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Abstract An approach for disease prediction that combines clustering, Markov

models and association analysis techniques is proposed. Patient medical records are

first clustered, and then a Markov model is generated for each cluster to perform

predictions about illnesses a patient could likely be affected in the future. However,

when the probability of the most likely state in the Markov models is not sufficiently

high, the framework resorts to the association analysis. High confidence rules

generated by recurring to sequential disease patterns are considered, and items

induced by these rules are predicted. Experimental results show that the combina-

tion of different mining models gives good predictive accuracy and it is a feasible

way to diagnose diseases.

Keywords Disease prediction � Data mining � Association analysis �
Clustering � Markov models

1 Introduction

In the last few years we are witnessing an increasing interest in the application of

computational science methods for health care information and management

systems. Exploitation of information technologies could significantly improve both

efficiency and effectiveness of health care strategies, and reveal their importance

because of the implications they could have in every day life of individuals.
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An emerging viewpoint aims at identifying prospective health care models to

determine the risk for individuals to develop specific diseases. In fact, prevention or

intervention at the disease’s earliest onsets allows advantages for both the patient, in

terms of life quality, and the medicare system, in terms of costs. However,

recognizing the origin of an illness is not an easy task because it can be generated by

multiple causes. Physicians prescribe laboratory tests only after the appearance of

patient’s symptoms, and use family and health history to assess the hypothesized

problem. The approach is thus reactive, i.e., a medical treatment is undertaken only

after the patient has already developed the disease, rather than proactive.

However, hospitals and physicians collect thousands of patient clinical histories

that include valuable information regarding illness correlations and development. The

patient medical records contain important enlightenment regarding the co-occur-

rences of diseases affecting the same individual. A comorbidity relationship between

two illnesses exists whenever they appear simultaneously in a patient more than

chance [1]. Although comorbidity is very common in the population and its extension

increases with age, few investigations have been conducted on patient’s comorbidity

conditions [2]. The comorbidity relationships between diseases, however, could be

exploited to build a model that predicts the diseases a patient could have in the future.

Advanced risk assessment tools are currently at disposal, mainly based on

statistical techniques [3, 4]. Another approach for addressing the problem [7], which

is gaining increasing interest, is the use of methodologies coming from the fields of

knowledge discovery [5].

In this paper we propose a recommendation engine named CORE (COmorbidity-

based Recommendation Engine), that combines techniques coming from the data

mining and statistics fields, to determine the risk of an individual to develop future

diseases on the base of her/his past patient medical history. A patient is represented

by means of a vector of diagnosed disease codes, defined by the International

Classification of Diseases, Ninth Revision, Clinical Modification ICD-9-CM, and a

disease is predicted by exploiting both its medical history and the information

regarding other patients having a similar clinical course. The model at the base of

the recommendation engine integrates clustering, Markov models, and association

analysis with the aim of obtaining specialized and accurate prediction models.

The paper is organized as follows. The next section describes existing approaches

to disease prediction. Section 3 introduces the concepts of clustering, Markov

models, and association rules. In Sect. 4 the recommendation engine is described.

Section 5 shows with an example how the predictions are obtained. In Sect. 6 the

data set of medical records used for the experiments is described. Section 7

describes the measures used to assess the quality of the obtained results. Section 8

reports the evaluation of the proposed approach on the patient data set. Section 9

concludes the paper.

2 Related work

Many approaches and tools for the risk assessment of developing illnesses in the

medical context have been proposed. These proposals are mainly based on statistical
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techniques and use the family history as well as the results of patient clinical tests

designed for specific purposes [3, 4].

A general predictive model to assess disease risks has been proposed by Davis

et al. [6, 7]. The model is based on patterns of co-occurrences across the medical

patient records instead of laboratory tests. Each patient can be associated with the

list of diseases she/he has been affected during his life. Groups of illnesses occurring

frequently in many patient records can be exploited to capture comorbidity relations

and generate predictions about the diseases a patient can incur in, given the past

history of his health conditions. A patient is represented by a vector of diagnosed

disease ICD-9-CM codes, and a prediction is made on the base of other similar

patients. Davis et al. [6, 7] used the patient clinical history, i.e. the diseases a patient

was diagnosed for each inpatient hospital visit, to predict the illnesses of the

subsequent visits. They built a collaborative assessment and recommendation

engine, named CARE, that relies on the collaborative filtering methodology [8] for

producing recommendations to people, by collecting preferences from users having

similar behaviors. In the medical context, users are patients and their behavior

corresponds to patient medical history. The predictions on a patient p are done by

comparing the individual medical history with the medical histories of a set of

patients I, called training patient set. The training set is required to contain patients

sharing at least two diseases with p. The approach is based on the concept of

similarity between the testing patient p and the training patients contained in I. The

computation of similarity produces a ranked list of diseases constituting the

predictions for the future visits of p. The similarity between two patients is defined

by taking into account the random expectation and the inverse frequency of each

disease. The inverse frequency is included to reduce the weight of very common

sickness since, as the authors note, sharing a rare disease is more informative than,

for example, having hypertension. Experiments on a data set of Medicare records of

elderly patients showed good prediction accuracy.

