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Abstract—In today’s world, the interconnections among objects in many
domains are often modeled as networks, with nodes representing the
objects and edges the existing relationships among them. A key feature
of complex networks is the tendency of entities to group together to
form communities. The detection of communities has been receiving
a great deal of interest by researchers. In fact, the knowledge of how
objects organize allows a better understanding of a network, and gives
a deeper insight of interesting characteristics, that could not be caught if
considering the network as a whole. In the last decade, evolutionary
computation techniques have given a significant contribution in this
context. The aim of this review is to present the approaches based on
evolutionary computation to uncover community structure. Especially,
the representation schemes with the genetic operators apt for them
are described, and the most popular fitness functions employed by the
methods are discussed. The survey covers the most recent proposals
optimizing either a single objective or multiple objectives for different
types of network models, such as signed, dynamic, multidimensional.

Index Terms—Complex Networks, community detection, evolutionary
computation, single objective optimization, multiobjective optimization.

1 INTRODUCTION

Network science, in recent years, has been attracting many
researchers from different domains. In fact, complex networks
are an effective formalism in representing the relationships
among objects composing many real world systems. Networks
are modeled as graphs, where nodes denote the objects of
a system, and edges represent the interactions among these
objects. Community structure, i.e. the division of a network
into groups of nodes having dense intra-connections, and
sparse inter-connections [43], is an important characteristic
of networks, intensively studied in the last years. The orga-
nization in communities, in fact, takes place in both society
and complex systems, such as communication and transport,
biology, internet, World Wide Web [81]. The problem of
uncovering community structure can be formalized as an
optimization problem where an appropriate criterion function,
that at best catches the intuitive concept of community, must be
defined and optimized. In the past years, a lot of approaches,
employing different types of heuristics and a wide variety
of criteria to optimize, have been proposed. Detailed surveys
describing these methods can be found in [42], [92], [41], [24],
[84], [109], [79], [91], [56], [1], [7], [90].
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Evolutionary Computation is a powerful search and opti-
mization technique inspired by the process of natural evolution
[37], [59], successfully applied for the solution of many diffi-
cult real world problems. Evolutionary methods are flexible
methods that can be used, in principle, to solve any type
of problem, provided that the problem can be formulated as
an optimization task. These methods consist of population
initialization, followed by variation and selection operators
to improve the value of a criterion, able to escape from
local minima, while exploring the search space during the
optimization process.

In the last decade, we have witnessed an impressive growth
of new methods based on evolutionary computation for the
community detection problem. This increasing popularity is
due to the capability of evolutionary computation in providing
a simple, but efficacious, methodology for solving a complex
problem, by requiring the definition of few basic concepts: a
suitable representation for the problem, the function to opti-
mize, and how individuals of the population evolve. Compared
to classical metaheuristic methods, they present a number of
advantages:

• the number of communities is automatically determined
during the search process,

• domain-specific knowledge can be incorporated inside the
method, such as biased initialization, or specific variation
operators instead of random, allowing a more effective
exploration of the state space of possible solutions,

• being population-based models, they are naturally parallel
and efficient implementations can be realized to deal with
large size networks.

The objective of this review is to give a comprehensive
description of the state-of-the art methods proposed so far that
approach the problem of community detection with computa-
tional models inspired by evolution in nature. In particular, the
review will focus on methods based on Genetic Algorithms
(GAs) [45], and evolutionary strategies in general [13], cov-
ering also other nature inspired approaches, such as particle
swarm and ant colony optimization [65], [31], firefly and bat
methods [111], [112] for finding communities, eventually over-
lapping, in different types of networks, including undirected,
directed, weighted, signed, multi-dimensional, time evolving.

The paper is organized as follows. The next section in-
troduces definitions and concepts related to the problem.
Section 3 defines the problem of community detection as
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Fig. 1. An example network with 12 nodes, 20 edges, and
three communities.

an optimization problem. Section 4 describes the encoding
schemes, while Section 5 describes the variation operators.
Section 6 illustrates the most popular objective functions, then
Section 7 explains how the problem has been faced with
multiobjective optimization. A comparison between single
objective and mutiobjective approaches is reported in Section
8. Sections 9, 10, and 11 describe particular network models
and overlapping approaches. Section 12 reports the most recent
proposals of other bio-inspired methods. Section 13 concludes
the paper by summarizing all the described approaches in three
tables reporting for each of them, the main characteristics, and
discusses future desirable developments.

2 PRELIMINARIES

A network N can be modeled as a graph G = (V,E,W )
where V is a set of n objects, called nodes or vertices, E is a
set of m links, called edges, that connect two elements of V ,
and W : V × V → R is a function which assigns a weight
to a couple (i, j) of nodes i and j, if there exists an edge
connecting i and j, and 0 if an edge between i and j does not
exist [81], [4].

A graph G can be represented with the adjacency matrix
A, whose elements are denoted as Aij . The values of Aij
determine the kind of graph. Thus, an undirected network is
such that Aij = Aji. If Aij > 1 the network is said weighted,
if Aij ∈ {−w, 0, w}, the network is signed.

A community (also called cluster) [41] in a network is a
group of vertices (i.e. a sub-graph) having a high density of
edges within them, and a lower density of edges between
groups. A community structure (or clustering) is defined as
a division C = {C1, . . . , Ck} of the network in k sub-
graphs such that V = ∪ki=1Ci. When Ci ∩ Cj = ∅ ∀i, j,
we have a partitioning of the nodes, otherwise we allow
nodes to participate in more that one cluster, thus having
overlapping communities. The degree ki of a generic node
i, is ki =

∑
j

Aij . The degree ki(C) of a node i with

respect to the community C it belongs, can be split as
ki(C) = kini (C) + kouti (C) where kini (C) =

∑
j∈C

Aij is the

number of edges connecting i to the other nodes in C, and
kouti (C) =

∑
j /∈C

Aij is the number of edges connecting i to the

rest of the network.

An example of undirected network is shown in Figure 1.
This toy network will be used in the paper to illustrate genetic
operators.

3 COMMUNITY DETECTION AS AN OPTIMIZA-
TION PROBLEM
The detection of community structure in a network can be
considered as a problem of clustering and, as such, it can be
formally defined as an optimization problem. The problem can
be faced in two different ways: single objective optimization
and multiple objective optimization [35].

Let Ω = {C1, . . . , Cr} be the set of feasible clusterings of
a network. For single criterion optimization, the community
detection problem can be formulated as the optimization
problem (Ω,F) of finding a division C∗ for which

F(C∗) = min F(C), subject to C ∈ Ω (1)

where F : Ω → R is the single criterion function
that determines the feasibility and quality of the clustering
obtained.

