked by performing
a t-test at the 5% significance level. The p-values returned are, on
average, below 0.05E-10, thus the significance level is very high
since the probability that a community computed by GAMod could
be obtained by chance is very low.

4.1 Partition Evaluation
In order to evaluate the quality of the clustering obtained by our

method, we use the Normalized Mutual Information (NMI), a sim-
ilarity measure proved to be reliable by Danon et al. [6], and one of
the most used to test community detection algorithms on synthetic
networks for which the community structure is known. The NMI
is defined as follows. Given two partitions A and B of a network
in communities, let C be the confusion matrix whose element Cij

is the number of nodes of community i of the partition A that are
also in the community j of the partition B. The normalized mutual
information I(A, B) is defined as :

I(A, B) =
−2

PcA
i=1

PcB
j=1 Cij log(CijN/Ci.C.j)PcA

i=1 Ci.log(Ci./N) +
PcB

j=1 C.j log(C.j/N)

where cA (cB) is the number of groups in the partition A (B),
Ci. (C.j) is the sum of the elements of C in row i (column j), and
N is the number of nodes. If A = B, I(A, B) = 1. If A and B
are completely different, I(A, B) = 0.

4.2 Synthetic data sets.
In order to check the ability of our approach to successfully de-

tect the community structure of a network, we use two different
benchmarks. The first is the benchmark proposed by Girvan and
Newan in [13] (referred as GN benchmark). The network con-
sists of 128 nodes divided into four communities of 32 nodes each.
Edges are placed between vertex pairs at random but such that
zin + zout = 16, where zin and zout are the internal and exter-
nal degree of a node with respect to its community. If zin > zout

the neighbors of a node inside its group are more than the neighbors
belonging to the other three groups, thus a good algorithm should
discover them. The GN benchmark, as observed in [19], however,
is rather simple since it is characterized by communities having all
the same size and by nodes having the same expected degree. Thus,
Lancichinetti et al. [20] proposed a new class of benchmarks (LFR
benchmark) that extend the GN benchmark by introducing power
law degree distributions and different community size. In [19] it

228

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Mixing parameter

M
od

ul
ar

ity

Plot of the average modularity obtained versus the mixing parameter

GAMod
BGLL

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mixing parameter

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Plot of the average NMI obtained versus the mixing parameter

GAMod
BGLL

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mixing parameter

M
od

ul
ar

ity

Plot of the average modularity obtained versus the mixing parameter

GAMod
BGLL

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mixing parameter

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

Plot of the average NMI obtained versus the mixing parameter

GAMod
BGLL

Figure 3: Modularity (left) and Normalized Mutual Information (right) obtained by GAMod and BGLL on the synthetic GN (top)
and LFR (bottom) benchmarks when the mixing parameter μ varies from 0.1 to 0.5.

has been experimented that many community detection algorithms
perform well on the GN benchmark, but give poor results on the
LFR benchmark. In particular, they showed that the Blondel et al.
[2] method outperforms other approaches on the LFR networks.

Both GN and LFR benchmarks are characterized by the mixing
parameter μ = zout

zin+zout
that gives the ratio between the external

degree of a node and the total degree of the node. When μ < 0.5
the communities are well defined, thus a good algorithm should dis-
cover them. We generated 100 different networks for values of μ
ranging from 0.1 to 0.5 for both GN and LFR benchmarks. Then we
computed the Normalized Mutual Information to measure the sim-
ilarity between the true partitions and the detected ones, and the
modularity to evaluate the goodness of the partitioning obtained.
As regards the LFR benchmark, the network generated 1 is the
same of that used in [19] for unweighted and undirected graphs.
It is constituted by 1000 nodes, average node degree 20, maximum
node degree 50, exponent of degree distribution -2, community size
distribution -1.