Steinhaeuser and Chawla [9] used a hybrid technique based on collaborative

filtering and nearest neighbor classification. The similarity between two patients is

computed by using the Jaccard coefficient [10, 11], which is the normalization of

common diseases that two patients have, with respect to their union. Also in this

approach, given a patient p, a ranked list of diseases p could develop in the future is

computed by considering his k nearest neighbors, i.e. the most similar patients of p.

Experimental results on Medicare beneficiaries, aged at least 65 at the time of the

first visit, showed that a good percentage of diseases were predicted as expected. A

disease network was also built and their structural properties studied.

Analogously to the described approaches, we adopt a representation of patient

clinical history based on the ICD-9-CM codes of the diseases the patient has been

diagnosed. However, in our case, because of the data set size and characteristics, we

have only one patient record storing the overall medical history of that patient, and

not a record for each disease diagnosed at a particular hospital visit for that patient.

Furthermore, we use a completely different approach of collaborative filtering that

combines statistical and machine learning techniques, as it will be described in the

next section.
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3 Technique description

Let m be the number of patients contained in the data set DS of patient medical

histories, and D = {d1, …, dn} the set of all distinct illnesses appearing in DS.

From this data set a new data set T = {t1, …, tm}, where each ti � D is a patient

medical record of variable size constituted by that sequence of ICD-9-CM disease

codes the patient ti has been affected up to now, is generated. Thus, T represents the

medical histories relative to each of the m patients. Table 1 shows an example of a

data set T constituted by five patient records, each containing a different number of

disease codes.

Before giving the details of the proposed approach, in this section the related

concepts necessary to describe it are reported. Thus, in the following, the techniques

exploited in our system—specialized for the medical context—are introduced.

3.1 Clustering

Clustering [5] is a well-known data analysis technique that groups similar data

objects in clusters such that objects of different groups are dissimilar. Grouping the

set T of patients in k groups having similar disease history, can help us to mine more

specialized models, tailored for particular groups of patients sharing part of their

diseases. In the following, we will describe a clustering method which is a variant of

the traditional k-means [12, 13] able to deal with categorical tuples of variable size,

like those present in the dataset T.

Let assume k be the number of clusters, this algorithm partitions T into k clusters

C = {C1, …, Ck} in a way that high intra-cluster similarity and low inter-cluster

similarity are guaranteed. C is a partitioning of T, i.e.,
T

i¼1...k Ci ¼ ; andS
i¼1...k Ci ¼ T . Each record ti [ T is assigned to a cluster Cj according to its

distance d(ti, rj) from a vector rj that represents the cluster at hand, and it is called

the cluster representative. Formally, the clustering algorithm finds a partition

C such that:

(1) for each Ci the representative ri is computed;

(2) ti [ Cj iff d(ti, rj) \ d(ti, rl) for 1 B l B k, j = l;

(3) C minimizes the cost function:

Qk ¼
Xk

i¼1

X

tj2Ci

dðtj; riÞ ð1Þ

Table 1 Set T of patient

records
T ICD9 codes of medical records

t1 401, 715, 722, 723

t2 401, 721, 715, 722, 723

t3 401, 721, 715, 722

t4 241, 255, 595, 780

t5 241, 255, 272, 595, 780
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In practice, the algorithm works as follows. Firstly, k records are randomly

selected from T. They represent the initial cluster centers. Then, each other ti [ T is

assigned to a cluster on the base of condition (2) above. The algorithm updates the

representative of each cluster and re-assigns each record consequently. The

iterations terminate when the representatives do not change any more, i.e., the

condition (3) holds.

It is worth noting that the schema above is parametric w.r.t. the definitions of

both distance d and representative r. Since in our scenario we deal with categorical

data, we used a kind of distance that proved to work very well in this setting: the

Jaccard distance. This measure is derived by the Jaccard coefficient [10, 11] which

is based on the idea that the similarity between two itemsets is directly proportional

to the number of their common items and inversely proportional to the number of

different ones. Therefore, given two records ti and tj [ T, the Jaccard distance can

be defined as:

dðti; tjÞ ¼ 1� jti \ tjj
jti [ tjj

ð2Þ

Another important aspect is the suitable definition of the cluster representative

r. Intuitively, the representative should model the content of the cluster in order to

make trivial the interpretation of the cluster itself. Among various possibilities, an

easy and effective way for building the representative consists in using the frequent

items belonging to the cluster itself [12]. The frequency degree can be controlled by

introducing a user-defined threshold value c representing the minimum percentage

of occurrences an item must have for being inserted into the cluster representative.

More formally, given TCi
¼ ft1; . . .; tqg the set of records belonging to the cluster

Ci, DCi
¼
S

i ti ¼ fd1; . . .; dpg the set of items of Ci, i.e. the disease codes, and c
[ [0,1], then the representative rCi

for the cluster Ci can be computed as follows:

rCi
¼ fd 2 DCi

jf ðd; TCi
Þ=q� cg ð3Þ

where f ðd; TCi
Þ ¼ jfti 2 TCi

jd 2 tigj is the number of medical records of cluster Ci

in which d appears.