For multiple objectives, the problem can be formulated as
a multiobjective clustering problem (Ω,F1,F2, . . . ,Fh)

F(C∗) = min Fi(C), i = 1, . . . , h subject to C ∈ Ω (2)

where F = {F1,F2, . . . ,Fh} is a set of h competing single
criterion functions Fi : Ω → R that must be simultaneously
optimized. The aim is to find a dominant solution C∗ such
that, for each solution C ∈ Ω and for each objective Fi ∈ F

Fi(C∗) ≤ Fi(C) i = 1, . . . , h (3)

Often, however, a dominant solution does not exist and the
problem is how to find an efficient solution, i.e. one which is
as good as possible respect to each criterion. Pareto optimality
theory [33] allows to find these solutions. Given C1 and C2 ∈
Ω, solution C1 is said to dominate solution C2, denoted as
C1 ≺ C2, if and only if

∀i : Fi(C1) ≤ Fi(C2) ∧ ∃ i s.t. Fi(C1) < Fi(C2) (4)

Multiobjective optimization aims to the generation and
selection of nondominated solutions, called Pareto-optimal, for
which an improvement in one objective requires a degradation
of another. The set of Pareto-optimal solutions Π is defined as

Π = {C ∈ Ω : 6 ∃C ′ ∈ Ω with C ′ ≺ C}

The vector F maps the solution space into the objective
function space. When the nondominated solutions are plotted
in the objective space, they are called Pareto front. Thus,
the Pareto front represents the better compromise solutions
satisfying all the objectives as best as possible.

The many proposed methods can be divided in two main cat-
egories, those optimizing only one fitness function, and those
optimizing two, or more, objectives. However, independently
of the number of criteria, some general principles are common
for all the methods, i.e. the choice of the representation, and
the type of crossover and mutation operators. In the following,
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position 1 2 3 4 5 6 7 8 9 10 11 12

label 1 1 1 2 2 2 2 3 3 3 3 3

Fig. 2. Labels-based representation of the network divi-
sion of the example of Figure 1.

a description of the representation schemes proposed in the
literature is reported, along with the genetic operators apt
for each representation and the most popular fitness functions
adopted by approaches.

It is worth pointing out that these basic schemes have been
introduced by single objective methods, and then exploited
by the multiobjective ones. Thus, unless explicitly stated, the
strategies reported in the following sections are related to
single objective approaches. The multiobjective methods are
then treated in detail in Section 7.

4 ENCODING SCHEMES

The representation of a solution is a crucial part for the success
of an algorithm. Several proposals exist to encode the division
of a network in sub-graphs. These representations are often
adapted from the encoding used to solve the classical data
clustering problem with evolutionary methods [61].

4.1 Label-based representation
In this kind of encoding a genotype is an integer vector of
size n, where n is the number of nodes. A position 1 ≤ i ≤ n
corresponds to a node, thus, if k is the number of communities,
each gene i can assume a value in the alphabet {1, . . . , k}.
This value is the label identifying the community to which
node i belongs.

For example, consider the network of Figure 1.
Figure 2 shows the label-based representation of
the division of the network into the three groups
{{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11, 12}}.

Label-based representation has been widely used for data
clustering [61]. Tasgin and Bingol [106] adopted it for com-
munity structure identification, making it also very popular for
complex networks.

This encoding scheme, as observed in [61], is redundant
because, if a genotype represents a division into k groups of
nodes, there can be k! different chromosomes corresponding
to the same partition. The vector [3 3 3 1 1 1 1 2 2 2 2 2] rep-
resents the same network division of [1 1 1 2 2 2 2 3 3 3 3 3].
More generally, since the number of communities can be any
number between 1 and n, the size of the search space can
be nn. Thus, for example, [4 4 4 10 10 10 10 6 6 6 6 6]
always represents the same solution. A possible strategy to
solve this problem is to apply a renumbering procedure, as
suggested by Falkenauer [34], that is class labels are renum-
bered starting from the first available label number determined
by the ordering of nodes in the chromosome. For instance, in
the chromosome [4 4 4 10 10 10 10 6 6 6 6 6], class label
4 is changed to 1, class label 10 to 2, and class label 6 to 3.
Though this augments the computation time, on the other hand
the size of the search space is sensibly reduced. However, none

position 1 2 3 4 5 6 7 8 9 10 11 12

neighbor 2 1 1 5 7 5 5 12 8 8 10 8

(a)

(b)

Fig. 3. (a): Locus-based representation of the network
division of the example of Figure 1. (b) Corresponding
graph division into three connected components.

of the methods that adopt label-based representation takes into
account the renumbering procedure. Gog et al. [44] proposed
enriching this representation by endowing each chromosome
with the value of the best ancestor individual and the value of
the best individual obtained so far. Ancestors are defined as
all the individuals in previous generations that contributed to
the generation of the current individual. The genetic material
retained through ancestors is then exploited to expand the
search space, since recombination is performed only between
individuals having no common ancestors.

4.2 Locus-based representation
The locus-based adjacency representation has been originally
proposed in [85] for data clustering and exploited by Handl
and Knowles [55] inside a multiobjective clustering method. In
this graph-based representation an individual of the population
consists of n genes g1, . . . , gn and each gene can assume
allele values j in the range {1, . . . , n}. A value j assigned
to the ith gene is interpreted as a link between the nodes
i and j of V . This induces a division of the network into
connected components, represented through subgraphs, often
trees. Consider again the network of Figure 1. The network
partitioned into three groups, visualized by different colors
of the nodes, can be represented, out of the many possible
genotypes, by the chromosome reported in Figure 3(a), that
corresponds to the graph division given in Figure 3(b).

In this representation a decoding step is necessary to identify
all the components of the graph, so that nodes participating
in the same component are assigned to the same cluster.
This decoding step can be efficiently done in linear time by
using the method reported in [23]. A main advantage of this
representation is that the number k of clusters is automati-
cally obtained by the number of components contained in an
individual and determined by the decoding step.

It is worth noting that also the locus-based representation
is redundant. However, the complexity of the search space
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reduces from nn of the label-based representation, to
∏n
i=1 ki

where ki is the degree of node i. Since often networks
are sparse, the solution space is narrower, thus the locus-
based representation can sensibly improve the efficiency of
the evolutionary approach.

Locus-based representation has been first used in [86] for
community detection. Since then, because of the ability of
naturally mapping the community detection problem to that
of automatically determining k sub-graphs (often in the form
of sub-trees) of a graph, it has been adopted as a valid
alternative to the label-based presentation by several authors.
Chira and Gog [21], analogously to [44], extended the locus-
based representation of an individual with the best potential
solution, the individual’s best ancestor, and added also the
lowest fitness solution. This extra information is exploited
to define a specialized selection function and a collaborative
crossover operator that changes an allele value by taking into
account also the ancestors. The effectiveness of this extension
for both label and locus representations, however, cannot be
proved since the authors experimented only on two small
networks.

4.3 Medoid-based representation
The medoid-based representation uses an array of dimension
k, where k, the number of communities, must be given as
input parameter. The i-th element of the array contains one of
the nodes composing a community. For instance, a medoid-
based representation of the network of Figure 1 is the array
[1 5 10], where 1 is the prototype of community {1, 2, 3},
5 of {4, 5, 6, 7}, and 10 of {8, 9, 10, 11, 12}}. Though this
representation is more efficient in terms of space complexity, it
has many drawbacks. First of all, k must be known in advance;
moreover it is redundant because any element of the commu-
nity can be used as medoid. Finally, it needs a decoding step
to recover the communities. While for traditional clustering
recovering is obtained by assigning a data object to the nearest
medoid, computed with respect to a distance measure such as
the Euclidean one, the concept of distance between nodes is
not obvious. Firat et al. [36] discuss this problem and show
that a distance measure based on random walks is superior to
Euclidean distance. A random walk from a node i to a node j
in a graph is a stochastic process modeling the path starting at
i to reach j by choosing the next neighboring node at random.
The authors also point out that the assignment of a node to the
nearest medoid leaves parts of the search space unexplored,
thus preventing the achievement of potentially good solutions.
They thus propose to extend the medoid-based representation
with exception-bins, appended to the end of the genome,
containing set of nodes that are not assigned to the nearest
medoid. However, how many nodes allocate to exception bins
and how many bins should be used has remained an open
problem, thus this proposal did not receive much attention.

