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An approach to detect communities in signed networks that combines Genetic Algo-
rithms and local search is proposed. The method optimizes the concepts of modularity
and frustration in order to find network divisions far from random partitions, and hav-
ing positive and dense intra-connections, while sparse and negative inter-connections. A
local search strategy to improve the network division is performed by moving nodes hav-
ing positive connections with nodes of other communities, to neighboring communities,
provided that there is an increase in signed modularity. An extensive experimental eval-
uation on randomly generated networks for which the ground-truth division is known
proves that the method is competitive with a state-of-art approach, and it is capable
to find accurate solutions. Moreover, a comparison on a real life signed network shows
that our approach obtains communities that minimize the positive inter-connections and
maximize the negative intra-connections better than the contestant methods.

Keywords: Evolutionary computation; community detection; multiobjective clustering;
signed networks; local search.
1. Introduction

In the last few years the rapid diffusion of Internet and social networking has al-
lowed people to connect and exchange opinions and information. The representation
of such connections through the concept of network, where a node denotes an in-
dividual, and an edge denotes the link between two individuals, has primarily been
interpreted as positive. Thus relationships have typically expressed collaboration,
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common interests, membership to the same group, friendship. However, since the
primary studies on structural balance theory of Heider,! relative to attitude and
perception of social organization of individuals, later generalized by Cartwritght
and Harary,? it has been pointed out that relationships between individuals can
be either positive or negative, such as like-dislike, friends-enemies, love-hate, trust-
distrust. Signed networks are an extension of networks to include the additional
information of positive and negative links. Thus positive links denote friendly re-
lations, while negative links represent antagonistic relations. Detecting community
structure on these kind of networks is an important research topic since it allows
to determine instability inside relationships, and, consequently, to predict changes
in group organization.

Approaches to find dense groups of nodes for unsigned networks are mainly
based on the optimization of the concept of modularity.?> The extension of such
concept to signed networks has been introduced by Gémez et al.*

As regards signed networks, Doreian and Mrvar® were the first that proposed a
partitioning method by introducing the concept of frustration, which expresses the
number of positive ties among different groups and the number of negative links
inside the same group.

In this paper a method that combines Genetic Algorithms® and a local refine-
ment strategy to detect communities in signed networks is proposed. The method,
named SN-MOGA (Signed Networks with MultiObjective Genetic Algorithms) op-
timizes the concepts of modularity® and frustration® by applying a Multiobjective
Genetic Algorithm.” The maximization of modularity allows to detect network divi-
sions far from random divisions, while the minimization of frustration guarantees to
have as few negative intra-connections and positive inter-connections as possible.
The SN-MOGA algorithm evolves a population of candidate solutions by trying
to obtain the best trade-off between high modularity and low frustration. At the
end of the evolutionary process a solution from the Pareto front is chosen, and a
local search strategy is performed to improve signed modularity, by moving those
nodes having positive connections with nodes of other communities, to neighboring
communities, provided that there is an increase in signed modularity.

The idea of modeling community detection in both signed and unsigned net-
works as a problem of optimizing multiple objectives is not new. Moreover, studies
on which kinds of objectives for unsigned networks should be selected to improve
the performance of a method, along with the advantages of using multiobjective
optimization when objective functions are negatively correlated, have been dis-
cussed by Shi et al.® In this context, the main contributions of our work consist
in coupling multiobjective optimization with a local search strategy to improve the
solution obtained from the Pareto front. A correlation analysis of the two objective
functions employed by the method shows that the two objectives are negatively
correlated, thus suitable for multiobjective optimizations, according to the obser-
vations reported by Shi et al.® that negatively correlated objectives lead to better
performances compared with single-objective or positively correlated objectives.
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An extensive experimentation on synthetic networks and real life networks shows
that our multiobjective approach optimizing signed modularity and frustration is
capable to divide signed networks in groups of nodes having high accuracy and low
edge misclassification. Comparison with other state-of-the-art methods indicates
that SN-MOGA obtains network partitioning more meaningful and closer to the
ground truth division.

The paper is organized as follows. In the next section an overview of existing
approaches to community detection in signed networks is given. In Section 3 pre-
liminary definitions are introduced, and the problem is clearly stated. Section 4
presents the algorithm. Section 5 describes the evaluation measures adopted for
assessing the method results. Section 6 evaluates the performance of our method
on synthetic generated networks for which the ground truth division is known, and
a real life network. Moreover, a comparison with existing state-of-the art methods
is reported. Section 7 compares SN-MOGA with the Particle Swarm Optimiza-
tion method of Gong et al.® Section 8 analyzes the running time of the method.
Section 9, finally, concludes the paper.

2. Related Work

In this section we give an overview of the main proposals to find communities in
signed networks.

Signed networks originate from the studies of Heider! on structural balance the-
ory. The idea underlying balancing is that if two people ¢ and j belonging to the
same group like each other, then their evaluation regarding other people should be
consistent, that is if 7 and j like each other, then they both either dislike or like the
same people, and if ¢ and j dislike each other, they disagree in evaluating others.
A triad is defined balanced if the product of its edge signs is positive. If all the
triads in a network are balanced, the network is balanced. It has been proved that
in a balanced network the set of vertices can be divided into two clusters such that
positive links are only within clusters, while negative links are between clusters.
However, rarely a network has a 2-way partitioning, thus Davis'® extended the
concept of balance to k-balance. A network is k-balanced if it can be divided into k
groups such that, edges within groups are positive and edges between groups are
negative. In such a case the network is also said partitionable or clusterable, while
the term balanced is generally used for 2-way balance. k-balancing is an important
research topic since balancing assures stability, while imbalance generates tension
inside a group.

One of the first partitioning approaches to structural balance has been proposed
by Doreian and Mrvar.® The method randomly divides the nodes in a fixed number
k of clusters, and then tries to optimize a criterion function by moving nodes among
neighboring partitions. The criterion function they proposed is frustration (see next
section for a formal definition). The neighbors of each partition are computed, then,
either a node is moved to a neighboring cluster, or two nodes are exchanged between
two neighboring groups. These neighbors are examined at random, and, if the new
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partition has a lower value of frustration, the new solution is accepted. The main
drawbacks of the method are that the number of groups must be given as input
parameter, and that it disregards the density of links, which is one of the main
characteristics exploited in unsigned community detection methods.

