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Abstract. The problem of community structure detection in complex networks
has been intensively investigated in recent years. In this paper we propose a ge-
netic based approach to discover communities in social networks. The algorithm
optimizes a simple but efficacious fitness function able to identify densely con-
nected groups of nodes with sparse connections between groups. The method is
efficient because the variation operators are modified to take into consideration
only the actual correlations among the nodes, thus sensibly reducing the research
space of possible solutions. Experiments on synthetic and real life networks show
the capability of the method to successfully detect the network structure.

1 Introduction

The suitability of networks to represent many real world systems has given an impres-
sive spur to the recent research area of complex networks. Collaboration networks, the
Internet, the world-wide-web, biological networks, communication and transport net-
works, social networks are just some examples. Networks, in general, are constituted by
a set of objects and by a set of interconnections among these objects. In social networks
the objects are people and the connections represent social relations, such as common
interests, friendship, religion, and so on. An interesting property to investigate, typical
to many networks, is the community structure, i.e. the division of networks into groups
(also called clusters) having dense intra-connections, and sparse inter-connections. The
capability of detecting the partitioning of a network in clusters can give important in-
formation and useful insights to understand how the structure of ties affects individuals
and their relationships. The problem of community detection has been receiving a lot
of attention and many different approaches have been proposed [10,16,18,4,20,2,11].

In this paper we propose a new algorithm, named GA-Net, to discover communities
in networks by employing genetic algorithms. The approach introduces the concept of
community score to measure the quality of a partitioning in communities of a network,
and tries to optimize this quantity by running the genetic algorithm. All the dense com-
munities present in the network structure are obtained at the end of the algorithm by
selectively exploring the search space, without the need to know in advance the exact
number of groups. Specialized variation operators allow to reduce the space of the pos-
sible solutions thus improving the convergence of the method. The main novelties of
the approach can be summarized as follows. The concept of community score, that pro-
vides a global quality measure of a partitioning in communities, is defined. The notion
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of safe individual is introduced to avoid useless computation to the genetic algorithm
and specialized variation operators that generate safe individuals are employed. Unlike
many existing methods, the algorithm does not require the number of communities to
find. This number is automatically determined by the optimal value of the community
score. Experiments on synthetic and real life networks show the capability of the genetic
approach to correctly detect communities with results comparable with state-of-the-art
approaches.

The paper is organized as follows. The next section provides the necessary background
to formalize the problem and defines the quality metric. In section 3 a description of
the representation adopted and the variation operators used is provided. In section 4 an
overview of the main proposals in community detection algorithms is given. In section 5,
finally, the results of the method on synthetic and real life data sets are presented.

2 Problem Definition

A social network SN can be modelled as a graph G = (V, E) where V is a set of
objects, called nodes or vertices, and E is a set of links, called edges, that connect two
elements of V . A community (or cluster) in a network is a group of vertices having a
high density of edges within them, and a lower density of edges between groups. The
problem of detecting k communities in a network, where the number k is unknown,
can be formulated as finding a partitioning of the the nodes in k subsets that are highly
intra-connected and sparsely inter-connected. To deal with graphs, often the adjacency
matrix is used. If the network is constituted by N nodes, the graph can be represented
with the N × N adjacency matrix A, where the entry at position (i, j) is 1 if there is
an edge from node i to node j, 0 otherwise. The problem of detecting communities in a
network can then be transformed to that of finding a partitioning of A in k sub-matrices
that maximize the sum of densities of the sub-matrices. A naive density measure for a
sub-matrix of n rows/columns is the number of ones (i.e. interactions) it contains. The
higher the number of ones, the more connected the n nodes. However, counting the
number of interactions does not give any information about the interconnections among
the nodes. A density measure based on volume and row/column means, allowing to
detect maximal and dense sub-matrices, has been introduced in [1], and applied to find
Co-clusters in sparse binary matrices. Co-clustering[13], also known as bi-clustering,
differently from clustering, tries to simultaneously group both the dimensions (objects
and features) of a data set. Sub-matrix identification can be considered as a special
case of co-clustering in which the two dimensions represent the same concept, i.e. the
nodes of the graph. In the following the density measure used in [1], specialized for
adjacency matrices, is recalled, and the new concept of community score, that gives
a global measure of the network partitioning in clusters, is defined. In the following,
without loss of generality, we assume an undirected graph. This assumption implies
that the adjacency matrix is symmetric.