4.4 Permutation-based representation
The representations described above do not allow a node
to participate in more than one community. To overcome
this problem, Liu et al. [77] proposed a new representation

scheme that can generate overlapping communities. In this
representation, in the following denoted permutation-based,
a chromosome A = (A〈P〉,A〈C〉) is composed of two
components. The first, A〈P〉, is a permutation of all the nodes
{1, 2, . . . , n}

A 〈P〉 = {vπ1 , vπ2 , . . . , vπn} (5)

and the second component, A〈C〉, is a vector of n elements

A〈C〉 = {c1, c2, . . . , cn} (6)

where ci denotes the community of node i. In order to obtain
A〈C〉, the authors adopt a so called decoder, which actually
is an incremental method that finds communities by optimizing
the community fitness function of Lancichinetti et al. [69].
Nodes are examined in the order given by A〈P〉 and added
to an existing community if the fitness function augments,
otherwise a singleton community is created. This implies that
the same node could improve the fitness of more than one
community, and thus added to many communities, giving
rise to overlapped communities. When all nodes have been
examined, a merging phase combines couples of communi-
ties if they have in common at least 50% of nodes. The
decoding step of this representation presents two kinds of
problems. The first is that at each generation, in order to
obtain A〈C〉, an algorithm must be executed. Thus decoding
could be computationally expensive. The second problem is
that many singleton communities could be generated. Though
iterative merging of communities can dampen the problem,
communities constituted by single nodes can still be present.

Each of the above representations has positive and negative
aspects. The label-based one is the most simple but also highly
redundant. The main drawback is that it generates a clustering
division C = {C1, . . . , Ck} such that a community Ci could
contain nodes not connected to any of the nodes present in Ci.
To overcome this undesirable behavior, specialized operators
have been suggested [106], but the guarantee that disconnected
nodes will not be present in communities cannot be assured.
The main disadvantage of the locus-based representation is
the need of decoding each chromosome before the fitness
evaluation, thus if both the size of the population and the
number of nodes are high, this could slow down an algorithm.
However, decoding can be efficiently performed in O(n log n)
time by using a disjoint-set data structure, as described in
[23]. The medoid-based representation needs the number of
communities as input parameter. This makes it not applicable
to real world networks since this information is not known
in advance. The main weakness of the recently proposed
permutation-based representation is the choice of the decoder
to obtain the assignment of a node to a community, with a
considerable increase of the computational resources. On the
other hand, the decoder allows assigning a node to more than
one group, thus enabling overlapping among communities.

5 GENETIC OPERATORS
5.1 Crossover
Traditional crossover operators applied to the detection of
communities can present several problems, analogous to those
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pointed out in [34] and discussed in [61] for data clustering.
The kind of problem is related to the representation used by
the method.

Medoid-based representation uses one-point crossover. As
regards to the label-based representation, however, a standard
one-point or two-point crossover has two main drawbacks.
The first is that it could generate invalid solutions in which
nodes having no connections are assigned to the same group,
i.e. a cluster can contain disconnected subgroups of nodes.
To mitigate this problem, Tasgin and Bingol [106] proposed
one-way crossover, which is analogous to the group-based
crossover described in [34], but which generates only one
offspring from the two parents. One-way crossover, fixed
the roles of the parents between source and destination
chromosome, selects at random a node i in the source, and
creates a child chromosome by transferring in the destination
chromosome the community label of i to the node i, and to
all the nodes having the same label of i in the source. An
example of one-way crossover is shown in Figure 4(a). To
better understand this kind of crossover, a graphical illustration
can be seen in Figure 4(b). In this example, the node 7,
whose label is 4, is chosen at random. Thus the child has
the same gene values of the destination chromosome, except
for positions {6, 7, 8}, since nodes 6 and 8 have the same
label of node 7. The label of these three nodes is changed
to 4. A modified one-way crossover, named two-way, which
generates two offspring by exchanging the roles of source and
destination of the parent chromosomes, has been proposed by
Gong et al. [48].

The second problem is that the offspring does not inherit
the genetic characteristics of parents, thus destroying some
building blocks already obtained. This problem has been faced
by He et al. [58] by introducing the definition of multi-
individual ensemble learning-based crossover operator, that
generates an offspring by using a hierarchical agglomerative
clustering method. This method starts by assigning each node
to a community, and iteratively merges the two communities
with the maximal fitness value, provided that they contain a
couple of nodes belonging to the same cluster in at least an
individual, out of the M best chromosomes of the current
population. Though the authors state that this kind of crossover
improves the global search capability of their method, they
do not discuss the computational time increase due to the
execution, at each step, of the hierarchical clustering method
that has to take into account the best network divisions of the
current generation. Moreover, how many ”promising clustering
solutions” should be chosen by the current population to form
the ensemble has not been argued.

Standard uniform crossover is the kind of crossover that
fits well for the locus-based representation [86]. In fact, it
guarantees the generation of an offspring that fully exploits
the genetic information coming from the parents. A binary
mask of length equal to the number of nodes is randomly
created, and an offspring is generated by selecting from the
first parent the genes where the mask is 0, and from the second
parent the genes where the mask is 1. Since the value of
a gene at position i is one of the neighbors of node i, the
effect of uniform crossover is to connect a node with another

1 2 3 4 5 6 7 8 9 10 11 12
Source 1 1 3 2 2 4 4 4 3 5 5 3

Destination 2 5 5 5 1 1 2 4 4 3 3 2

Child 2 5 5 5 1 4 4 4 4 3 3 2
↑ ↑ ↑

(a)

(b)

Fig. 4. (a) One-way crossover where the random position
7 is selected. The class label 4 is thus assigned to genes
at positions {6, 7, 8}, which have the same label value 4
of gene 7. (b) Graphical illustration of one-way crossover.

neighboring node, thus the links of the nodes in the network
are maintained in the child individual. Figure 5 shows an
example of uniform crossover. Shi et al. [98] proposed the
use of two-point crossover, but the advantages with respect to
uniform crossover have not been investigated.

Zadeh and Kobti [116] proposed a multi-population cultural
algorithm that maintains, besides the population space, a
belief space having the role of knowledge repository made of
selected individuals having the best fitness values. New indi-
viduals are generated by exploiting this belief space. Crossover
is thus performed by choosing one parent randomly from the
belief space, and the second parent from the individuals not
appearing in it.

Binomial crossover is a kind of crossover employed in
Differential Evolution approaches [26] that generates a new
individual u from the target vector x and the mutant vector1

v as follows:

uj =

{
vj if rand ≤ CR or j = jrand
xj otherwise (7)

where rand is random number between 0 and 1, jrand
is an integer random number between 1 and n, and CR is
a control parameter. Jia et al. [63] modified this binomial
crossover operator for community detection by adding the
one-way strategy of Tasgin and Bingol [105]; that is, the
community label is changed not only for node j, but also
for all the nodes belonging to the same community of j.