Figure 3 shows the values of modularity (top left) obtained by
GAMod and BGLL methods on the GN benchmark when the mix-
ing parameter varies from 0.1 (clear community structure) to 0.5

1The software to generate the LFR benchmarks can be found at
http://sites.google.com/site/andrealancichinetti/software

(not well defined community structure), and the corresponding nor-
malized mutual information (figure top right). The figures point out
that on this network for μ ≤ 4 GAMod reaches average higher val-
ues of both modularity and NMI. For μ = 5, while the modularity
is almost the same, the NMI value obtained by BGLL is slightly
higher (0.343 w.r.t. 0.265). However, among all the executions, the
maximum modularity obtained by both has been 0.468 for BGLL
and 0.456 for GAMod.

Figure 3 shows the same experiment on the LFR benchmark
(bottom figures). Also in this case the modularity values computed
by the two methods are almost the same, while the NMI obtained
by BGLL is a little bit higher than that obtained by GAMod. These
experiments point out that the genetic approach is able to uncover
community structure and it is comparable with the Blondel et al.
algorithm. In the next section we test the two methods on real-life
networks and we show the very good performance of GAMod on
them.

4.3 Modularity Comparison on Real-Life Net-
works

In this section we compare the modularity values obtained by
GAMod and BGLL on a set of ten networks of different size. Then
the modularity found on some of these networks is matched against
the results reported by Pujol et al. in [30]. In all the cases we show

229

Table 1: Comparison between modularity values and number of communities obtained by GAMod and Blondel et al. [2].
GAMod BGLL

Network nodes edges best avg std dev NC Mod NC
Karate 34 78 0.4198 0.4198 0 4 0.4020 3

Dolphins 62 159 0.5285 0.5270 0.589e-3 5 0.4952 10
Krebs 105 440 0.5256 0.5251 0.84e-3 5 0.5156 8

Adjnoun 112 425 0.2894 0.2664 0.118e-1 6 0.2364 25
Football 115 613 0.6046 0.6040 0.11e-2 10 0.6010 12

Jazz 198 2742 0.4425 0.4373 0.583e-2 3 0.4228 7
C. Elegans 453 4596 0.4160 0.4070 0.646e-2 10 0.3731 63

Scientometrics 2678 10368 0.5818 0.5713 0.5135e-2 84 0.5483 24
Directors Board 1130 6647 0.9005 0.8965 0.318e-2 72 0.9084 60

Erdös 6927 11850 0.6817 0.6760 0.29e-2 127 0.6845 49

Table 2: Comparison between best modularity values and number of communities obtained by GAMod, Pujol et al. [30], Dutch and
Arenas algorithm [7], and the Newman’s fast algorithm [23]

GAMod PBD DA Newman
Network Mod NC Mod NC Mod NC Mod NC

Karate 0.4198 4 0.3937 4 0.4176 4 0.3807 3
C. Elegans 0.4160 10 0.4164 7 0.4376 10 0.40 10

Scientometrics 0.5818 84 0.5629 10 0.6042 19 0.5555 24
Directors Board 0.9005 72 0.8273 16 0.8113 27 0.8046 21

Erdös 0.6817 127 0.6817 20 0.6520 88 0.6723 57

that GAMod gets high modularity values. The networks used are
the Zackary Karate Club [35], the Bottlenose Dolphins network
compiled by Lusseau [22], the network of political books compiled
by V. Krebs (unpublished http://www.orgnet.com/), adjacency net-
work of common adjectives and nouns in the novel David Cop-
perfield by Charles Dickens [24], the American College Football
network [13], the network of Jazz musicians [14], the Metabolic
network C. Elegans [18], the citation network Scientometrics [5],
the affiliation network among the Spanish top directors board [12],
and the scientific collaboration networks of Erdös [29].
Table 1 lists the ten networks with the number of nodes and edges,
along with the modularity and number of communities achieved by
GAMod and BGLL. For the former algorithm both the best and av-
erage modularity, together with the standard deviation are reported.
BGLL obtained the same values for all the executions. The table
points out that GAMod achieves almost the same results of BGLL
on the Erdös and directors networks, and higher modularity, both
best and average values, for all the other networks considered.