Clearly, the clustering algorithm assumes that the number of clusters k has to be

fixed at the beginning. Thus, another open issue is how to set k in order to obtain the

best partitioning. Ideally, the best partitioning is achieved for that value k* in

correspondence of which the cost function Qk has its global minimum. However,

finding k* in this way is an NP-hard problem and then it is unfeasible in practice.

Therefore, we pragmatically recurred to a sub-optimal solution: we iterated the

clustering algorithm by ranging k in [1,|T|] until the first, local minimum for Qk is

reached.

For a better comprehension of the clustering adopted, let us consider the set of

medical records in Table 1. Let also assume k = 2 be the number of clusters that

minimizes the cost function Qk and c = 0.5 be the minimum percentage of

occurrences a disease must have for being inserted into the cluster representative

(see Eq. 3). On the base of the above parameters, it is easily verifiable that the

clustering algorithm finds the clusters C1 and C2, as reported in Tables 2 and 3,

A recommendation engine for disease prediction

123



respectively. Furthermore, the clusters are equipped with the representatives: rC1
¼

f401; 721; 715; 722; 723g and rC2
¼ f241; 255; 272; 595; 780g.

3.2 Markov models

Markov models are a well known technique for understanding stochastic processes

and have been extensively used as prediction models because of the good accuracy

levels they may reach.

Deshpande and Karypis [14] represent Markov models as a triple hA; S; TPMi;
where A is a set of actions, S is a set of states, and TPM ¼j S j � j A j is a transition

probability matrix, where an entry tpmi,j is the probability that the action j is

performed when the process is in the state i. The simplest Markov model, known as

1st-order Markov model, predicts the next action by looking at only the previous

action. In general, a w-order Markov model makes predictions by considering the

last w actions.

In the context of predicting user’s web behavior, Deshpande and Karypis [14]

identify the input data for building the Markov models as web sessions, i.e. the

sequence of pages accessed by a user during a visit to a specific site. Thus, the

actions are the pages of the web site, and the states are the w consecutive web pages

observed in different sessions.

In our medical context, the actions are the ICD-9-CM disease codes, the web

sessions are the set T = {t1, …, tm} of patient medical records, and the states are the

w consecutive disease codes {ti1, …, tiw} observed in T. The transition matrix TPM

is then computed by counting how many times the code in position j appears after

the state i.

For example, let consider the set of patient medical records reported in Table 4.

The 1st-order Transition Probability Matrix (Table 5) is such that each state is

constituted by only a disease code, thus there are six different possible states. The

matrix entry in position (2, 3) is 3 because there are three medical records (t2, t3, t4)

in which the code 715 appears after the state s2 = 437. Then, the probability that the

disease 715 will be predicted as next disease after 437 is 1.

Analogously, the 2nd-order TPM (Table 6) contains the couples of codes

appearing in sequence. For instance, as for the state {715, 722} and the disease code

Table 2 Cluster C1 of patient

records
T ICD9 codes of medical records

t1 401, 715, 722, 723

t2 401, 721, 715, 722, 723

t3 401, 721, 715, 722

Table 3 Cluster C2 of patient

records
T ICD9 codes of medical records

t4 241, 255, 595, 780

t5 241, 255, 272, 595, 780
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723, the entry of the matrix in position (4, 5) is 2 because 723 appears twice (t1 and

t3) after the couple {715, 722}.

Once the TPM of a fixed order is computed, for performing a prediction, given a

sequence of ICD-9-CM codes, it is sufficient to look up at the TPM and extract the

disease having the highest frequency. For instance, given the set {715, 722}, you

may indifferently choose to leverage both the 1st-order and 2nd-order TPM to make

the prediction. By resorting to the 1st-order TPM, the next predicted disease after

715 is 722 (see Table 5), whereas if the 2nd-order TPM is used instead, you can

equally foresee that the next disease after {715, 722} can be either 723 or 756 (see

Table 6).

A main drawback of Markov models is that, in order to obtain good predictive

accuracy, higher-order models must be used. However, higher-order models are

computing demanding because of the high number of states that can be generated.

3.3 Association analysis

Association analysis [5] is an important data mining methodology for discovering

interesting hidden relationships in large data sets. It relies on the concept of frequent

itemset to extract strong correlations among the items constituting the data set to

study. Originally, association analysis has been applied to the market basket data,

where each item represents the purchase done by a customer. A transaction is

defined as the set of items purchased at the same time by the same customer.

However, it can be easily transposed into the medical context by associating an item

with a disease, and by considering an itemset, i.e. a transaction, as the set of diseases

ti a single patient had along his life until the present. Groups of diseases occurring

frequently together in many transactions are referred to as frequent itemsets. The

concept of frequency is formalized through the concept of support.

Given a set I ¼ fI1; . . .; Ikg of frequent itemsets on the dataset T, the support of

an itemset Ii [ I, supp(Ii), is defined as

suppðIiÞ ¼j ft j t 2 T ; Ii � tg j ð4Þ

where j : j denotes the number of elements in a set. Basically, the support deter-

mines how often a group of diseases appears together. It is an important measure

since very low support discriminates those groups of items occurring only by

chance. Thus, a frequent itemset, in order to be considered interesting, must have a

support greater than a fixed threshold value, minsup.