1. The concept of mutant vector [26] is explained in the next section
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1 2 3 4 5 6 7 8 9 10 11 12
Parent 1 3 1 4 7 4 12 4 7 8 9 12 6

Parent 2 2 9 2 5 6 7 8 10 2 11 10 8

Mask 1 1 0 0 1 1 0 0 0 1 1 1

Child 2 9 4 7 6 7 4 7 8 11 10 8
(a)

(b)

Fig. 5. (a) Uniform crossover for locus-based representa-
tion. (b) Graphical illustration.

5.2 Mutation

The task of mutation is to modify gene values to allow
the exploration of the search space towards regions not yet
inspected. However, mutation must not be too destructive and
nullify the process of finding an optimal solution. For the
label based representation the simplest strategy is to randomly
change the membership of a node by assigning it to one of the
other existing communities [106], [70] (see Figure 6(a)). The
same approach is adopted in the medoid-based representation
[36]. A variant adopted by [48] is to assign a node to the
cluster of one of its neighbors, while in [58] the majority
label of the neighbors is adopted. The rand/1 mutation strategy
of differential evolution [26] has been employed by Jia et
al. in [63]. This strategy randomly selects three individuals
xr1, xr2, xr3 from the population and generates the mutant
individual v as

v = xr1 + F × (xr2 − xr3) (8)

where F is a real number between 0 and 1. Each element
of the mutant vector is then checked to contain one of the
allowed labels, i.e. an integer number in the interval [1, n]. If
this constraint is violated, a function that takes back the label
in the correct range values is applied.

In the locus based representation, chosen at random a node i
whose allele value is j, the neighbor node j is substituted with
another node among its neighbors [86]. This simple, but very
effective method, causes either the split of a community or
the union of two communities, thus modifying the community
structure. This kind of mutation can be seen in Figure 6(b).
Jin et al. [64] introduced the concept of marginal node, that
is a node in a chromosome, with locus-based representation,

(a)

(b)

Fig. 6. (a) Mutation, for label-based representation, of the
offspring of Figure 4 where node 1 is moved from cluster 2
to cluster 5. (b) Mutation, for locus-based representation,
of the offspring of Figure 5 where node 12 is disconnected
from node 8 and connected to node 11.

that never appears as an allele value. Mutation is performed
only on these nodes. The allele value of a marginal node i is
changed to another neighbor j if the fitness of the community
C to which j belongs has the best increase with respect to
the other communities, when i is added to C. The same local
search mutation is adopted in [76].

5.3 Population Initialization
The initial population is generally generated by assigning
random values to each individual. Such a strategy, however,
gives initial divisions of the network of poor quality, with true
communities highly mixed. For label-based representation,
Tasgin and Bingol [106] suggested choosing some nodes and
assigning their community label to all their neighbors. This
approach induces the generation of small initial communities
that can improve the convergence of the method. Gong et al.
[48] used the same strategy and suggested applying it to 20%
of individuals. He et al. [58] proposed a Markov random walk
method based on the probability that an agent can reach a
node j from a node i in a number of steps.

In the locus-based representation, assigning to a gene i one
of its neighbors is a simple approach that guarantees an initial
division of the network in connected groups of nodes [86].
Liu et al. [76], analogously to [58], adopted a Markov random
walk strategy.

5.4 Local search operators
Genetic operators often can produce solutions that assign
nodes to the wrong community. In order to improve the
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quality of the community division, a number of heuristics have
been proposed. Tasgin and Bingol [106] proposed a clean-up
process at the end of each generation that chooses a number of
nodes and computes the community variance for such nodes.
The community variance of a node i is defined as

CV (i) =

∑
(i,j)∈E

f(i,j)

ki
(9)

where ki is the degree of node i, and f(i,j) is 0 if i and
j belong to the same community, 1 otherwise. Community
variance is thus the ratio between the number of different
communities among i and its neighbors {i1, . . . , iki}, and
the number of its neighbors. If this value is above a fixed
threshold, then i and all its neighboring nodes are assigned
to the community containing the highest number of nodes,
among {i, i1, . . . , iki}. Otherwise, no action is performed.
The authors argue that community variance induces connected
nodes to belong to the same group; however, how many nodes
should undergo this check, how to select them, and which
threshold value should be used have not been discussed. A
different strategy is proposed by Li et al. [70] consisting in
making nl copies of a chromosome, then, for each individual,
a row j is chosen at random from the adjacency matrix, and
the community label of j is assigned to all its neighbors.
The chromosome is then substituted by the best, in terms
of modularity value, among the nl copies. This process is
repeated for each individual in the population. Also in this
case, which is the best value to use for nl is an open problem.

Gong et al. [48] perform a local search at the end of each
generation, after crossover and mutation, only on the individ-
ual with the best fitness value. Chosen a node i belonging
to a community Cr of the clustering C = {C1, . . . , Ck},
determined by such an individual, it is deleted from Cr and
assigned to another cluster Cs ∈ C. The new partition with
the modified communities is called a neighbor of C. The local
search procedure finds all the neighbor partitions of the best
individual and, if one of them has a fitness value higher than
that of C, it substitutes C with this new one. This approach,
as the authors also observe, is sensitive to the starting point
and requires more computational effort. However, the authors
reported better results when applying this strategy, though they
do not say how much the computational demand increased.

Shang et al. [95] observed that a local search based on hill-
climbing can prevent exploration of parts of the search space
and give poor local optimal solutions. Thus, they proposed
the simulated annealing method [94] and showed that it can
improve the capability of the genetic algorithm to find high
quality solutions.

6 FITNESS FUNCTIONS

The choice of the fitness function is another critical step
for obtaining good solutions. In the context of community
detection the most popular function is modularity, originally
introduced by Newman and Girvan in [43], [83] to evaluate
clustering results, and then used as criterion to optimize in

[82]. More formally, modularity is defined as follows:

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj) (10)

where A is the adjacency matrix of the graph, m is the
number of edges, ki and kj are the degrees of nodes i and j
respectively, and δ is the Kronecker function which yields one
if i and j are in the same community, zero otherwise.

Let C1 and C2 be two disjoint subsets of the vertex set
V , C1 = V − C1, L(C1, C2) =

∑
i∈C1,j∈C2

Aij , L(C1, C1) =∑
i∈C1,j∈C1

Aij . Since only the pairs of vertices belonging to the

same cluster contribute to the sum, modularity can be rewritten
as

Q =

k∑
i=1

L(Ci, Ci)

2m
−
(
L(Ci, V )

2m

)2

(11)

where k is the number of communities. The first term of
each summand is the fraction of edges inside a community,
while the second one is the expected value of the fraction of
edges that would be in the community if the network where
a random one with the same expected vertex degree. Values
higher than 0.3 indicate good community structure.

Extensions to modularity to deal with weighted and directed
networks have been proposed by Arenas et al. [11]. Let W be
the weighed adjacency matrix of a graph, then:

Q =
1

2w

∑
ij

(
Wij −

wouti winj
2w

)
δ(Ci, Cj) (12)

where wouti =
∑
j

Wij , winj =
∑
i

Wij , and 2w =
∑
i

∑
j

Wij .

Shen et al. [96] proposed an extension to modularity for
overlapping communities that takes into account the number
of communities a node belongs to. The extended modularity
EQ is defined as:

EQ =
1

2m

∑
i

∑
v∈Ci,w∈Ci

1

OvOw
[Avw −

kvkw
2m

] (13)

where Ov is the number of communities to which v partici-
pates.