More recently, because of the increasing interest in signed networks, several
approaches have been proposed. Many of these methods extends concepts used to
detect communities in unsigned networks, to take into account the sign of links.

1.1 proposed an algorithm that uses the concept of random walk and

Yang et a
adopts an agent-based heuristic to extract communities. The method starts with an
arbitrary node. From this node an agent performs a random walk for a number of
steps by visiting one of the neighboring nodes on the base of the transition probabil-
ity computed from the network connectivity degree. The method, named FEC, is
composed of two main phases. The FC (Find a Community) phase transforms the
adjacency matrix of the graph by applying iterative operations, in order to compute
aggregate transition probabilities, and sorts them for each row. The EC (Extract
the sink Community) phase divides the transformed matrix in two blocks by ap-
plying a cutoff criterion. One of the two blocks is identified as a community, called
the sink community, while the remaining block is recursively processed in the same
way. A main problem is the definition of the cutoff value. To this end the authors
proposed a variation of the cut concept used in spectral clustering'? that takes into
account the sign of edges. F'EC needs as input parameter the number [ of steps the
agent performs before arriving to a destination node. A sensitivity analysis of this
parameter shows that when [ is greater than a range of values between 10 and 20,
the F'C' phase is insensitive to this parameter.

Approaches that extend the concept of modularity of Newman and Girvan?® have
been proposed by Traag and Bruggeman'® and Gémez et al.* The former extended
modularity with negative signs and formalized the concept as a Potts model.*
They defined a Hamiltonian for the positive part and another for the negative one,
by extending the approach of Reichardt and Bornholdt.'* Then minimizing the
Hamiltonian is shown to be equivalent to maximizing modularity. To this end the
authors modified the simulated annealing approach of Reichardt and Bornholdt,**
and showed an application of the method to a network of conflicts and alliances
between countries. Gémez et al.,* instead, generalized the concept of modularity
to signed networks and proposed to maximize signed modularity to detect commu-
nities. They applied the approach to a real network related to retail stores in the
city of Lyon, and found that the results they obtained were better when compared
with the classification provided by a public institution.

Spectral graph theory is another important concept extensively used to find com-
munities. In this context, Kunegis et al.,'® in order to deal with signed networks,
defined the signed Laplacian matrix of a graph, investigated its properties, gave a
definition of signed ratio cut, and proposed a spectral approach to find a clustering
by minimizing ratio cut. Moreover, they exploited these concepts also for graph
visualization and link prediction. Chiang et al.'® proposed a multilevel clustering
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algorithm that introduces new k-way objectives and kernels. These objectives are
shown to be equivalent to a general weighted kernel k-means objective, thus the
optimization of these objectives can be performed by using a kernel k-means like
algorithm. Furthermore the authors show that the approach of Kunegis et al.,'®
presents some weakness when directly generalizes the signed Laplacian to k-way
clustering. Anchuri and Magdon-Ismail'”
detect communities in signed social networks. An input parameter to fix the value
of the leading eigen vector, used to assign nodes to communities, must be given.
They consider the concepts of frustration® and modularity® and detect communities
by optimizing only one of these two objectives at a time. After that, they try to
improve the chosen objective by moving nodes among communities. The authors

proposed a two step spectral approach to

formalize the problem of minimizing frustration and maximizing modularity to that
of maximizing the mathematical form f(M,s) = sT Ms, where s € {—1,+1}" is
an n-dimensional vector. When s is equal to the eigenvector corresponding to the
maximum eigenvalue of M, it maximizes f (M, s). The top eigenvector is computed
by using the Power Iteration method. Since the method finds a partitioning in
two communities, it can be extended to a higher number of communities by it-
eratively dividing communities until the objective cannot be improved any more.
Experiments on two real-life signed networks show that when the objective func-
tion is modularity, the two step approach obtains the minimum frustration value
with respect to modularity maximization without improvement, and k-means ap-
proaches. Same results are obtained when minimizing frustration with and without
improvement.

A different approach based on simulated annealing has been presented by

1.8 The authors proposed a framework for building signed networks

Bogdanov et a
from content generation flow. Validation is performed on two case studies of ar-
ticles extracted from Wikimedia download site. Since the number k of clusters to
find must be provided in input, the authors vary the value of k£ from 2 to 10, and
compute the criterion they optimize to obtain a partitioning. They choose the value
of k for which a higher value does not increase the optimization criterion.

One of the main limitations of these approaches is that the number £ of clusters
must be given as input parameter. Thus some strategy must be introduced to
determine k, such as executing the method for a range of k values, and then choosing
the k giving the best value of the criterion that the method optimizes.

Recently, however, methods based on evolutionary computation, that automat-
ically determine the number of partitions, have been proposed. Li et al.'® presented
and compared two evolutionary algorithms, named FA-SN and CSA-SN, and two
memetic algorithms, named EAgc-SN and CSAgc-SN. The latter two differ with
respect to the formers since they include a hill-climbing strategy. All the algorithms
adopt the character string encoding of individuals, i.e. each node is associated with
the label of the cluster it belongs to, and use as objective function to optimize
the improved modularity and the improved modularity density. The first one is the
modularity extended by Gémez et al.* to signed networks, while the latter is a
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generalization to networks with signs of the modularity density concept, proposed
by the same authors for unsigned networks. Experiments on different networks show
that the memetic approaches outperform the evolutionary approaches.

Liu et al.?2? proposed a multiobjective evolutionary method to find communities
in signed networks, named MFEA_s-SN. The two objectives to optimize are based
on the concepts of positive and negative cluster similarity. The authors extend
the definition of similarity of Huang et al.?! between two neighboring nodes to
signed links, and define the first objective as the positive internal and external
similarity of a community structure, while the second objective as the negative
internal and external similarity of a community structure. Moreover, they propose
a representation of individuals consisting of two components. The first component
is a node permutation, the second component denotes the cluster label the node
belongs to. In order to determine this label, MEA_s-SN performs a community
detection method that starts by an empty cluster and adds a node, provided that
a criterion, named signed tightness, increases. This approach allows the method to
assign a node to multiple communities. The method has been compared with the
algorithm FEC of Yang et al.,'! with CSApc-SN of Li et al.,'® and an extension of
the Blondel et al.22 method. The authors showed that their approach outperforms
the competitors.