An association rule is an implication expression of the form X) Y, where X and

Y are disjoint itemsets. The importance of an association rule is measured by both its

Table 4 A set of four patient

medical records
T ICD9 codes of medical records

t1 {401, 715, 722, 723}

t2 {401, 437, 715, 722, 756}

t3 {401, 437, 715, 722, 723}

t4 {437, 715, 722, 756}
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support and confidence. The support r of a rule determines how often a rule is

applicable to a data set and it is computed as

rðX ) YÞ ¼ suppðX [ YÞ
j T j ð5Þ

The confidence s, instead, determines how frequently items in Y appear in trans-

actions that contain X. It is formally defined as

sðX ) YÞ ¼ suppðX [ YÞ
suppðXÞ ð6Þ

Frequent itemsets having a support value above a minimum threshold are used to

extract high confidence rules, and can be exploited to build a risk prediction model

by matching the medical record of a patient against the patterns discovered by the

model. In this scenario, if we consider a rule like X) {d}, where X � D is a subset

of diseases and d is a single disease, a high support r determines that the rule is very

frequent applicable to the dataset, whereas a high confidence s allows for reliably

inferring that d will appear together with the items contained in X.

Example 1 In order to better understand these concepts, let consider T be the set of

the five medical records reported in Table 1, and {401,715} ) 723 an association

rule mined on it. Since the support supp for {401, 715, 723} is 2 and the total

number of medical records is 5, thus the rule support r will be 2/5 = 0.4. The rule

confidence s is obtained, instead, as supp({401, 715, 723})/supp({401, 715}) =

2/3 = 0.67.

In the next section we will show that by combining clustering, low order Markov

models and association rules, good values of prediction accuracy, keeping moderate

runtime requirements, can be obtained.

4 A framework for disease prediction

A general architecture for the COmorbidity-based Recommendation Engine

(CORE) is depicted in Fig. 1. CORE consists of two main components: an off-

line component for the model generation, and an on-line component for the disease

prediction. The model generation component involves a preprocessing step (Data

Table 5 1st-order transition probability matrix corresponding to the patient medical records of Table 4

1st order 401 437 715 722 723 756

s1 = 401 0 2 1 0 0 0

s2 = 437 0 0 3 0 0 0

s3 = 715 0 0 0 4 0 0

s4 = 722 0 0 0 0 2 2

s5 = 723 0 0 0 0 0 0

s6 = 756 0 0 0 0 0 0
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Preparation) to transform the raw data into a transactional set of patient records

constituted by a sequence of ICD-9-CM codes (i.e., the list of diseases a patient had

in the past). Then, a prediction model is generated, as explained below, in order to

fulfill the prediction. The off-line component, instead, given a new patient, first

selects a proper model, and then performs predictions on him.

Definition 1 A disease prediction model DPM for a dataset T can be defined as a

couple hC, M i, where C = {C1, … Ck} is a clustering of T and M = {M1, … Mk},

where each Mi is the prediction model built on top of Ci.

Definition 2 Given a set ICi
¼ fi1; . . .; ilg of frequent itemsets ij 2 ICi

induced on a

cluster Ci ¼ ft1; . . .; tpg, the support r [ [0,1] of a generic itemset ij w.r.t. the

cluster Ci is defined as:

rðijÞ ¼
j fti j ij � ti; ti 2 Cig j

j Ci j
ð7Þ

where j : j denotes the number of elements in a certain set.

Given a data set T = {t1, …, tm} of medical records, and fixed the order w of

Markov models, the number k of clusters, the threshold c for computing the cluster

representatives, the support r and the confidence s to compute association rules,

then the construction of the prediction models performs the following steps:

1. Cluster medical records in k clusters {C1, …, Ck};

2. Build a Markov model MMw
Ci

of order w for each cluster Ci;

3. Compute the association rules for each cluster with support r and confidence s.

Fig. 1 Architecture of the disease prediction system CORE
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Once the models are built for each discovered cluster, if a new medical record is

given, the prediction phase encompasses three main steps:

1. Cluster Assignment, where the patient is recognized as member of a cluster Ci

by matching him against each cluster representative;

2. Model Selection, where the model Mi (relative to the corresponding cluster) is

selected;

3. Prediction, where the proper prediction is performed by exploiting Mi.

More in detail, the prediction step works in this way. We use a window of size

w over the medical records for capturing the patient history depth used for the

prediction. The size w means that we apply a Markov model of order w, thus only

the last (in time order) w diseases appearing in the record influence the computation

of possible forthcoming illnesses. If the Markov model prediction produces either a

no state or a state having a not enough high probability (as explained below), the

association rules are used instead. In this case, we alternatively resort to the frequent

itemsets of size w ? 1 induced on Ci that contain the w items appearing in the

current patient medical record ti [ Ci. The prediction of the next disease is based on

the confidence of the corresponding association rule whose antecedent is constituted

by the w frequent items of ti, and the consequent is exactly the disease to be

predicted. If this rule has a confidence value greater than a fixed threshold, then its

consequent is added to the set of predicted illnesses.