Fortunato and Barthélemy [40] pointed out that the opti-
mization of modularity has a resolution limit that depends
on the total size of the network and the interconnections
of the modules. Moreover, the formula does not take into
account the size of communities. This implies that partitions
obtained by the maximization of modularity could not discover
small groups, hidden within large communities having higher
modularity value. A modification of modularity to overcome
this problem has been proposed in [73] with the concept of
modularity density, defined as:

D =

k∑
i=1

L(Ci, Ci)− L(Ci, Ci)

|Ci|
(14)

The first term is the average inner degree of a community
Ci, which is twice the number of edges in Ci divided its
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number of nodes, while the second is the average out degree
of Ci, that is the number of edges having a node inside Ci and
the other node outside Ci, divided by the number of nodes of
Ci. The authors prove that modularity density has a number
of advantages with respect to modularity, such as detecting
communities of different size.

A quality measure of a community C that maximizes the
in-degree of the nodes belonging to C has been defined in
[86] as follows.

score(C) =

∑
i∈C

(
1
|C|

∑
j∈C

Aij

)α
|C|

×
∑
i,j∈C

Aij (15)

where α is a positive real-valued resolution parameter con-
trolling the size of the communities, | C | is the cardinality
of C, 1

|C|
∑
j∈C

Aij is the fraction of edges connecting node i

to the other nodes in C, and
∑
i,j∈C

Aij is the double of the

number of edges connecting vertices inside C, i.e the number
of 1 entries in the adjacency sub-matrix of A corresponding
to C.

The community score of a clustering C = {C1, . . . Ck} is
defined as

CS =

k∑
i

score(Ci) (16)

The concept of community fitness P(C) of a community C
has been introduced in [69] as

P(C) =
∑
i∈C

kini (C)

(kini (C) + kouti (C))α
(17)

where α is a resolution parameter. When kouti (C) = 0 ∀i,
P(C) reaches its maximum value for a fixed α.

In the literature many other scoring functions, such as
conductance, expansion, cut ratio, have been defined to capture
the concept of community [110], and classified with respect to
their characteristics of being based on either internal or exter-
nal connectivity, on a combination of both, and on a network
model. These other criteria did not receive much attention as
functions to optimize, probably because of obtaining solutions
of lower quality when compared to modularity.

Modularity [83], and its extensions [11], [96], are based
on the idea that a random graph does not present community
structure. Thus, the existence of communities can be uncov-
ered by a comparison between the edge density of a group
of nodes and the expected density of this group of nodes if
they were attached randomly. Though this quality function is
one of the most popular functions, because of the resolution
limit problem, it may be biased towards network partitions
with small communities merged into larger communities [40].

Community score relies on internal connectivity, and com-
munity fitness on both internal and external connectivity. Both
functions have introduced a resolution parameter α that allows
the exploration of community structure at different levels of
granularity, thus overcoming the resolution limit problem of
modularity. However, which value of α gives the best partition

is not an easy task, also because, as will be discussed in
Section 8, a formal definition of community does not exist
[41].

In the next section, multiobjetive approaches that integrate
these fitness functions to unveil different aspects of community
structure, are described.

7 MULTIOBJECTIVE OPTIMIZATION

The approaches described so far optimize only one of the
objective functions reported in the previous section. Though
these single-objective methods have obtained very good results
on both artificial and real world networks, the intuitive notion
of community that the number of edges inside a community
should be much higher than the number of edges connecting to
the remaining nodes of the graph, has two different objectives:
maximizing the internal links and minimizing the external
links. Thus, the community detection problem is naturally
formulated with multiple competing objectives.

The first proposal of using a multiobjective framework to
uncover community structure has been presented by Pizzuti in
[87], [89]. In particular, the method maximizes the community
score (formula (16)) and minimizes the community fitness
(formula (17)), and uses as multiobjective framework the Non-
dominated Sorting Genetic Algorithm (NSGA-II) proposed by
Deb et al. in [28]. NSGA-II builds a population of competing
individuals and ranks them on the basis of nondominance.
The solution of the Pareto front having the highest value of
modularity is chosen as final result. It is worth to outline that
a main characteristic of the multiobjective approach is that
the set of Pareto optimal solutions reveals the hierarchical
organization of the network, where solutions with a higher
number of groups are included in solutions having a lower
number of communities. This peculiarity gives a great chance
to analyze the network at various hierarchical levels and study
communities with different modular levels.

A variation to this method has been proposed by Agrawal
[2]. The objectives to minimize are{

fQ = 1−Q
fQCS = fQ + 10

(1−CS)
(18)

where Q is the modularity (formula (11)) and CS is the
community score (formula (16)). The weight 10, as the authors
state, has been obtained empirically.

Shi et al. [101], [99] observed that the modularity formula

Q =
k∑
i=1

L(Ci,Ci)
2m −

(
L(Ci,V )

2m

)2

is composed of two terms,

where the left term considers the number of internal links of
communities, thus it should be maximized, while the right
one should be minimized because it includes the connections
within different communities. To obtain the first objective,
communities should be densely connected, to obtain the sec-
ond one, the network should be divided in many groups with
small total degree. In order to minimize two objectives, the
first term is redefined as

intra(C) = 1−
k∑
i=1

L(Ci, Ci)

2m
(19)
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and

inter(C) =

k∑
i=1

(
L(Ci, V )

2m

)2

(20)

These two objectives balance the tendency of each other’s
to increase or decrease the number of communities. If the
number of communities increases, the number of edges inside
each community diminishes, thus the first term of modularity
diminishes, consequently intra(C) augments, while inter(C)
diminishes. When, instead, the number of communities dimin-
ishes, inter(C) increases, since the inter-connections between
communities increases. Using them as the two objectives
to optimize thus, as the authors state, avoids convergence
to trivial solutions. Regarding the model selection from the
Pareto front, the authors use two approaches: one chooses
the solution having the maximum modularity value, the other
introduces the concept of Max-Min distance between models.
This strategy generates a random network N ′ with the same
scale of the real network N , and obtains the Pareto front
CF of N ′. Then the distance between the two Pareto front
solutions is computed as

dist(C,C′) =
√

(intra(C)− intra(C′)2 + (inter(C)− inter(C′)2
(21)

where C and C ′ are solutions from the real and the random
Pareto front, then

SMax−Min = maxarg{min{dist(C,C ′) | C ′ ∈ CF}}

Gong et al. [51] followed a similar approach to that of Shi
et al. [99] by splitting the modularity density formula in two.
Thus, the first term, called Negative Ratio Association (NRA)
is

NRA = −
k∑
i=1

L(Ci, Ci)

|Ci|
(22)

and the second term, called Ratio Cut (RC), is

RC =

k∑
i=1

L(Ci, Ci)

|Ci|
(23)

Wu and Pan [108] proposed enriching a multiobjective
evolutionary algorithm with a local search procedure to im-
prove the solution. They adopt the Nondominated Neighbor
Immune algorithm (NNIA) [50] as optimization mechanism,
label-based representation of individuals along with one-way
crossover and neighbor-based mutation, and the inter(C)
and intra(C) objective functions of Shi et al. [99]. The
local search procedure is executed after the application of
crossover and mutation operators to the current nondominated
individuals of the Pareto front, and uses a label propagation
rule to change class membership of nodes.