A different bio-inspired approach has been proposed by Gong et al.® They in-
troduced a multiobjective discrete particle swarm optimization algorithm, called
MODPSO, to solve the network clustering problem by optimizing two objective
functions, the kernel k-means and the ratio-cut. Though the method is proposed
for unsigned networks, the authors extended the two fitness functions for signed net-
works, and presented results also on 4 small sized networks, used by Yang et al.!!
to evaluate the FEC algorithm.

The method we propose, analogously to Liu et al.,2° is based on multiobjective
optimization. However the two approaches are different in many aspects. First of
all MEA_s-SN uses an individual representation that combines both cluster label
and node permutation, SN-MOGA, instead, as will be clear in Section 4, adopts the
locus-based representation. The objective functions the two algorithms optimize are
also different. MEA_s-SN adapts the community fitness introduced by Lancichinetti
et al.?® to signed networks, while SN-MOGA uses signed modularity and frustra-
tion. In the experimental result section we compare SN-MOGA with MEA_s-SN on
synthetic networks, and with MEA_s-SN and Chiang et al.'® method on the real-
life network Wikipedia. Moreover, a comparison with MODPSO is also reported on
four popular signed networks. We show that SN-MOGA is very competitive with
respect to these methods.

3. Notation and Definitions

A signed social network can be modeled as a graph G = (V, E,W), where V is
the set of n nodes (vertices) and F is the set of m edges. W:V x V — {-1,0,1}
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is a function which assigns +1 to edges connecting positively a pair of nodes, —1
to edges that connect negatively a pair of nodes, and 0 if an edge does not exist
between the nodes.

Let A denote the weighted adjacency matrix associated with G, ie. A;; =
W (i,7). The matrix A can be split into two adjacency matrices corresponding to
positive and negative edges by setting A:j = A;; if A;; > 0, zero otherwise, and
A; ;= —A;;if A;j <0, zero otherwise. Thus

A=At — A" (1)

Given a node i € V, a:r and a; are defined respectively as the positive degree and
the negative degree of i.
Now consider a division C' = {C,...,Cy} of the graph G into k communities.
Frustration F(C) of a network partition C' = {C4, ..., Cy} is defined as the sum
of the number of positive edges between nodes belonging to different communities
and the number of negative edges between nodes inside the same community.?

F(C) =Y ad;;8(cic;) + (1 — )Af,(1 = d(ciy cj)) (2)
i,jeVv
where ¢; (¢j) is the community of node i (j) and 6(¢;, ¢;) is the Kronecker delta
function which takes the value 1 if nodes ¢ and j belong to the same community,
0 otherwise, and 0 < o < 1 is a parameter that allows to give a different weight to
positive and negative links. In the following we do not differentiate the importance
of links, thus we consider frustration without this parameter.
Frustration can be rewritten as:

k
FO) =) 1> A+ Y. A ®)
r=1 |i,j€C, 1€Cr,jé¢C,
now let
L= > A (4)
i,j€C,
and

%j_ = Z Aj,j (5)

i€C,j¢Cr
Then frustration can be expressed as:

k
F(C) =) (I, +7) (6)

r=1
The concept of modularity has been introduced by Newman and Girvan in Ref. 3.
Intuitively, it is the difference between the fraction of edges inside a community,
and the expected value of the fraction of edges that would be in the network if
edges fell at random without regard to community structure. For signed networks
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the definition of modularity is modified to take into account the contribution of
both positive and negative edges.
Signed modularity can be defined as:*

1 a; a; aja;r

O = gt am 2 \ A9 ¥ g T g |0 w) @)

i,jeV
where m™ and m ™~ are the number of positive and negative entries in A, respectively.
Let m = m™* 4+ m™. Since the Kronecker function d(c;, ¢;) is equal to 1 if the nodes
i and j are in the same community, similarly to frustration, the signed modularity
can be reformulated as:
k 2 2

Q:Z Z@+Z (a;) 72 (o) (8)
s 2m 2m=(2m) 2m+t(2m)

r=1 |i,7€C, ieC, ie€C\

Now let

L= Y A (9)

i,j€C,

df =" (af) (10)
c€C,.

dy =Y (a;) (11)
ieCh

Signed modularity can be rewritten as :
k

s=3 [de 2 (@ )

om  2m—(2m)  2m*(2m)

r=1

Note that, if either m™ or m™ are zero, then Qg cannot be computed, thus we
assume that its value is zero.

Given a graph G = (V, E, W) modeling a signed network, our objective is to
find a partitioning of G in k clusters such that: (1) intra-connections are dense and
most edges within clusters are positive; (2) inter-connections between clusters are
sparse and most of these edges are negative.

Shi et al.® performed an experimental study aiming at comparing different ob-
jective functions in multiobjective community detection methods, in order to choose
the objectives leading to better performances. To this end, for a given network, they
generated random partitions, and then computed the values of different objective
functions. After that, they estimated the Pearson correlation coefficient among the
objectives and observed that only negatively correlated objectives are suitable for
multiobjective optimization. In fact they (1) provoke opposite effects on the number
of communities, (2) avoid an algorithm to converge to trivial solutions, (3) enhance
diversity and avoid premature convergence. Positively correlated objectives, instead,
are equivalent to single objective methods.
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(b)

Fig. 1. A signed network (a) and the genetic representation (b) corresponding to the ground
truth division into the two groups {1,2,3,4,5,6},{7,8,9,10,11,12}.

In order to verify whether the two objectives of signed modularity and frustra-
tion satisfy the property of being negatively correlated, we performed an analogous
study on the synthetic networks described in Section 6. The Pearson correlation
coefficient we obtained was —0.3244, showing, thus, a negative correlation. This
result strengthens the suitability of these two objectives in discovering meaningful
solutions.

4. SN-MOGA Description

In this section we give a description of the multiobjective algorithm SN-MOGA for
signed networks, the representation adopted for partitioning the network, and the
variation operators used.