Let us now perform a prediction on a patient medical record ti
w = {t1

i , …, tw
i } of

size w recognized belonging to the cluster Ci. We first apply the wth-order Markov

model learned on the cluster Ci. If ti
w matches a state in this model, the probability of

next disease di is estimated via the formula

Pr ti
wþ1

� �
¼ argmax

di2DCi

Pr ti
wþ1 ¼ dijti

w; t
i
w�1; . . .; ti

1

� �� �
ð8Þ

In practice, di is accepted as the most probable next disease only if it results in a

state whose probability is significantly better than that of the second most probable

predicted disease.

More in details, the 100(1 - a) percent confidence interval around the most

probable next disease is computed, and thus it is checked if the second predicted

disease falls within this interval [14]. If this condition happens, the most probable

state is discarded, otherwise it is accepted as next predicted disease. More in detail,

Table 6 2nd-order transition probability matrix corresponding to the patient medical records of Table 4

2nd order 401 437 715 722 723 756

{401,715} 0 0 0 1 0 0

{401,437} 0 0 2 0 0 0

{437,715} 0 0 0 3 0 0

{715,722} 0 0 0 0 2 2

{722,723} 0 0 0 0 0 0

{722,756} 0 0 0 0 0 0
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if p̂ ¼ PrðdiÞ is the probability of the most probable disease, then its 100(1 - a)

percent confidence interval is given by

p̂� za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r

� p� p̂þ za=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ

n

r

ð9Þ

where za/2 is the upper a/2 percentage point of the standard normal distribution and

n is the frequency of the Markov state [15].

In the case the Markov model is unable to provide us with a reliable prediction,

association rules are used to circumvent the problem. In particular, the patient

medical record tw
i is matched againsts all the frequent itemsets Iwþ1

Ci
of size w ? 1

(i.e., all those itemsets whose support supp is greater than a fixed threshold r)

induced on Ci. Each itemset iwþ1
i 2 Iwþ1

Ci
containing ti

w contributes to the set of the

candidate diseases with a prediction di. It is easily noticing that iwþ1
i ¼ tw

i [ fdig.
Finally, if the confidence of the rule tw

i ) fdig (i.e., suppðtw
i [ fdigÞ=suppðtw

i Þ) is

greater than a fixed threshold s, the disease di is considered reliable, and it is added

to the set of predicted diseases.

5 A running example

In order to explain the way our prediction approach works in practice, let us

consider the set T of patient medical records reported in Table 7.

Let us also suppose k = 2 be the number of clusters the clustering algorithm is

forced to find, and c = 0.5 be the minimum percentage of occurrences a disease must

have for being inserted into the cluster representative (see Eq. 3). On the base of the

above parameters, it is easily verifiable that the clustering algorithm finds the clusters

C1 and C2, as reported in Tables 8 and 9, respectively. Furthermore, the clusters are

equipped with their representatives: rC1
¼ f401; 437; 592; 715; 722; 723; 756g and

rC2
¼ f241; 255; 272; 595; 780g. After the clusters have been built, the disease

prediction model is carried out for each cluster found.

Now, let t ¼ ft1 ¼ 715; t2 ¼ 722g be a new patient disease record. Since the

distance dðt; rCi
Þ ¼ 1� 2=7 ¼ 0:714 is lower than dðt; rC2

Þ ¼ 1; t is recognized

belonging to C1, thus the Markov model built upon C1 is exploited to perform the

Table 7 Set T of patient

records involving some common

diseases

t1 {401, 715, 722, 723}

t2 {401, 437, 715, 722, 756}

t3 {437, 592, 715, 722, 723}

t4 {401, 437, 592, 715, 722, 723}

t5 {437, 715, 722, 756}

t6 {592, 715, 722, 723, 756}

t7 {401, 592, 715, 722, 756}

t8 {401, 437, 715, 721, 722, 723}

t9 {241, 255, 595, 780}

t10 {241, 255, 272, 595, 780}
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predictions. In particular, if the window size w is set to 2, the 2nd-order Markov

model is picked to be used.

It can be easily noticing that in Table 8 the state {715, 722} appears 7 times,

while diseases 723 and 756 appear 4 times and 3 times after this state, respectively.

Thus:

Prðt3Þ ¼ argmaxfPrðt3 ¼ 723jt2 ¼ 722; t1 ¼ 715Þg ¼ argmaxft3 ¼ 723! 0:57g

and

Prðt3Þ ¼ argmaxfPrðt3 ¼ 756jt2 ¼ 722; t1 ¼ 715Þg ¼ argmaxft3 ¼ 756! 0:43g
However, this information does not necessarily provide us with the the correct

prediction of next disease since there is not an enough probability difference for the

diseases 723 and 756 (see Sect. 4). More in detail, if we compute the confidence

interval for the most probable next disease at 90 % confidence level (i.e.,

za/2 = 1.65), we obtain that this may vary approximately between 0.33 and 0.85.

Note that, because of the small number of instances in this example, the greater the

confidence level, the larger the confidence interval. Since the probability of the

other disease Prðt3 ¼ 756Þ ¼ 0:43 falls in this interval, we cannot consider the

prediction made by the Markov model reliable. In this case of uncertainty, in order

to disambiguate the choice, we resort to the predictive capability of the association

rules. If we fix the threshold support for the itemsets to 0.5, the frequent itemsets for

C1 are all those having a support r[ 4 (see Table 10).