Table 2 compares GAMod with other three methods, the Pujol et
al. algorithm [30], referred as PDB, based on random walkers, the
Dutch and Arenas extremal optimization algorithm [7], referred as
DA, and the Newman’s fast algorithm [23]. In such a case the DA
method achieves a higher modularity than that obtained by GAMod
on the C. Elegans and Scientometrics networks, while for the other
networks GAMod has the best performance.

It is worth to note that the number of communities found by
GAMod (the number is relative to the best modularity) is lower
than that obtained by BGLL, but almost the same of that found
by PBD, DA, and Newman on the Karate and C. Elegans network,
and higher for the other networks. Pujol et al. [30] argues that find-
ing a small number of groups simplifies the analysis of the obtained
results. However, recently, it has been proved that the optimization
of modularity has a resolution limit that depends on the total size
of the network and the interconnections of the modules [10]. This
implies that modules below an intrinsic scale, even if tightly con-
nected, cannot be found. Table 2 highlights that, though GAMod

achieves higher modularity values on the larger networks (Sciento-
metrics, Directors Board, and Erdös), the number of communities
is higher than the other three approaches, thus the genetic algorithm
seems to be able to partially elude the resolution limit problem.

5. CONCLUSIONS
The paper presented a genetic algorithm enriched with a local

search step able to uncover highly modular community structure.
The method has been shown to boost modularity of the clusters
obtained and to outperform state-of-the-art approaches. One of the
main criticisms in using genetic algorithms, compared to traditional
optimization algorithms, is the high execution time required to gen-
erate a solution. The major limitation of evolutionary algorithms
is, in fact, the repeated fitness function evaluation that, for complex
problems could often be prohibitive. The problem is exacerbated
when large populations of individuals are used. In our approach
fitness evaluation is rather simple, thus the main problem comes
from the network size. However Genetic Algorithms are naturally
suited to be implemented on parallel architectures [33], and an im-
plementation of GAMod on a parallel machine could be realized
in order to deal with very large networks, and make the approach
proposed competitive in terms of computation time with respect to
other faster methods that discover communities.

The current implementation of GAMod uses the Genetic Algo-
rithm and Direct Search Toolbox 2 available on Matlab. Since
Matlab provides also the Parallel Computing Toolbox to perform
parallel computations on clusters of computers, and a built-in par-
allel implementation of Genetic Algorithms, we executed the Erdös
network on a E4 cluster of 12 nodes, each having a 2 CPU Quad
Core Intel Xeon E5520 2,26GHz, 12GB of RAM, using a variable
number of cores to test the efficiency of the method. We experi-
mented that, as the number of cores augments from one to 32, the
execution time decreases linearly. Thus, having at disposal enough
computing resources, GAMod could obtain a good speed up, thus
sensibly reducing its execution times.

230

6. REFERENCES
[1] A. Arenas and A. Diaz-Guilera. Synchronization and

modularity in complex networks. European Physical Journal
ST, 143:19–25, 2007.

[2] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre.
Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, P10008,
2008.

[3] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert
GŽrke, Martin Hoefer, Zoran Nikoloski, and Dorothea
Wagner. : On modularity clustering. . IEEE Trans.
Knowledge and Data Engineering, 20(2):172–188, 2008.

[4] A. Clauset, M. E. J. Newman, and Cristopher Moore.
Finding community structure in very large networks.
Physical Review E, 70:066111, 2004.

[5] Garfields’s collection of citation networks.
http://www.garfield.library.upenn.edu/histcomp/.

[6] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas.
Comparing community structure identification. Journal of
Statistical Mechanics, P09008, 2005.

[7] Jordi Duch and Alex Arenas. Community identification using
extremal optimization. Physics Review E, 72(027104), 2005.

[8] Zhidan Feng, Xiaowei Xu, Nurcan Yuruk, and Thomas A. J.
Schweiger. A novel similarity-based modularity function for
graph partitioning. In Proc. 9th Int. Conf. on Data
Warehousing and Knowledge Discovery(DaWaK’07), pages
385–396, 2007.