Let S = (I, J) be sub-matrix of A, where I is a subset of the rows X = {I1, . . . , IN}
of A, and J is a subset of the columns Y = {J1, . . . , JN} of A.

Let aiJ denote the mean value of the ith row of the S, and aIj the mean of the jth
column of S. More formally,
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aiJ = 1
|J|

∑
j∈J aij , and aIj = 1

|I|
∑

i∈I aij

The volume vS of a sub-matrix S = (I, J) is the number of 1 entries aij such that
i ∈ I and j ∈ J , that is vS =

∑
i∈I,j∈J aij .

Given a sub-matrix S = (I, J), the power mean of S of order r, denoted as M(S) is
defined as

M(S) =
∑

i∈I(aiJ )r

|I|
A measure based on volume and row/column mean, that allows the detection of max-

imal and dense sub-matrices, can be defined as follows. Given a sub-matrix S = (I, J),
let M(S) be the power mean of S of order r. The score of S is defined as Q(S) =
M(S) × vS . The community score of a partitioning {S1, . . . Sk} of A is defined as

CS =
k∑

i

Q(Si)

The problem of community identification can be formulated as the problem of maximize
CS. It is worth to note that higher values of the exponent r bias the CS towards matrices
containing a low number of zeroes. In fact, it amplifies the weight of the densely intercon-
nected nodes, while reducing those of less connected in the computation of the community
score. In the experimental result section we show that when the modular structure of the
network is not well defined, higher values of r help in detecting communities.

3 Genetic Representation and Operators

In this section we give a description of the algorithm GA-Net, the representation adopted
for partitioning the network, and the variation operators used.

Genetic representation. Our clustering algorithm uses the locus-based adjacency rep-
resentation proposed in [19] and employed by [9,14] for multiobjective clustering. In
this graph-based representation an individual of the population consists of N genes
g1, . . . , gN and each gene can assume allele values j in the range {1, . . . , N}. Genes
and alleles represent nodes of the graph G = (V, E) modelling a social network SN ,
and a value j assigned to the ith gene is interpreted as a link between the nodes i and
j of V . This means that in the clustering solution found i and j will be in the same
cluster. A decoding step, however, is necessary to identify all the components of the
corresponding graph. The nodes participating to the same component are assigned to
one cluster. As observed in [9], the decoding step can be done in linear time. A main
advantage of this representation is that the number k of clusters is automatically deter-
mined by the number of components contained in an individual and determined by the
decoding step. Suppose to have the network shown in figure 1(a). It consists of eleven
nodes numbered from 1 to 11. The network can be partitioned in the three groups visu-
alized by different colors and shapes of the nodes. Out of the many possible genotypes,
that showed in figure 1(b), corresponding to the optimal solution, is translated in the
graph structure given in figure 1(c). Each connected component provides a grouping of
nodes that corresponds to the partitioning of the network in figure 1(a).
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Objective Function. As described above, the decoding of an individual provides a dif-
ferent number k of components {S1, . . . Sk} in which the graph is partitioned. We are
interested in identifying a partitioning that optimizes the community score because, as
already discussed in the previous section, this guarantees highly intra-connected and
sparsely inter-connected communities. The objective function is thus CS =

∑k
i Q(Si)

Initialization. Our initialization process takes in account the effective connections of
the nodes in the social network. A random generation of individuals could generate
components that in the original graph are disconnected. In fact, a randomly generated
individual could contain an allele value j in the ith position, but no connection exists
between the two nodes i and j, i.e. the edge (i, j) is not present. In such a case it
is obvious that grouping in the same cluster both nodes i and j is a wrong choice.
In order to overcome this drawback, once an individual is generated, it is repaired,
that is a check is executed to verify that an effective link exists between a gene at
position i and the allele value j. This value is maintained only if the edge (i, j) exists.
Otherwise, j is substituted with one of the neighbors of i. This guided initialization
biases the algorithm towards a decomposition of the network in connected groups of
nodes. We call an individual generating this kind of partitioning safe because it avoids
uninteresting divisions containing unconnected nodes. Safe individuals improve the
convergence of the method because the space of the possible solutions is restricted.