We used the Nondominated Sorting Genetic Algorithm (NSGA-IT) proposed by
Srinivas and Deb in Ref. 24 and implemented in the Global Optimization Toolbox
of MATLAB. SN-MOGA has been adapted with a customized population type that
suitably represents a partitioning of a network and endowed with the complemen-
tary objectives.

Genetic Representation. The algorithm uses the locus-based adjacency repre-
sentation proposed in Ref. 25. An individual of the population consists of n genes
91 - - -, gn and each gene assumes a value j in the range {1,...,n}. Each gene cor-
responds to a node of the graph G modeling the network. If the value of the ith
gene is j, it means that there is an edge between nodes ¢ and j, and that both
1 and j belong to the same cluster. In this representation the number of clusters
is determined by the number of connected components contained in an individ-
ual. Figure 1(a) shows a signed network of 12 nodes clusterable in the two groups
{1,2,3,4,5,6} and {7,8,9,10,11,12}. Dashed lines correspond to negative links,
while solid lines to positive edges. The genotype corresponding to this division is
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shown in Fig. 1(b) and it is interpreted as: node 1 is connected with node 2, node 2
with node 3, node 3 with node 5, and so on.

Initialization. A random individual is generated such that if in the ith position
there is a value j, then j must be one of the neighbors of 4, i.e. the edge (i, j) must
exist.

Uniform Crossover. SN-MOGA uses a standard uniform crossover operator. First
a crossover mask of length n, i.e. the number of nodes, is randomly generated. Each
value on the mask is either 0 or 1. An offspring is created by selecting from the
first parent the genes where the mask is a 0, and from the second parent the genes
where the mask is a 1. Uniform crossover guarantees the maintenance of the effective
connections of the nodes in the network in the child individual.

Mutation. Analogously to initialization, fixed a position i, mutation randomly
selects one of the neighbors of ¢ and assigns this value to the ith gene.

Fitness Functions. The two objectives to optimize are signed modularity (formula
(12)) and frustration (formula (6)).

Solution Selection. Multiobjective optimization techniques do not return a
unique solution to a problem, but a set of solutions are found through the use
of Pareto optimality theory.?® In this context, since a vector of competing ob-
jectives must be simultaneously optimized, the goal is to obtain Pareto-optimal
solutions, i.e. nondominated solutions for which an improvement in one objective
requires a degradation of another (Pareto front). Thus the Pareto front represents
the compromise solutions satisfying all the objectives as best as possible. However,
a solution, out of the Pareto front, should be selected. In our case we show the re-
sults when choosing the solution having the minimum frustration and that having
the maximum signed modularity.

The pseudo-code of the algorithm is reported in Fig. 2. SN-MOGA starts with a
randomly generated population of individuals (step 1) and performs multiobjective
optimization for a number of generations (steps 2—4). Then it chooses a solution
from the Pareto front (step 5) and tries to improve signed modularity by moving
nodes, having positive connections with nodes belonging to other clusters, to neigh-
boring communities (steps 6-8). In the experimental result section we will show that
SN-MOGA is able to obtain highly accurate partitioning of the signed networks we
consider.

Computational Complexity. SN-MOGA, as already described, uses the NSGA-
I1?* method. In Ref. 27 it has been proved that the run-time complexity of the
NSGA-IT algorithm is O(gp log"~! p), where g is the number of generations, p is
the population size, and h is the number of objective functions. Since the number h
of objectives of SN-MOGA is two, its complexity is O(gp log p). As regards genetic
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SN-MOGA Method:
Input: A signed network SA and the graph G = (V, E, W) modeling it

Output: A node cluster labeling that partitions SN in the optimal
community structure

1 create a population of random individuals whose
length equals the number N =| V' | of nodes of G
2 while not maxGen
3 Perform a multiobjective GA with objectives
3.1 F(C) (formula (6))
3.2 Qg (formula (12))
4 end while
5 choose the solution C' = {C1,...C}} of the Pareto front having
the either maximum signed modularity or minimum frustration value;

6 for each node v; of a cluster C; having at least

a positive link with a node belonging to a cluster C
7 Move v; to C} provided that signed modularity Qs augments
8 end for

Fig. 2. The pseudo-code of the SN-MOGA algorithm.

operators, at each generation, crossover needs O(n) time, mutation O(1) time,
while fitness computation is composed of three terms: decoding of an individual in
connected components, modularity and frustration computation. Decoding requires
O(n log n) time.?® To compute modularity and frustration, for each node i its aj'
and a; neighbors must be considered, then the time complexity is O(m), where
m is the total number of edges. Fitness computation can thus be computed in
O(n log n) + O(m) + O(m) time. The overall complexity of SN-MOGA is thus
O((gp log p) x (n log n+ m)).

Before presenting the results, in the next section the measures used to evaluate
the method are described.

5. Evaluation Measures

To validate our approach and compare it with other methods, we consider two eval-
uation measures: the error, as defined by Yang et al.,'! useful when no information
regarding the community structure is available, and a modified version of the well
known information theory concept of normalized mutual information (NMI),2° ap-
plicable when the ground-truth division of the network is given.

Error. Yang et al.'' employed the frustration concept to define the error rate of a
signed network partitioning C' as

error(C) = ————"—— x 100% (13)

20, 14
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As pointed out by the authors, this error function considers only the sign of the
links, and completely disregards the edge density.

Normalized Mutual Information (NMI). When the ground-truth division of a
network is known, a very popular measure to compare community structures, based
on information theory,3° is the Normalized Mutual Information (NMI).

The normalized mutual information NMI(A, B) of two divisions A and B of a
network is defined as follows. Let C' be the confusion matrix whose element Cj;
is the number of nodes of community i of the partition A that are also in the
community j of the partition B.

-2 CZ]lo CZJTL C C
NMI(4, B) = —— 2oL, CotoglCuyn/ € ) 10
Zizlci,log(@./n + ijlcjz()g(c,j/n)

where ¢4 (cp) is the number of groups in the partition A (B), C;. (C;) is the
sum of the elements of C' in row ¢ (column j), and n is the number of nodes. The
denominator is a normalization factor that limits the range of values in the interval
[0, 1]. Different types of normalizations have been proposed.?132 We adopt the same
used by Danon et al.? for complex networks. If A = B, NMI(4, B) = 1, if A and
B are completely different, NMI(A, B) = 0.