By matching the medical record t = {715, 722} against the 3-frequent itemsets

I3, both the diseases having codes 723 and 756 are candidate for being the likely,

next diseases the patient t may incur in. However, the diseases 723 and 756 change

their status from candidate to predicted only if the confidence of the association

rules ar1: {715, 722}) {723} and ar2: {715, 722}) {756} exceeds the minimum

confidence threshold. Therefore, if we set the threshold for the confidence to 0.6,

since the confidence of ar1 is

sðar1Þ ¼ rðf715; 722; 723gÞ=rðf715; 722gÞ ¼ 5=8 ¼ 0:625

and the the confidence of ar2 is

Table 8 Cluster C1
t1 {401, 715, 722, 723}

t2 {401, 437, 715, 722, 756}

t3 {437, 592, 715, 722, 723}

t4 {401, 437, 592, 715, 722, 723}

t5 {437, 715, 722, 756}

t6 {592, 715, 722, 723, 756}

t7 {401, 592, 715, 722, 756}

t8 {401, 437, 715, 721, 722, 723}

Table 9 Cluster C2
t9 {241, 255, 595, 780}

t10 {241, 255, 272, 595, 780}
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sðar2Þ ¼ rðf715; 722; 756gÞ=rðf715; 722gÞ ¼ 4=8 ¼ 0:5

only the disease 723 is definitively added to the set of predicted illnesses. Therefore,

by means of the rule ar1, we foresee that a patient having osteoarthrosis (715), and

disc disorders (722), is very likely to present the symptom of other disorders of

cervical region (723) in the future.

In the next section we will show at what extent CORE is effective in predicting,

next, incoming diseases.

6 Data description

The data set consists of the medical records of two small cities in the south of Italy.

Each record contains a unique patient identifiers, its birth date, the gender, and the

list of disease codes with the date of the visit in which that disease has been

diagnosed. The disease codes are those defined by the International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The International

Classification of Diseases (ICD) and Related Health Problems supplies codes to

classify diseases and a wide variety of signs. The ICD is published by the World

Health Organization and used worldwide for morbidity and mortality statistics,

reimbursement systems and automated decision support in medicine. Every health

condition is associated with a unique category and given a code, up to five digits

long. The first three digits constitute the principal diagnosis, while the other two

identify secondary diagnoses.

For our purposes, we kept only the first three digits of each ICD-9-CM code since

they are informative enough to analyze the disease correlations we are interested in.

Patients having no one or only one diagnosis have been been discarded because not

useful at all. After this preprocessing step, tge total number of patients is 2,541

(1,105 and 1,436 coming from the first and second town, respectively), and the

number of distinct diseases is 455.

Table 10 Frequent itemsets built upon cluster C1

I1 I2 I3

{401} (5) {401, 715} (5) {401, 715, 722} (5)

{437} (5) {401, 722} (5) {437, 715, 722} (5)

{592} (4) {592, 715} (4) {592, 715, 722} (4)

{715} (8) {437, 715} (5) {715, 722, 723} (5)

{722} (8) {437, 722} (5) {715, 722, 756} (4)

{723} (5) {715, 722} (8)

{756} (4) {715, 723} (5)

{715, 756} (4)

{722, 723} (5)

{722, 756} (4)

{592, 722} (4)
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Table 11 shows the 20 most recurring diseases in our data set. It is interesting to

note that, though our data set has a different geographical origin, and it is rather

small with respect to that studied by Davis et al. [6, 7]—which contains 13 millions

of patients—the prevalence of some diseases are almost the same. For instance,

Hypertension, Diabetes mellitus, Cardiac dysrhythmias, and Hyperplasia of

prostate have a prevalence in percentage of 33.16, 14.26, 6.18, and 6.07 % in our

data set, while, in the data set used in [7], the prevalences are 33.64, 10.47, 5.61, and

6.54 %, respectively. Please, notice that the latter data set is not publicly available.

7 Evaluation measures

In this section we describe the evaluation measures used to test the effectiveness of

our approach, and the methodology employed to compute such values.

In order to perform a fair evaluation, we applied the well-known 10-fold cross

validation method [5], i.e., the original dataset is split in 10 equal-sized partitions.

During each of the 10 runs, one of the partitions is chosen for testing, while the rest

of them are used for training the prediction model. The cumulative error is found by

summing up the errors for all the 10 runs. The strategy we followed for testing our

approach is detailed in the following.