A multiobjective evolutionary algorithm that obtains both
separated and overlapping communities has been proposed
by Liu et al. [77]. The main novelty of this approach is the
introduction of the permutation-based representation described

in Section 4.4. To obtain both separated and overlapping
communities the authors optimize three functions:

fquality(A) = (
k∑
i=1

P(C)i)/k

fseparated(A) = − | Voverlapping |

foverlapping(A) =
k∑

i∈Voverlapping

min
kci
ki

(24)

where P(C)i is the community fitness of [69] (formula
(17)), Voverlapping is the set of nodes belonging to more than
one community, and kci is the number of edges connecting
node i with community c. This method uses the NSGA-II
framework and applies neither crossover nor mutation, but
only the reverse operator on the permutation component A〈P〉
(formula (5)) of a chromosome.

Multiobjective evolutionary approaches, analogously to sin-
gle objective ones, are able to discover community structures
of quality comparable with, or even better than, those obtained
by computational methods not based on evolutionary computa-
tion. The choice of the objectives to optimize should take into
account the suggestions given by Shi et al. in [100], where a
comparison of several objective functions in a multiobjective
framework has been performed. Eleven functions have been
considered, and a correlation analysis revealed that couples of
negatively correlated objectives give better results of positively
correlated fitness functions. The authors experimented that
negative correlation has opposite influence on the number of
communities, thus it enhances diversity and avoids obtaining
trivial solutions. Optimizing pairs of positively correlated
objectives, instead, is equivalent to a single objective approach,
thus it does not yield any benefit to the algorithm. It is worth
pointing out that neither of the above methods performs a
correlation analysis among the objectives, also because many
methods are antecedent to this analysis.

8 SINGLE OBJECTIVE VERSUS MULTIOBJEC-
TIVE

The concept of community in a network is based on the idea
that internal connections are dense, while few ties should exist
with the rest of the graph. A formal definition of community,
however, does not exist. Wasserman and Faust [107] defined
four general properties that cohesive groups of nodes should
satisfy to be considered communities: complete mutuality,
closeness or reachability, frequency of internal ties, relative
tie frequencies among group members versus non-members.
The quality of a community can be defined with respect to
one, or more than one, of these properties, and it measures
how well the properties are satisfied. Single objective methods
optimize a single property, while multiobjective approaches
simultaneously optimize competing objectives [22]. The two
approaches present advantages and disadvantages. Single ob-
jective optimization identifies a single best solution that gives
insights on the graph organization, however this solution could
be biased towards a particular structure inherent inside the
criterion to optimize. Optimizing multiple objectives, on the
other hand, allows a simultaneous evaluation of community
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structure from different perspectives, but then it is the user’s
responsibility to choose a solution. Consider for example
the toy network of Figure 1. By maximizing modularity the
solution obtained divides the network into the three groups
{{1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11, 12}}. However, by opti-
mizing the two objectives of community score and community
fitness, we obtain two solutions. One is the same division
into three communities, the other one merges the first two
communities giving {{1, 2, 3, 4, 5, 6, 7}, {8, 9, 10, 11, 12}}. As
can be observed from Figure 1, this second solution is actually
a possible and plausible solution that gives a different view of
group organization. It is worth pointing out that, for single
layer networks the choice of single or multiple objectives can
depend on the application domain. However, for other types
of network models, such as multilayer networks, described in
the following, many objective methods seem to fit better. For
example, the evolution of dynamic networks with temporal
smoothness is well represented as a multiobjective problem
optimizing snapshot quality and temporal cost, as will be clear
in Section 10.

9 SIGNED NETWORKS

Signed networks are an extension of networks to model the
relationships between individuals that, actually, can be either
positive or negative, such as like-dislike, friends-enemies.
Positive links denote friendly relations, while negative links
represent antagonistic relations. Detecting community struc-
ture on these kinds of networks is an important research topic
since it allows us to determine instability inside relationships,
and, consequently, to predict changes in group organization.

In order to deal with signed networks, Gomez et al. [46]
extended modularity as follows:

QS =
1

2m+ + 2m−

∑
i,j∈V

(
Ai,j − (

a+i a
+
j

2m+
−
a−i a

−
j

2m−
)

)
δ(Ci, Cj)

(25)

where A is the weighted adjacency matrix associated with
the graph G = (V,E,W ) modeling a signed network, m+

and m− are the number of positive and negative entries in A,
a+
i and a−i are the positive degree and the negative degree of

node i, respectively.
A signed version of the toy network of Figure 1, along with

the corresponding adjacency matrix, is shown in Figure 7.
A multiobjective approach that detects communities in a

signed network has been proposed by Amelio and Pizzuti in
[5], [8]. The goal of obtaining communities having dense intra-
connections and most edges within clusters positive, while
sparse inter-connections and most of these edges negative, is
achieved by optimizing the concepts of signed modularity and
frustration, introduced by Doreian and Mrvar [30].

Frustration F (C) of a community C is defined as the sum
of the number of negative edges between nodes inside the
same community and the number of positive edges between
nodes into different communities.

F (C) =
∑
i,j∈V

A−i,jδ(ci, cj) +A+
i,j(1− δ(ci, cj)) (26)

A =



0 1 1 0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 -1 0 0 0
1 1 0 -1 0 0 0 0 0 0 0 0
0 0 -1 0 1 0 1 0 0 0 0 0
1 0 0 1 0 -1 1 0 0 0 0 0
0 0 0 0 -1 0 1 0 0 0 0 1
0 0 0 1 1 1 0 -1 0 0 0 0
0 0 0 0 0 0 -1 0 1 1 0 1
0 -1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 -1
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0 -1 1 0



Fig. 7. An example of signed network with the corre-
sponding adjacency matrix. Dashed edges denote neg-
ative connections.

Li et al. [71] performed a comparative analysis of four
evolutionary and memetic algorithms. EA-SN adopts a label
based representation, one-way crossover, a mutation operator
that randomly changes the neighbor of a node with one of its
positively connected nodes, and signed modularity as objective
function; CSA-SN expands the clonal expansion operator of
[53] to signed networks; EAHC-SN and CSAHC-SN inte-
grate the hill climbing strategy of [49] in a multiobjective
algorithm that optimizes signed modularity and modularity
density, extended for signed networks. The authors showed
that CSAHC-SN performs better than the other methods.

Liu et al. [75] used the same representation scheme pro-
posed in [77] to define a multiobjective evolutionary method
to find communities in signed networks. The two objectives
to optimize are based on the concepts of positive and negative
cluster similarity between two neighboring nodes, introduced
by Huang et al. [62], and extended to signed links. The
objectives to maximize are the following:


fpos−in(C = {C1, . . . , Ck}) = 1

m

(
k∑
i=1

P
Ci
in

P
Ci
in +P

Ci
out

)
fneg−out(C = {C1, . . . , Ck}) = 1

m

(
k∑
i=1

N
Ci
out

N
Ci
in +N

Ci
out

)
(27)

where PCi
in and PCi

out are the positive internal and external
similarity of a community, while NCi

in and NCi
out are the

negative internal and external similarity.
The similarity between two nodes i and j is defined as

ssigned(i, j) =

∑
x∈Γ(i)∩Γ(j)

ψ(x)√ ∑
x∈Γ(i)

w2(i, x)×
√ ∑
x∈Γ(j)

w2(j, x)

where

ψ(x) =

{
0 if w(i, x) < 0 and w(j, x) < 0
w(i, x)× w(j, x) otherwise

(28)
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(a) (business relation)

(b) (marriage relation)

Fig. 8. An example of a multilayer network with two
elementary layers.