Weighted Normalized Mutual Information (WNMI). Recently, it has been
proved that NMI suffers of the so called selection bias,>® i.e. the leaning to choose
clustering solutions having many clusters or with fewer data points when compared
with the ground-truth clustering. This provokes an unfair favorable behavior to-
wards those methods that find a high number of clusters, independently from the
true effective number. Consider, for instance, the toy example of Fig. 1(a). The di-
vision of the network reported in Fig. 3 into the three clusters {1,2,3,6,7}, {5,11},
{4,8,9,10, 12}, when compared with the ground truth division, has an NMI value
of 0.1866. However, if consider the partitioning constituted by 12 singleton commu-
nities the NMI value is 0.4362, which is rather unintuitive. Thus, the importance

Fig. 3. Division of the network reported in Fig. 1 into the three clusters {1,2,3,6,7}, {5,11},
{4,8,9,10,12}. The NMI value in this case is 0.1866. The NMI value for 12 singleton communities
is 0.4362.
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of correcting NMI when the number of clusters is high with respect to the data
size3%35:33:36 1as been discussed, and modifications proposed.

In this paper we adopted the adjusted NMI measure proposed by Amelio and
Pizzuti®® because, as experimentally demonstrated, it is fast to compute, differently
from the high computing time required by the measure of Romano et al.,>® and
avoids to consider very similar a predicted and the ground truth clustering when
the former consists of a too few or too high number of communities with respect to
the latter.

Let A and B be the ground-truth division of a network in ¢4 communities,
and the partitioning in ¢ communities obtained by a method, respectively. The
weighted NMI is defined as follows:

_lea—cpl

WNMI=e 7 x NMI (15)

The exponent of the exponential function is 0 when the predicted number Cp
and the true number C'4 are the same. In this case, thus, the weighted NMI and
NMI values coincide. However, as the difference between ¢4 and cp increases, both
if either a lower or a higher number cp of communities is obtained, the value of
WNMI proportionally decreases.

In the next section we test our method and compare it with other state-of-the-
art approaches by showing both the NMI and WNMI values the methods obtain.

6. Experimental Results

In this section we evaluate the capability of our approach in obtaining meaningful
partitions of signed networks. As regards the parameters needed by SN-MOGA,
in order to set crossover and mutation rate, we executed the algorithm on the
synthetic networks described in detail in the next section, by considering values
between 0.1 and 0.4 for mutation, and 0.1 until 1 for crossover. Figure 4 shows the
NMI and modularity values for the combinations of these values. The figure points
out that there are a number of combinations that give high NMI. However, since
it is known that high mutation rate could destroy good solutions, while low values
do not help in escaping from local optima, we fixed it to 0.2 along with crossover
fraction 0.8, which gives both high modularity and NMI values. Moreover, we set
elite reproduction 10% of the population size, roulette selection function, population
size 100, number of generations 100. These values have already been experimented
for community detection in unsigned networks and showed to give good results. The
algorithm has been executed 10 times and the average values of error rate, NMI and
weighted NMI have been computed, together with standard deviation. For all the
experiments, the statistical significance of the results produced has been checked
by performing a t-test at the 5% significance level. The p-values returned are very
small, between 2.3534e-65 and 1.1120e-30, thus the significance level is very high
since the probability that a community could be obtained by chance is very low.
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Fig. 4. (Color online) NMI and modularity values for mutation rate varying in the interval
[0.1,0.2,0.3,0.4] and crossover fraction from 0.1 to 1.

6.1. Fvaluation on synthetic networks

In this section a more deep study on synthetic networks generated analogously to
Yang et al.'!

is performed. In particular, we modified the benchmark proposed by Lancichinetti
38

with control parameters that determine the structure of communities,

et al.,®” which is an extension of the classical benchmark of Girvan and Newman,
by assigning a controlled sign to edges.

The networks consist of 128 nodes divided into four communities of 32 nodes
each. Every node has an average degree of 16 and shares a fraction p of edges with
the other nodes of the network, and 1 — pu of links with the nodes of its community.
w is called the mizing parameter. When p < 0.5 the neighbors of a node inside its
group are more than the neighbors belonging to the other three groups, thus a good
algorithm should discover them. We generated 10 different networks for values of
1 ranging from 0.1 to 0.5. In order to make the networks signed, analogously to

I.,'! we used two parameters p_, denoting the probability of negative links

Yang et a
appearing within communities, and py, denoting the probability of positive links

appearing between communities. Thus, for all the combinations of p_ and p4 values
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Weighted NMI

(b)

Fig. 5. (Color online) (a) NMI and (b) Weighted NMI corresponding to the maximum modularity
values obtained from SN-MOGA for all the possible p+ and p— values at different values of the
1 parameter.

ranging in the interval [0,0.1,...,1], we randomly assigned a negative sign to edges
inside a community with probability p_, and a positive sign to edges between two
different communities with probability p.

Figures 5(a) and (b) depict the NMI and WNMI values obtained by running SN-
MOGA for all the combinations of parameters . = [0.1,...,0.5],p— =[0,0.1,...,1],
and py = [0,0.1,...,1] when selecting from the Pareto front the community
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Weighted NMI

0

Fig. 6. (Color online) (a) NMI and (b) Weighted NMI corresponding to the minimum frustration
values obtained from SN-MOGA for all the possible p4 and p_ values at different values of the p
parameter.

structure having the highest modularity value. The figures point out that the NMI
and WNMI values do not sensibly differ, meaning that the number of communi-
ties found by SN-MOGA is close to the true number, which is 4. From the figures
it can be observed that, fixed a u value, the method is not sensitive to the in-
crease of the number of positive edges between communities. As regards p_, until
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A

s

3

Community number

o N & o ®

Community number

(b)

Fig. 7. (Color online) Average number of clusters obtained by SN-MOGA for p4 and p_ varying
in the interval [0,1], at different values of the p parameter, when (a) maximum modularity and
(b) minimum frustration are selected from the Pareto front.

p— < 0.4, SN-MOGA maintains high values, however it is negatively influenced by
the augmentation above 0.4 of negative links within a community.