Table 11 The top 20 most recurrent diseases

Disease Prevalence (%)

1 401 (Hypertension) 33.16

2 530 (Diseases of esophagus) 22.02

3 715 (Osteoarthrosis and allied disorders) 21.54

4 722 (Intervertebral disc disorders) 17.72

5 462 (Pharyngitis) 14.81

6 250 (Diabetes mellitus) 14.26

7 466 (Acute bronchitis and bronchiolitis) 11.70

8 733 (Other disorders of bone and cartilage) 10.32

9 724 (Other and unspecified disorders of back) 8.90

10 464 (Acute laryngitis and tracheitis) 8.86

11 721 (Spondylosis and allied disorders) 8.07

12 240 (Simple and unspecified goiter) 8.07

13 272 (Disorders of lipoid metabolism) 6.58

14 595 (Cystitis) 6.54

15 535 (Gastritis and duodenitis) 6.42

16 427 (Cardiac dysrhythmias) 6.18

17 600 (Hyperplasia of prostate) 6.07

18 300 (Anxiety, dissociative and somatoform disorders) 5.04

19 491 (Chronic bronchitis) 4.84

20 726 (Peripheral enthesopathies and allied syndromes) 4.81
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First of all, the records in the training set Ttrain are partitioned in k clusters, and

for each group, a distinct prediction model Mi is built upon. Relatively to the dataset

at hand, we empirically found that k = 10 (number of clusters) and c = 0.5

(threshold value for the representative computation) is the setting that ensures the

best partitioning for the dataset at hand, i.e., that minimizing the cost function Qk

(see Eq. 1). A record t in the test set Ttest is assigned to one of the k cluster, then it is

divided in two subsets of diseases, headt and tailt.

The subset of diseases headt is used for generating predictions, while the

remaining diseases in tailt are used to evaluate the prediction. It is worth noticing

that the length of headt is tightly related to the maximum window size w allowable

for each cluster, and, intuitively, it must be lower than the maximal length of

frequent itemsets mined in each cluster. In our dataset, since the frequent patterns

generated are of size at most 5, the maximum length of headt cannot exceed 4.

More in general, given a record t and a window size w, we select the first

w diseases of t as headt and the remaining |t| - w as tailt. If the record t belongs to

the cluster Ci, the relative prediction model Mi first applies the wth-order Markov

model MMw
Ci

. If either headt does not match any state of MMw
Ci

or its prediction has a

low probability (see Sect. 4), association rules for predicting the next diseases are

exploited instead. To this purpose, headt is matched against all patterns Iwþ1
Ci

(i.e.,

the frequent itemsets of length w ? 1 induced in the cluster Ci). Note that, as

previously explained, low probability means that the second predicted disease falls

within the confidence interval of the first predicted disease [14]. To compute the

confidence interval we used a value of za=2 ¼ 1:65. This value has been obtained by

properly tuning za/2 on the data set at hand. In fact, since the greater the confidence

level, the larger the confidence interval, if we use high confidence levels it is more

likely that the second predicted disease will fall in the 100(1 - a) confidence

interval, thus we would need to recur to association rules more often than to Markov

models for performing the next prediction. As a direct consequence of this behavior,

the advantage deriving by the adoption of Markov models as first stage of our

prediction step would be completely lost. For this reason, we decided to adopt a less

strict constraint for the confidence interval because we empirically found that this

value avoids to exclude the Markov models form the prediction phase, so allowing a

seamless cooperation of both predictors in order to achieve the best accuracy

possible.

Let Pheadt
be the set containing all the candidate predictions made by either

exploiting Markov models or association rules. In this latter case, fixed the

minimum confidence threshold s, Pheadt
will contain all the candidate predictions

whose confidence is greater than s. Subsequently, the set Pheadt
is compared with

tailt in order to validate the prediction. The comparison of these sets is done by

using two different metrics, namely Precision and Recall [5]. Precision and recall

are two widely used statistical measures in the data mining field. In particular,

precision is seen as a measure of exactness, whereas recall is a measure of

completeness.

By customizing these definitions to our scenario, we exploited precision for

assessing how accurate the provided predictions are (i.e., the proportion of relevant
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predictions to the total number of predictions) and recall for testing if we predicted

all the diseases the patients are likely to be affected in the future (i.e, the proportion

of relevant predictions to all diseases that should be predicted). Formally, the

precision of Pheadt
is defined as

PrecisionðPheadt
Þ ¼ jPheadt

\ tailtj
jPheadt

j ð10Þ

and the recall of Pheadt
as

RecallðPheadt
Þ ¼ jPheadt

\ tailtj
jtailtj

ð11Þ

Another metric, the F-measure [5], which is the harmonic mean between

precision and recall, is often used to examine the tradeoff between precision and

recall:

F�measure ¼ 2 � precision � recall

recallþ precision
ð12Þ

In the next section the values of precision, recall, and f-measure will be computed

to estimate the prediction capability of our system.

8 Results

In this section we present the results and evaluate them on the base of the introduced

metrics. Figure 2a, b show the cumulative precision and recall scores obtained by

fixing the overall support r for the frequent patterns to 0.1. This choice has been

motivated by the fact that, since the size of the data set is not so large, a low support

value is necessary for ensuring an adequate length for the mined patterns, also in the

case of poor cluster homogeneity. The values of both precision and recall have been

computed by varying the confidence threshold s between 0.1 and 1, and the window

size w from 2 to 4. Increasing window size allows for evaluating the impact of the

number of considered diseases on the quality of the results. Please, notice that we do

not consider the too restrictive case of w = 1, i.e., just one disease in the patient’s

medical history used for the prediction.