Uniform Crossover. We used uniform crossover because it guarantees the maintenance
of the effective connections of the nodes in the social network in the child individual.
In fact, because of the biased initialization, each individual in the population is safe,
that is it has the property, that if a gene i contains a value j, then the edge (i, j) exists.
Thus, given two safe parents, a random binary vector is created. Uniform crossover then
selects the genes where the vector is a 1 from the first parent, and the genes where the
vector is a 0 from the second parent, and combines the genes to form the child. The
child at each position i contains a value j coming from one of the two parents. Thus
the edge (i, j) exists. This implies that from two safe parents a safe child is generated.
Figure 1 on the right shows an example of crossover. Two parents, individuals A and
B, and their graph-based representations are reported. Uniform crossover of A and B
gives the child C.

Mutation. The mutation operator that randomly change the value j of a i-th gene causes
a useless exploration of the search space, because of the same above observations on
node connections. Thus the possible values an allele can assume are restricted to the
neighbors of gene i. This repaired mutation guarantees the generation of a safe mutated
child in which each node is linked only with one of its neighbors.

Given a network SN and the graph G modelling it, GA-Net starts with a popula-
tion initialized at random and repaired to produce safe individuals. Every individual
generates a graph structure in which each component is a connected subgraph of G.
For a fixed number of generations the genetic algorithm computes the fitness function
of each solution member, and applies the specialized variation operators to produce
the new population. In the experimental result section we show that the fitness func-
tion guides the genetic algorithm to successfully identify the best partitioning of SN ,
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Fig. 1. (a) A network modelled as a graph; (b) the locus-based representation of a genotype; (c)
the graph-based structure of the genotype. On the right Uniform crossover of two individuals,
their genotype, their graph-based representation, and the child generated.

converging in a few iterations to the solution. Before presenting the experiments, in the
next section an overview of the main approaches to community detection is given.

4 Related Work

Many different algorithms, coming from different fields such as physics, statistics, data
mining, have been proposed to detect communities in complex networks
[8,10,16,18,4,20,17,2,11]. In the following we review some of the most known.

One of the most famous algorithm has been presented by Newman and Girvan [8,18].
The method is a divisive hierarchical clustering method [6] based on an iterative re-
moval of edges from the network. The edge removal splits the network in communities.
The edges to remove are chosen by using betweenness measures. The idea underlying
the edge betweenness comes from the observation that if two communities are joined
by a few inter-community edges, then all the paths from vertices in one community to
vertices in the another must pass through these edges. Paths determine the betweenness
score to compute for the edges. By counting all the paths passing through each edge,
and removing the edge scoring the maximum value, the connections inside the network
are broken. This process is repeated, thus dividing the network into smaller compo-
nents until a stop criterion is reached. The criterion adopted to stop the division is the
modularity. Given k communities, the modularity is defined as follows. Let eij be the
fraction of edges in the network connecting vertices from group i to those of group j,
and ai =

∑
j eij . Then M =

∑
i(eii − a2

i ) is the fraction of edges inside communities
minus the expected value of the fraction of edges if edges fall at random without regard
to the community structure. Values approaching 1 indicate strong community structure.
Thus the algorithm computes the modularity of all the clusters obtained by applying the
hierarchical approach, and returns as result the clustering having the highest value of
modularity. An agglomerative variant of this approach is presented in [16], and a faster
method version, based on the same strategy, is described in [4].
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Hopcroft et al. [10] present an agglomerative hierarchical method for clustering large
linked networks to identify stable or natural cluster. A cluster is deemed natural if it
appears in the clustering process when a given percentage of links are removed.

Radicchi et al. [20] propose two quantitative definitions of community and an al-
gorithm to identify communities. The quantitative definitions of community are based
on the degree of a node. A subgraph is a community in strong sense if each node has
more connections within the community than the rest of the graph. A subgraph is a
community in a weak sense if the sum of all in-degrees in V is greater than the sum of
the out-degrees. The algorithm is a divisive hierarchical method based on the concept
of edge-clustering coefficient, defined in analogy with the node clustering coefficient
[15], as the number of triangles an edge participates, divided by the number of triangles
it might belong to, given the degree of the adjacent nodes. Their algorithm works like
that of Newmann and Girvan, the difference being that instead of choosing to remove
the edge with the highest edge betweenness, the removed edges are those having the
smallest value of edge-clustering coefficient.