Notice that, in [8] a correlation analysis of signed mod-
ularity and frustration revealed that these two objectives are
negatively correlated, while a correlation analysis of the two
objectives employed by [75] produced a positive correlation
value.

10 MULTILAYER NETWORKS

The representation of complex networks with graphs consist-
ing of single static connections between couples of nodes
has been universally adopted by researchers for many years.
Recently, however, the need of richer models able to represent
the variety of interconnections of real-world systems has
led to the investigation of networks with multiple types of
connections, the so-called multilayer networks [27], [68], [12].
Each layer represents a combination of different features of the
network, called aspects or facets. Thus, for each aspect a,
there is a set of elements La, where each element is called
an elementary layer. A layer will then be obtained by a
combination of elementary layers from all the aspects.

More formally, a multilayer network M is defined as a
quadruple [68]:

M = (VM , EM , V,L)

where V is the set of nodes, L = {La}la=1 is a sequence of
sets of elementary layers La, VM ⊆ V ×L1×. . .×Ll contains
only the set of combinations of nodes and elementary layers
effectively present in a layer, EM ⊆ VM × VM is a set of
couples of possible combinations. Nodes could be connected to
any other both inside the same layer and across layers. When

the network has only one aspect with multiple types of edges
and the same set of nodes, the network is called multiplex
or multirelational. An example of a multiplex network, taken
from [107], having two types of relationships, namely business
and marriage, regarding Florentine families, can be seen in
Figure 8. Notice that the connections between the same nodes
appearing in both layers are implicit.

Though the interest in multilayer networks is rapidly in-
creasing, there are still few approaches that detect communities
in these kinds of networks [80], [104]. As pointed out in [68],
the development of community detection methods for multi-
layer networks is just at the beginning. Also, the concept of
community is not well-defined. Mucha et al. [80] generalized
modularity for multilayer networks, while Tang et al. [104]
introduced the notion of shared latent community structure,
that is a division of nodes that optimizes the same criterion
for each dimension.

As regards evolutionary methods, there are few proposals.
In [6] multiplex networks are considered by extending both
the locus-based representation and modularity. The extended
representation is such that an individual I = {I1, . . . , Id} of
the population is composed by a set of d elements Is, 1 ≤
s ≤ d, each element Is being the locus-based representation
of the corresponding layer s. The concept of modularity for
multilayer networks is defined by combining the modularity
values computed for each layer in such a way that the value for
each layer is influenced by the values of all the other layers.
The main drawbacks of this method are the computation
time needed to compute the fitness function and the space
requirements.

Other proposals concentrated mainly on the dynamic aspect
of networks. In fact, a dynamic or temporal network can be
considered as a multilayer network restricted to two aspects.
The first aspect L1 = {T 1, . . . , TT } represents the temporal
information, i. e. the time in which a connection between two
nodes occurred, while the second one L2 = {D1, . . . , Dd},
gives the type of interaction among nodes. The set of com-
binations of a fixed elementary layer T t ∈ L1 with all
the elementary layers Dj ∈ L2, j = 1, . . . , d, will be
called multiplex (or multidimensional) network at time t, and
denoted as T t = {N t

1 ,N t
2 , . . . ,N t

d}, where each N t
i is the

network representing one of the elementary layers of L2.
A temporal or dynamic multilayer network is defined as a
sequence DM = {T 1, . . . , T T } of networks, where each T t,
t = 1, . . . , T is a snapshot of the network at time t, referred
as timestamp or timestep.

In this context, there are two types of proposals. In the
former [38], [66], [52], [39], methods consider only one type
of interaction of the aspect L2, i.e. d = 1, in the latter d > 1
[9]. All these methods are based on the concept of evolutionary
clustering introduced by Chakrabarti et al. in [18] for data
clustering. Evolutionary clustering is a framework assuming
that abrupt changes of clustering in a short time period are
not desirable, thus it smooths each community over time.
For smoothing, a cost function composed by two sub-costs,
snapshot cost (SC) and temporal cost (T C), is defined. The
snapshot cost SC measures how well a community structure
CCt represents the data at time t. The temporal cost T C
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measures how similar the community structure CCt is with
the previous clustering CCt−1. A specialized version of this
function in the context of dynamic networks has been intro-
duced in [74] as follows:

cost = α · SC + (1− α) · T C (29)

where α is an input parameter fixed by the user to emphasize
one of the two objectives. When α = 1 the approach returns the
clustering without temporal smoothing. When α = 0, however,
the same clustering of the previous time step is produced, i.e.
CCt = CCt−1. Thus, a value between 0 and 1 is used to control
the preference degree of each sub-cost.

In [38], [39] the detection of community structure with
temporal smoothness has been formulated as a multiobjective
optimization problem where the first objective is the maximiza-
tion of the snapshot quality, and the second objective is the
minimization of the temporal cost. Several fitness functions
have been experimented to optimize snapshot quality, such as
modularity, community score, conductance, and normalized
cut.

The Normalized Mutual Information, a well known en-
tropy measure in information theory [25], has been em-
ployed as second objective to minimize the temporal cost
T C. NMI(CCt, CCt−1) measures the similarity between the
community structure CCt at the current time step t and the
previous one CCt−1.

The normalized mutual information NMI(A,B) of two
partitions A and B, is defined as:

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(CijN/Ci.C.j)∑cA

i=1 Ci.log(Ci./N) +
∑cB

j=1 C.j log(C.j/N)
(30)

where C is the confusion matrix whose element Cij is the
number of nodes of the community Ai ∈ A that are also in
the community Bj ∈ B, cA (cB) is the number of groups in
the partitioning A (B), Ci. (C.j) is the sum of the elements
of C in row i (column j), and N is the number of nodes.
If A = B, NMI(A,B) = 1. If A and B are completely
different, NMI(A,B) = 0.

A main advantage of this approach is that the parameter
α, that must trade-off the benefit of maintaining a consistent
clustering over time (temporal cost) with the cost of deviating
from an accurate representation of the current data (snapshot
cost), is automatically determined during the computation of
the non-dominated solutions.

A variation of this approach, with the same objective
functions of modularity and NMI , that uses as multiobjective
optimization method the Nondominated Neighbor Immune
NNIA algorithm [50] has been proposed by of Gong et al.
[52]. Moreover, the same authors [78] extend the framework of
multiobjective evolutionary algorithm based on decomposition
[51] to deal with dynamic networks by optimizing again mod-
ularity and NMI . Chen et al. [20] use the same framework
by changing the first objective with modularity density.

A multiobjective method based on immigrant schemes,
that replaces a proportion of the population with the aim of
maintaining population diversity and adapting to changes, has
been proposed by Kim et al. [66]. The method introduces three

immigrant strategies inside the multiobjective evolutionary al-
gorithm NSGA-II [28] to deal with networks that can increase
the number of edges and/or nodes with time. A chromosome,
using the locus-based representation, is extended with new
genes if the number of nodes augments. The objective func-
tions to optimize are the min-max cut introduced in [29] and
the global silhouette index [93]. A comparison among the three
immigrant schemes has been performed on a synthetic data set.
However, no comparison with classical community detection
methods is present, thus the capability of the approach to
discover high quality clusters is not known. Moreover, as the
authors point out, the method is applicable only to networks
that grow, but no node or edge can disappear, which is not a
realistic scenario.