A similar behavior can be observed in Figs. 6(a) and (b), where the solutions
having the minimum frustration are now selected from the Pareto front. In this
case the NMI and WNMI values obtained are lower with respect to the previous
case, moreover SN-MOGA is again insensitive to the variation of negative edges for
p— <0.4.

Figures 7(a) and (b) show the average number of clusters obtained by SN-
MOGA for p; and p_ varying in the interval [0, 1], when maximum modularity and
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0.35

0.25

error rate

0.15

0.05

Fig. 8. (Color online) Error rate values obtained by SN-MOGA for p4 and p_— varying in the
interval [0,1] and pu = 0.1.

0.4
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0 0.15
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Fig. 9. (Color online) Error rate values obtained by SN-MOGA for p4 and p_ varying in the
interval [0, 1] and p = 0.2.

minimum frustration, respectively, are selected from the Pareto front. It can be
observed that, in the former case, the number of communities is 4 for a good range
of p_ and py combinations, and it almost always is not greater than 8. Solutions
with minimum frustration divide the networks in more communities, particularly
when p_ increases. This implies a decrease in NMI and WNMI values.

Figures 8-12 show the error rate obtained by SN-MOGA, when minimum frus-
tration solutions are chosen from the Pareto front, for increasing values of the
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error rate

Fig. 10. (Color online) Error rate values obtained by SN-MOGA for p; and p_ varying in the
interval [0, 1] and p = 0.3.

error rate

0 p-

Fig. 11. (Color online) Error rate values obtained by SN-MOGA for p; and p_ varying in the
interval [0, 1] and p = 0.4.

mixing parameter u, and combinations of p_ and p; values. The figures point out
that the error rate is insensitive to increasing values of p,, i.e. the augmentation
of positive links between different communities does not provoke abrupt changes
in the frustration value. However, the error rate increases as the percentage p_ of
negative links inside the same community augments.
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error rate

Fig. 12. (Color online) Error rate values obtained by SN-MOGA for p;+ and p_ varying in the
interval [0, 1] and p = 0.5.

Fig. 13. (Color online) Signed modularity values obtained by SN-MOGA for p4 and p_ varying
in the interval [0,1] and = 0.1,...,0.5.

Finally, Fig. 13 depicts the signed modularity values obtained by SN-MOGA for
p+ and p_ varying in the interval [0, 1] and p = 0.1,...,0.5. It is worth observing
that modularity values are high for p_ < 0.4, analogously to the NMI and WNMI
values.
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Fig. 14. CPU time required by SN-MOGA when the number of processors doubles from 1 until 32.

6.2. Comparison with MEA_s-SN on synthetic networks

In this section we compare SN-MOGA with the method proposed by Liu et al.2°

MFEA_s-SN is one of the most recent evolutionary based proposals for signed net-
works, and it has been shown to outperform state-of-the-art methods. In order
to compare the two methods, we generated an LFR benchmark, as proposed by
Lancichinetti et al.37 constituted by 1000 nodes, average node degree 20, maximum
node degree 50, exponent of degree distribution —2, community size distribution
—1, mixing parameter p varying as 0 < p < 0.5. Also for this benchmark, in order
to obtain signed networks, for all the combinations of p_ and p values ranging in
the interval [0,0.1, ..., 1], we randomly assigned a negative sign to edges inside a
community with probability p_, and a positive sign to edges between two different
communities with probability p,. A benchmark with analogous characteristics has
been used by Liu et al. to evaluate their method. We executed MFEA_s-SN with
the parameters suggested by the authors, i.e. number of generations 100, popula-
tion size 100, crossover fraction 0.8, mutation rate 0.2, and then selected from the
final population the solution having the maximum signed modularity. As regards
SN-MOGA we fixed the same parameters of MEA_s-SN.

Figures 15-24 show the average values of NMI, number of communities obtained
by the methods, and Weighted NMI for p_ and p; ranging in the interval [0, 1]. For
each experiment, the true number of communities is also reported. In particular,
when p = 0.1,0.2,0.3,0.4,0.5 the corresponding average ground truth number of
communities is 28, 28, 33, 32, and 32, respectively.

From Figs. 1524 we can observe that MEA_s-SN has the tendency to generate
a number of communities much higher than the true numbers. For instance, when
@ =0.1 and p_ < 0.4 (corresponding to the first 5 rows of Fig. 15) it partitions the
networks in a number of communities between 40 and 70, depending on p;. When
p— > 0.5, this number sensibly increases and can reach 300. The corresponding
NMI is, in these cases, unreasonably high, always above 0.8, except for p_ = 1.
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Fig. 15. (Color online) NMI, number of communities, and weighted NMI for all the combinations
of pt ={0,...,1} and p~ = {0, ..., 1}, when pu = 0.1. The ground truth number of communities
is 28. Each row corresponds to a p~ value, starting from p~ = 0 on the first row, and p~ = 0.4
on the last row.
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Fig. 17. (Color online) NMI, number of communities, and weighted NMI for all the combinations
of p¥ ={0,...,1} and p— = {0, ..., 1}, when p = 0.2. The ground truth number of communities
is 28. Each row corresponds to a p~ value, starting from p~ = 0 on the first row, and p— = 0.4
on the last row.
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Fig. 19. (Color online) NMI, number of communities, and weighted NMI for all the combinations
of p¥ ={0,...,1} and p— = {0, ..., 1}, when p = 0.3. The ground truth number of communities
is 33. Each row corresponds to a p~ value, starting from p~ = 0 on the first row, and p~— = 0.4
on the last row.
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Fig. 21. (Color online) NMI, number of communities, and weighted NMI for all the combinations
of pt ={0,...,1} and p~ = {0, ..., 1}, when pu = 0.4. The ground truth number of communities
is 32. Each row corresponds to a p~ value, starting from p~ = 0 on the first row, and p~ = 0.4
on the last row.
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Table 1. Comparison between SN-MOGA and MEA_s-SN on a net-
work of 10000 nodes.