Figure 2a clearly reveals that precision increases as a larger portions of patient

medical history, i.e. an increasing number of diseases, are used to compute

predictions, reaching 0.81 when a window of size 4 and a confidence value 1 are

used. Conversely, recall is negatively biased by larger window sizes, as pointed out

in Fig. 2b, though the recall reduction rate from size 4 to size 2 is low. For example,

when the confidence is 1, it diminishes from 0.49 to 0.45.

Figure 3 displays instead the behavior of precision and recall when the support

threshold r varies, and the window size w has been fixed to 4.

Increasing the support threshold has two main positive effects: (i) improving the

precision of predictions, and (ii) ensuring the scalability of the association rule

mining algorithm, since a lower number of frequent itemsets is computed. However,

as a side effect, a higher support results in a potential loss of some important, yet
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infrequent, diseases in the prediction set. In the medical context, this kind of

illnesses could be particularly important and more informative for producing a

correct diagnosis. Figure 3a clearly points out better performances of precision

when the support threshold increases. Indeed, it is easy to note that, for s = 1, we

obtain a precision of 0.81 if r = 0.1, 0.82 if r = 0.15, and 0.84 for r = 0.2. An

inverse trend can be noted in Fig. 3b for the recall which progressively decreases

from 0.54 to 0.45, when r = 0.1, from 0.50 to 0.44, when r = 0.15, and from 0.48

to 0.42, when r = 0.2, respectively.

For the sake of completeness, Fig. 4 shows the F-measure values when w varies

from 2 to 4, r = 0.1, and s ranges in [0.1, 1]. The figure points out that with a

window size of 2 and a confidence value\0.4 gives a F-measure value higher than

that obtained with a larger window size and confidence equal to 1. The choice of

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

τ

P
re

ci
si

on

w = 4
w = 3
w = 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

τ

R
ec

al
l

w = 4
w = 3
w = 2

(a)

(b)

Fig. 2 Impact of w on precision and recall measures when r = 0.1 and confidence s 2 ½0:1; 1	
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parameter values can thus be done by evaluating the trade-off between enlarging the

window size w and reducing confidence value s.

Finally, as a practical result, we show some of the most relevant predictions the

CORE system is able to foresee. In particular, Table 12 reports some of the

association rules found by the system, ordered with respect to their confidence

value. Thus, for example, the first rule states that if a patient is affected by Asphyxia,

Acute bronchitis and bronchiolitis, he could get also Asthma in the next future. A

confidence value equal to 1 means that, relatively to the data set of medical records

used, the disease contained in the right part of the rule always appears together with

the diseases of the left part. Note that, since Hypertension is the most prevalent

disease in the medical records of our experimentation, this illness appeared many

times in the head of the computed association rules—Table 12 just reports two of

these rules.
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Fig. 3 Impact of r on precision and recall measures when w = 4 and confidence s 2 ½0:1; 1	
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The CORE system, thus, besides predicting the diseases of a patient, given his

historical medical record, can also provide the physician with a set of rules

explaining the performed predictions.

9 Conclusions

A method based on the combination of clustering, Markov models, and association

analysis for the prediction of incoming diseases has been presented. Basically, the

approach uses the past medical history of patients to determine next diseases an

individual could incur in the future.
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Fig. 4 F-measure when w ¼ 2; 3; 4; s 2 ½0:1; 1	; r ¼ 0:1

Table 12 Association rules returned by the CORE system by setting w = 4, r = 0.1, and s = 0.4

Association rule Confidence

Asphyxia, Acute bronchitis and bronchiolitis ? Asthma 1

Other disorders of cervical region, Curvature of spine ? Osteoarthrosis and allied

disorders

1

Other disorders of cervical region, Spondylosis and allied disorders ? Intervertebral disc

disorders

1

Other disorders of arteries and arterioles ? Essential Hypertension 0.87

Other of back, Osteoarthrosis and all. dis., Spond. and all. dis. ? Other dis. of bone and

cart

0.83

Intervertebral disc disorders, Abnormal red blood cell ? Other disorders of bone and

cartilage

0.75

Asthma, Asphyxia, Pharyngitis acute ? Anaphylaxis 0.75

Atherosclerosis, Cardiac dysrhythmias ? Essential Hypertension 0.72
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As the experimental results proved, the combination of more models allows for a

good prediction accuracy. The technique can thus be considered as a feasible

approach to the disease prediction. It is worth noting that the main limitations to our

analysis come from the inherent characteristics of data set at hand, i.e., (a) small

size, (b) locality, i.e., the strict provenance of patients from a small area in the south

of Italy, and (c) patient age. In fact, we did not restrict our analysis to particular

groups of people—e.g., elderly patients as other approaches do [6, 7]—but we

considered the whole data set. All these factors could have biased the results, for

example because of the probable presence of health problems specific for the

geographical area considered, or due to the patient age. Furthermore, it is worth

noting that the access to patient medical records is very difficult, mainly due to

privacy problems and to the reluctance of physicians and medicare systems to make

their data publicly available. Despite these weaknesses, experimental results showed

that the combination of knowledge discovery techniques is a promising way to

advance the disease prediction.

Currently, the Italian care system is making an important effort towards a

profitable usage of electronic patient records, thus, as a future work, we will try to

extend the study to a much larger population, possibly exploiting more specific patient

information—beside the diagnosed diseases—for improving the prediction quality.
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