[9] A. Firat, S. Chatterjee, and M. Yilmaz. Genetic clustering of
social networks using random walk. Computational Statistics
and Data Analysis, 51(12):6285–6294, 2007.

[10] S. Fortunato and M. Barthélemy. Resolution limit in
community detection. Proc. National Academy of Science,
USA, 104(36), 2007.

[11] Santo Fortunato. Community detection in graphs. Phisics
Reports, 486:75–174, 2010.

[12] Data from the project "Small Worlds of Corporate
Networks". IESE Business School, University of Navarra.

[13] M. Girvan and M. E. J. Newman. Community structure in
social and biological networks. In Proc. National. Academy
of Science. USA 99, pages 7821–7826, 2002.

[14] Pablo M. Gleiser and Leon Danon. Community structure in
jazz. Advances in Complex Systems, 6(4):565–573, 2003.

[15] A. Gog, D. Dumitrescu, and B. Hirsbrunner. Community
detection in complex networks using collaborative
evolutionary algorithms. In 9th European Conference on
Artificial Life (ECAL’07), pages 886–894, 2007.

[16] D.E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Publishing, 1989.

[17] Roger Guimerá, Marta Sales-Pardo, and Luís A. Nunes
Amaral. Modularity from fluctuations in random graphs and
complex networks. Physical Review E, 70(2):025101, 2004.

[18] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and A.-L.
Barabási. The large-scale organization of metabolic
networks. Nature, 470:651–655, 2000.

[19] Andrea Lancichinetti and Santo Fortunato. Community
detection algorithms: a comparative analysis. Physical
Review E, 80(056117), 2009.

[20] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi.
Benchmark graphs for testing community detection
algorithms. Physical Review E, 78(046110), 2008.

[21] S. Lozano, J. Duch, and A. Arenas. Analysis of large social

datasets by community detection. European Physical
Journal ST, 143:257–259, 2007.

[22] D. Lusseau. The emergent properties of dolphin social
network. Biology Letters, Proc. R. Soc. London B (suppl.),
2003.

[23] M. E. J. Newman. Fast algorithm for detecting community
structure in networks. Physical Review, E69:066133, 2004.

[24] M. E. J. Newman. Finding community structure in networks
using the eigenvectors of matrices. Physical Review, E
74:036104, 2006.

[25] M. E. J. Newman. Modularity and community structure in
networks. Proc. Natl. Acad. Sci. USA 103, pages 8577–8582,
2006.

[26] M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review,
E69:026113, 2004.

[27] Y.J. Park and M.S. Song. A genetic algorithm for clustering
problems. In Proc. of 3rd Annual Conference on Genetic
Algorithms, pages 2–9, 1989.

[28] C. Pizzuti. GA-NET: a genetic algorithm for community
detection in social networks. In Proc. of the 10th Intenational
Conference on Parallel Problem Solving from Nature (PPSN
2008), pages 1081–1090, 2008.

[29] Erdös Number Project. http://www.oakland.edu/enp/thedata/.

[30] Josep M. Pujol, Javier Béjar, and Jordi Delgado. Clustering
algorithm for determining community structure in large
networks. Physics Review, E 74(016107), 2006.

[31] Jorg Reichardt and Stefan Bornholdt. Statistical mechanics of
community detection. Physical Review E, 74:016110, 2006.

[32] M. Tasgin and A. Bingol. Communities detection in complex
networks using genetic algorithms. In Proc. of the European
Conference on Complex Systems (ECSS’06), 2006.

[33] Marco Tomassini. Parallel and Distributed Evolutionary
Algorithms: A Review. in Evolutionary Algorithms in
Engineering and Computer Science, J. Wiley and Sons,
Chichester et al. eds., 1999.

[34] Scott White and Padhraic Smyth. A spectral clustering
approach to finding communities in graphs. In Proc. of the
5th SIAM Conference on Data Mining, pages 274–285, 2005.

[35] W.W Zachary. An information flow model for conflict and
fission in small groups. Journal of Anthropological Research,
33:452–473, 1977.

231