Algorithm NMI WNMI NC NS
SN-MOGA min F(C) 0.6766 0.5376 123
SN-MOGA max Qg 0.6766 0.5376 123

MEA_s-SN Liu et al.20 0.9916 0.3797 196 64

In such a case the algorithm is not able to find any community structure, since
it obtains almost 1000 groups, which is the number of nodes, i.e it finds singleton
communities. Nevertheless, the NMI is around 0.6. As p increases, the number of
communities obtained by MFEA_s-SN increases too, while SN-MOGA is stable, find-
ing, on average, a number of communities close to the number of the ground-truth
division. Thus, while the WNMI values of MFEA_s-SN are drastically lower than
the corresponding NMI values, the differences between the NMI and WNMI values
that SN-MOGA obtains are minimal. The behavior of MEA_s-SN is exacerbated as
1 increases. On the contrary, SN-MOGA continues to be rather stable as regards
the average number of communities it obtains, with close NMI and WNMI values,
proportionally decreasing, as expected, when p augments.

The figures also point out that the NMI value obtained by MFEA_s-SN is above
0.8 in almost all the experiments. Thus MFEA_s-SN outperforms SN-MOGA, even if
it splits the network in many groups of small size, often singleton. When computing
the weighted NMI, however, the values obtained by SN-MOGA slightly diminish
with respect to NMI, and are always higher than that obtained by MFEA_s-SN.
In fact, the WNMI values of MFEA_s-SN drastically reduce, due to the too high
number of communities it obtains. This experiment highlights the characteristic
of the weighted NMI to better discriminate solutions far from the true network
division, by assigning them a lower and fairer value.

It is worth pointing out that a correlation analysis of the two objectives employed
by MFEA_s-SN revealed a positive Pearson correlation value of 0.0517. According
to the observation of Shi et al.® the multiobjective method becomes, actually, a
single objective community detection method. Thus SN-MOGA effectively exploits
the multiobjective approach by trying to obtain the best tradeoff between the two
objective functions.

In order to more deeply investigate the differences between SN-MOGA and
MFEA_s-SN, both methods have been executed on a synthetic network of 10000
nodes, with average node degree 64, exponent of degree distribution —2, community
size distribution —1, mixing parameter p = 0.1, p— = p4y = 0.5. The number of
clusters of the ground truth division is 100. Table 1 reports the NMI and weighted
NMI (in the table denoted as WNMI), the number of clusters NC and the number
of singletons NS obtained by the two methods. The behavior of MEA_s-SN on
this network is similar to the previous experimentation, i.e. it has the tendency
of finding many clusters constituted by a single node, in this case it obtains 64
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Table 2. Error obtained by SN-MOGA, MEA_s-SN and
Chiang’s method on the Wikipedia network, having num-
ber of nodes 7118, number of positive edges ET = 83953,
and negative edges E~ = 23118.

Algorithm Error NC

SN-MOGA min F(C) (0.0009868) 106
(0.00005728)

SN-MOGA max Qg 0.0016 115
(0.0001142)

MEA_s-SN Liu et al.?0 0.0020 3341
(0.0001609)

k-way Chiang et al.16 0.2186 3-30

Note: The error has been computed as Chiang et al.!®

singletons out of 196 clusters. Because of the selection bias discussed is Sec. 5, the
normalized mutual information value assigned to the clustering of MEA_s-SN is
0.9916, i.e. it should be almost a perfect match. Clearly this result is not reliable
because of the presence of the 64 singletons. SN-MOGA obtains 123 clusters and
an NMI value of 0.6766. The weighted NMI values are reduced to 0.5376 for SN-
MOGA and 0.3797 for MEA_s-SN, thus with the corrected measure the partition of
SN-MOGA is considered better than that of MEA_s-SN. As regards the execution
times of the two methods, a comparison is difficult because SN-MOGA has been
written in MATLAB, while MEA_s-SN in C++. It is worth to point out that a
fair comparison should consider the computational complexity of the methods. As
reported in Sec. 4, the complexity of SN-MOGA is O((gp log p) x (n log n+m)),
but that of MEA_s-SN has not been reported by the authors.

6.3. Comparison on Wikipedia network

In this section we consider a real life signed network, namely the English Wikipedia
network for admin elections, studied by Leskovec et al.,?® downloadable from
http://konect.uni-koblenz.de/networks/elec. The network is constituted by 7118
nodes, and has number of positive edges E+ = 83953, and negative edges £~ =
23118. This network has also been tested by Chiang et al.'® by applying their k-
way multilevel algorithm. In Ref. 16 the authors reported the error they computed
by applying formula (13), where the denominator, however, is substituted by n?,
i.e. the square of the number of nodes. We executed 10 times both SN-MOGA and
MFEA_s-SN on this network and in Table 2 the error, computed like Chiang et al.,
obtained by the two methods, with the standard deviation in parenthesis, and that
obtained by Chiang et al.,'® are reported. Moreover, also the average number NC
of obtained clusters is shown. For SN-MOGA two results are shown: when the so-
lution having minimum frustration F'(C) and maximum modularity Qg are chosen
from the Pareto front. The table points out that SN-MOGA obtains lower errors
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(a) (b)

Fig. 25. (Color online) Synthetic networks reported in Yang et al. For each network, colors
correspond to the true partitioning, red dotted lines to the negative edges and black lines to the
positive edges.

and standard deviations, both when minimum frustration and maximum modular-
ity are chosen. In the former case the error value is the lowest, being 0.0009868.
MFEA_s-SN on this network is not able to detect meaningful groups of nodes. In
fact, it finds 3341 communities, where 3303 are singleton nodes. Thus it does not
assign almost half of the nodes to any community. The number of clusters found by
SN-MOGA, instead, has been, on average, 106 for minimum frustration, and 115
for maximum modularity.

As regards the method of Chiang et al., since the number of clusters must be
given as input parameter, the authors computed the empirical error for values of
k ranging from 3 to 30. The value they reported is 0.2186, which is much higher
than that obtained by SN-MOGA. They observed that, for each k, the errors are
very close. Since SN-MOGA finds around 100 clusters, the range of values used
by Chiang et al. was perhaps insufficient to obtain a reasonable partitioning of
the Wikipedia network. This result confirms the advantage of applying SN-MOGA,
which is capable of finding meaningful divisions with small frustration values, with-
out any knowledge on the network structure and no need of fixing the number of
communities in advance.