Approaches to community detection based on Genetic Algorithms can be found in
[21,22,7]. In [21,22] the authors present a genetic algorithm that uses as fitness function
the network modularity proposed by Newmann and Girvan. An individual is constituted
by N genes, where N is the number of objects. The ith gene corresponds to the ith node,
and its value is the community identifier of node i. They use a non standard one-way
crossover operation in which, given two individuals A and B, a community identifier j
is chosen at random, and the identifier j of the nodes j1, . . . jh of A is transferred to the
same nodes of B.

A different approach is described in [7] where a random walk distance measure be-
tween graphs is integrated in a genetic algorithm to cluster social networks. The repre-
sentation they use is the k-medoids where each cluster center is represented by one of
the nodes of the network. Of course this means that the number k of clusters must be
known in advance. The fitness function tries to minimize the sum of all the pair-wise
distances between nodes.

5 Experimental Results

In this section we study the effectiveness of our approach on a synthetic data set. Then
we compare the results obtained by GA-Net with those reported by Girvan and Newman
in [8,18,17] on some real-worlds networks for which the partitioning in communities
is known. In both cases we show that our genetic algorithm successfully detects the
network structure and is competitive with that of Girvan and Newman. The GA-Net al-
gorithm has been written in MATLAB, using the Genetic Algorithms and Direct Search
Toolbox 2. The experiments have been performed on a Pentium 4 machine, 1800MHz,
1GB RAM. We employed standard parameters for the genetic algorithm, crossover rate
0.8, mutation rate 0.2, elite reproduction 10% of the population size, roulette selection
function. The population size was 300, the number of generations 30.

Synthetic data set. In order to check the ability of our approach to successfully detect
the community structure of a network, we use the benchmark proposed by Girvan and
Newan in [8]. The network consists of 128 nodes divided into four communities of 32
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nodes each. Edges are placed between vertex pairs at random but such that zin +zout =
16, where zin and zout are the internal and external degree of a node with respect to its
community. If zin > zout the neighbors of a node inside its group are more than the
neighbors belonging to the other three groups, thus a good algorithm should discover
them. We generated 50 different networks for values of zout ranging from 0 to 8, and
used the Normalized Mutual Information to measure the similarity between the true
partitions and the detected ones. The Normalized Mutual Information is a similarity
measure proved to be reliable by Danon et al. [5]. Given two partitions A and B of
a network in communities, let C be the confusion matrix whose element Cij is the
number of nodes of community i of the partition A that are also in the community j of
the partition B. The normalized mutual information I(A, B) is defined as :

I(A, B) =
−2

∑cA

i=1

∑cB

j=1 Cij log(CijN/Ci.C.j)
∑cA

i=1 Ci.log(Ci./N) +
∑cB

j=1 C.j log(C.j/N)

where cA (cB) is the number of groups in the partition A (B), Ci. (C.j) is the sum
of the elements of C in row i (column j), and N is the number of nodes. If A = B,
I(A, B) = 1. If A and B are completely different, I(A, B) = 0.

Figure 2(a) shows the normalized mutual information, averaged over the 50 runs,
for different values of the exponent r when the external degree zout increases from 0
to 8. The figure point out that until zout ≤ 5 the algorithm is successful in detecting
the true communities in almost more than 80% of cases, independently the value of
r. However, as soon as the network fuzziness increases, in order to discover at least
50% of the true groups the parameter r plays an important role. In fact, the higher the
number of interconnections, the more indistinguishable the network structure because
communities are mixed with each other, but augmenting the value of r the algorithm is
still able to identify the hidden groups.