7. Comparison with Particle Swarm Optimization

In this section a comparison between SN-MOGA and the Particle Swarm Opti-
mization based method of Gong et al.,” on two artificial signed networks and two
real-life networks analyzed by Yang et al.,!! is presented.

The two artificial signed networks, illustrated in Fig. 25, show the difference
between balanced and partitionable networks. The network Network 1, consisting
of 28 nodes, 30 positive edges and 12 negative edges and displayed in Fig. 25(a),
is partitionable and can be divided into the three groups {4, 5, 6, 7, 22, 23, 24,
25, 13, 14, 15, 16}, {8, 9, 26, 27, 17, 18}, and {20, 21, 10, 11, 12, 1, 2, 3, 19, 28}.
Network 2, having 28 nodes, 30 positive edges and 19 negative edges (Fig. 25(b)),
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(a) (b)

Fig. 26. (Color online) Networks representing the political alliances and oppositions among 16
Gahuku-Gama subtribes (left) and the Slovene Parliamentary Party (right). Colors correspond to
the true partitioning, red dotted lines to negative edges and black solid lines to positive edges.

Table 3. Comparison between SN-MOGA and the MODPSO method of Gong et al.

Network Algorithm Modularity NMI

SN-MOGA min F(C) 0.5612 (0.5612) 1(1)

Network 1 SN-MOGA max Qg 0.5612 (0.5612) 1(1)
MODPSO 0.5213 (0.5112) 1 (0.9742)

SN-MOGA min F(C) 0.5257 (0.5257) 1(1)

Network 2 SN-MOGA max Qg 0.5257 (0.5257) 1(1)
MODPSO 0.5643 (0.5634) 1 (0.9959)

SN-MOGA min F(C) 0.4310 (0.4310) 1(1)

GGS SN-MOGA max Qs 0.4310 (0.4310) 1(1)

MODPSO 0.4310 (0.4310) 1(1)

SN-MOGA min F(C) 0.4556 (4556) 1(1)

Spp SN-MOGA max Qs 0.4556 (0.4556) 1(1)
MODPSO 0.4547 (0.4532) 1 (0.9949)

is also partitionable in the same three groups of Network 1. The main difference
between these two networks is that the former is also balanced since it has a two-way
partitioning constituted by the first group and the union of the other two groups,
while the latter is not balanced.

The Gahuku-Gama Subtribes (GGS) social network (Fig. 26(a)) describes the
political alliances (29 positive edges) and oppositions (29 negative edges) among 16
sub-tribes. The Slovene Parliamentary Party (SPP) network (Figure 26(b)) shows
the relation among 10 parties of the Slovene Parliament in 1994. It has 18 positive
edges and 27 negative edges. Table 3, for each network, shows the maximum mod-
ularity and NMI values obtained by MODPSO, as reported in Gong et al.,’ while
for SN-MOGA the modularity and NMI values when the solution having minimum
frustration is chosen from the Pareto front, and the solution with maximum mod-
ularity is chosen from the Pareto front with the corresponding NMI value. Average
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values for both the methods are in parenthesis. The table points out that both
methods obtain the ground truth division for all the networks. However, MODPSO
does not find the best solution for all the executions, as average values in parenthe-
sis show. Thus SN-MOGA has a more stable behavior than MODPSO. Moreover,
the modularity values obtained by SN-MOGA are higher on Network 1 and SPP,
while lower on Network 2 and the same on GGS. Thus we can observe that both
methods are able to properly divide these networks.

8. Running Time Analysis

One of the main criticisms to evolutionary based methods is the high execution
time required to obtain a solution. However, it is known that genetic algorithms
are naturally parallelizable.*’ Since SN-MOGA has been written in Matlab, we
could exploit the Parallel Computing Toolbox implemented in Matlab to allow
multicore processing. We executed SN-MOGA on a computer cluster of 32 nodes,
with 4 Gbyte of RAM and a 16-core Intel Xeon CPU at 2.6 GHz each.

In order to show the drastic reduction of execution times that can be obtained
when the network size is large, Fig. 14 shows the time in seconds required by SN-
MOGA to find a solution for the Wikipedia network (recall it has 7118 nodes, 83953
positive edges, and 23118 negative edges), when the number of cores used varies as
1, 2, 4, 8, 16, and 32. Population size and number of generations have been fixed
to 100.

The figure points out that SN-MOG A presents a superlinear speedup when using
two cores instead of one. In fact the running time reduces from 5 hours and an half
to almost 2 hours. Moreover, the speedup is linear from 2 to 16 cores, since doubling
the number of cores, the time required to execute the method becomes the half,
and almost linear for 32 cores. In this latter case 20 minutes required with 16 cores
reduce to 14 minutes on 32 cores. This experiment shows that SN-MOGA has a
very good scalability. Thus, having at disposal sufficient computational resources,
the method is able to deal with networks of very large size.

9. Conclusions

The paper proposed a multiobjective approach to detect communities in signed
networks. The method optimizes two objectives in order to find network divisions
such that intra-connections are dense and most edges within clusters are positive,
and inter-connections between clusters are sparse, and most of these edges are neg-
ative. In order to evaluate the method, selection bias of the most used evaluation
measures, namely the normalized mutual information, has been pointed out, and a
corrected measure, the Weighted NMI, that avoids this bias adopted. An extensive
experimental evaluation on randomly generated networks for which the ground-
truth division is known, proved the ability of the method to find solutions having
low frustration and high NMI and WNMI values. Furthermore, community struc-
ture found on the real life network Wikipedia showed that the error obtained by
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SN-MOGA is lower than that obtained by MFEA_s-SN and the k-way method of
Chiang et al. A comparison with the MODPSO method, based on Particle Swarm
Optimization, showed that the two methods are comparable, though SN-MOGA has
a more stable behavior than MODPSO. Because of the genetic representation, the
method cannot assign a node to multiple communities, thus generating overlapped
community structures. Future work will investigate extensions to locus-based rep-

resentation to obtain overlapping communities.
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