Real-life data set. We now show the application of GA-Net on three real-world net-
works, the American College Football, Krebs’ books on American politics, Bottlenose

(a) (b)
Fig. 2. (a): Normalized mutual information obtained by GA-Net on the synthetic data set for
different values of the exponent r. (b): Comparison of GA-Net and Girvan and Newman’s (de-
noted GN) algorithms relative to Normalized Mutual Information for American College Football,
Krebs’political books, Dolphins data sets.
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Dolphins, well studied in the literature and compare our results with those obtained by
Girvan and Newman in [8,18,17]. The American College Football network [8] comes
from the United States college football. The network represents the schedule of Division
I games during the 2000 season. Nodes in the graph represent teams and edges represent
the regular season games between the two teams they connect. The teams are divided
in conferences. The teams on average played 4 inter-conference matches and 7 intra-
conference matches, thus teams tend to play between members of the same conference.
The network consists of 115 nodes and 616 edges grouped in 12 teams. The network
of political books was compiled by V. Krebs. The nodes represent 105 recent books on
American politics brought from Amazon.com, and edges join pairs of books frequently
purchased by the same buyer (unpublished http://www.orgnet.com/). Books were di-
vided by Newman [17] according to their political alignment (conservative or liberal),
except for a small number of books (13) having no clear affiliation. The last example is
the social network of 62 bottlenose dolphins living in Doubtful Sound, New Zealand,
compiled by Lusseau [12] from seven years of dolphins behavior. A tie between two
dolphins was established by a their statistically significant frequent association. The
network split naturally into two large groups, the number of ties being 159.

For each network we computed the normalized mutual information on the base of
the results reported by the authors. Regarding GA-Net, we run it 10 times and computed
the average normalized mutual information over these 10 runs. The results are reported
in figure 2(b). The figure clearly shows the very good performance of GA-Net with
respect to Girvan and Newman’s approach. In fact, on the American College Football
network, GA-Net obtained an average normalized mutual information of 0.8825 over
the 10 runs, with a worst value of 0.8417, and a best value of 0.9031, while the result
of [8] was 0.8957. For the Krebs’ network Newman [17] obtained 0.5107, while our
approach 0.5756. Finally, on the dolphin network Girvan and Newman [18] obtained
a normalized mutual information of 0.64. GA-Net over 10 runs obtained an average
value of 0.8992. It is worth to point out that for 7 out of the 10 runs, GA-Net misplaced
just node 40, which is connected to only two nodes: node 37 which belongs to the
first group, and node 58 that belongs to the second group, thus the membership to one
of the two communities is indistinguishable without adding semantics to the kind of
link interconnecting the dolphins. In one over the 10 runs GA-Net obtained the exact
partitioning of dolphins. To conclude figure 3 reports the result of running our algorithm
on Zackary’s Karate Club Study. This network was generated by Zachary [23], who
studied the friendship of 34 members of a karate club over a period of two years. During
this period, because of disagreements, the club divided in two groups almost of the same
size. The figure has been reproduced by using the NetDraw software [3]. We found
four groups, depicted in the figure by different colors and shapes of the nodes. However,
the two small communities are each a subgroup of the two effective communities. Thus
our algorithm is able to detect more compact interactions. For example, as pointed out
on the figure, the small community on the bottom left is characterized by five nodes
each of which is connected to the bigger community only through the friendship to
node 1, while among these five nodes a tighter connection exists. Girvan and Newman
in [8] found the two groups in which the karate club divided. Node 3, however, was
misplaced. A similar result is reported in [21]. In this latter approach the node 10 is
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Fig. 3. Community structure found by the genetic based method GA-Net

misplaced. Our approach, on the contrary, is able to correctly classify both these nodes.
The results obtained show the capability of genetic algorithms to effectively deal with
community identification in networks.

6 Conclusions

The paper presented a genetic algorithm for detecting communities in social networks.
The approach introduces the concept of community score, and searches for an optimal
partitioning of the network by maximizing the community score. All the dense com-
munities present in the network structure are obtained at the end of the algorithm by
selectively exploring the search space, without the need to know in advance the ex-
act number of groups. The concept of community score, though simple, revealed very
efficacious. In fact, experiments on synthetic and real life networks showed the capa-
bility of the genetic approach to correctly detect communities with comparable results
with state-of-the-art approaches. Future research will aim at applying multi-objective
optimization to improve quality results.
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