In [6] the evolutionary clustering framework is modified
by introducing the concepts of facet quality FQ, and sharing
cost SQ. Facet quality guarantees that the clustering found for
the i-th dimension under consideration maximizes the quality
function as much as possible, while the sharing cost means that
the clustering of the current facet agrees as much as possible
with the clustering obtained for the previously considered
i-1 dimensions. In [9] an extension that encompasses both
time and multiple dimensions is defined. In this extended
framework, a shared community structure among the networks
N t
i of T t is obtained by iteratively optimizing both facet

quality and sharing cost. The community structure obtained
for the last layer d is considered the best sharing community
structure among the d layers.

Let CCt1, . . . , CC
t
d be the community structures obtained for

each elementary layer of a network T t = {N t
1 ,N t

2 , . . . ,N t
d},

at timestamp t. The concept of shared community struc-
ture introduced in [104] is formalized as follows: CC =
{C1, . . . , Ck} is a shared community structure of T t if the
two functions are maximized:

fq(CC,N t
i ), i = 1, . . . , d (31)

fs(CC, CCti), i = 1, . . . , d (32)

where (31) is the quality function computed on the net-
work N t

i by using the community structure CC, and (32)
is a function that computes the similarity between CC and
the community structure obtained for N t

i by maximizing
fq , independently from the other layers. fq and fs can be
any functions computing the quality of a clustering and the
similarity between two clusterings, respectively.

Thus, the method searches for a community structure CC
that maximizes a fitness function on each elementary layer
N t
i , while taking into account the similarity with the clustering

obtained on the other layers. This framework is then utilized
between couples of consecutive timestamps t − 1 and t, by
resorting to the dynamic evolutionary approach where the
temporal cost T C is guaranteed by considering the similarity
between the community structure CCt−1 obtained for the
previous timestamp and that found for the first elementary
layer CCt1 of the current timestamp.
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Fig. 9. An example network with 6 nodes and 7 edges,
and the corresponding line graph with 7 nodes and 11
edges.

11 OVERLAPPING COMMUNITY DETECTION

In the last few years a lot of effort in defining efficient and effi-
cacious methods for community detection has been directed to
finding disjoint communities. However, in real world networks
the membership of an entity to many groups is very common,
thus the interest in defining methods for finding overlapping
communities has been growing. It is worth pointing out that
the representation schemes described in Section 6, except for
the permutation-based representation, do not allow a node
to be a member of more than one community, thus only
recently a number of evolutionary computation methods, both
single-objective and multiobjective, have been proposed to find
overlapping communities.

In [88] the concept of line graph has been exploited
to define a link clustering method that detects overlapping
communities by partitioning the set of links, rather than the
set of nodes. The line graph L(G) of an undirected graph G is
another graph L(G) such that each vertex of L(G) represents
an edge of G, and two vertices of L(G) are adjacent if and
only if their corresponding edges share a common endpoint
in G. A line graph represents the adjacency between edges
of G. By applying a community detection method to the
line graph generates an overlapping division of the original
interaction network, thus allowing nodes to be present in
multiple communities.

An example of network and the corresponding
line graph is shown in Figure 9. A community
division of the line graph into the two clusters
C1 = {(1, 2), (1, 3), (1, 4), (3, 4)}, C2={(3, 5), (3, 6), (5, 6)},
gives the division {{1, 2, 3, 4}, {3, 5, 6}} of the original graph
in which node 3 appears in both the clusters.

The method described in [88] adopts the locus-based rep-

resentation on the line graph. This means that each gene
corresponds to an edge of G, and the value it contains is one
of the neighboring edges, that is an edge having a node in
common. The algorithm finds a community structure of the
line graph L(G) and evaluates its quality by computing the
community score of the corresponding division of the original
graph G.

Shi et al. [97] proposed a similar method that clusters
links, which is equivalent to using the line graph since two
edges are connected only if they share a node. However, their
method uses as fitness function the concept of partition density
proposed by Ahn et al. [3], which is based on the number of
links, thus its evaluation can be done on the original graph.
Let {P1, . . . , PC} be the partition of the links in C subsets.
Each subset Pc has mc =| Pc | links and nc =| ∪eij∈Pc

{i, j} |
nodes. The link density of Pc is defined as

Dc =
mc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
= 2

mc − (nc − 1)

(nc − 2)(nc − 1)
(33)

Dc is thus the normalization of the number of links mc

by the minimum and maximum number of possible l links
between nc connected nodes. It is assumed that Dc = 0 when
nc = 2. The partition density PD is the average of the Dc,
weighted by the fraction of present links:

PD =
2

m

∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
(34)

Another proposal that clusters the set of links by optimizing
the two objective functions of modularity density D (formula
(14)) and extended modularity EQ (formula (13)) has been
proposed by Du et al. [32]. Yuxin et al. [115], instead, consider
the community fitness, and define the negative fitness sum
(NFS) and the unfitness (US) of a community structure by
substituting the numerator of community fitness (formula (17))
with the sum of external degrees. Let

unfit(C) =
∑
i∈C

kouti (C)

(kini (C) + kouti (C))α
(35)

be the external connection density of a community C ∈
C = {C1, . . . Ck}, then the two modified objective functions
are the following:

NFS = −k −
∑
C∈C
P(C)

US =
∑
C∈C

unfit(C)
(36)

To improve the convergence, the algorithm adopts an initial-
ization strategy that expands a seed node by merging adjacent
edges until the community fitness improves. This process is
repeated until all edges are assigned to a community.

12 OTHER BIO-INSPIRED APPROACHES

In recent years, bio-inspired computation has attracted the
interest of many researchers in several fields to solve opti-
mization problems. The basic principle of these methods is
self-organization, that is if a system is allowed to evolve for a
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sufficiently long period, self-organized structures may emerge
[113]. In the last decade, a relevant number of these new
metaheuristic algorithms have been employed for community
detection, including swarm intelligence [114], in particular
Particle Swarm Optimization (PSO) [65] and Ant Colony Op-
timization (ACO) [31], Firefly [111] and Bat [112] algorithms.

Particle Swarm Optimization. PSO is an optimization tech-
nique based on the swarm behavior of bird and fish schooling
[65]. Each particle i is characterized by two components: the
position vector xi and the velocity vector vi. Particles are
attracted towards the best position g∗ of the swarm, and its
personal best position x∗, while moving randomly at the same
time. The new velocity and position vectors are updated as

vt+1
i = vti + αε1(g∗ − xti) + βε2(x∗ − xti) (37)

xt+1
i = xti + vt+1

i (38)

where α and β are acceleration parameters, and ε1, ε2 are
two random vectors taking values in the range [0,1]. Cai et al.
[15] applies the particle swarm method to detect communities
in signed networks by optimizing the signed modularity. The
position vector represents a partition of the network where xi
is the community label of node i. The update rules of the
particle status are redefined to fit in the discrete context as
follows:

vt+1
i = Γ(ωvti + αε1(g∗ ⊕ xti) + βε2(x∗ ⊕ xti)) (39)

xt+1
i = xtiΘv

t+1
i (40)

where ω is an inertia weight [102] that, when its value is
high, it is better for global search, while, when small, for
local search, ⊕ is the xor operator. The Γ function assigns 1
to vi if xi ≥ 1, 0 otherwise. The operator Θ is a neighbor
operator that updates the position of a node by considering its
neighbors. The same method is applied for unsigned networks
in [14], and for signed networks in Gong et al. [47]. In this
latter paper the problem has been formulated as a multiobjec-
tive optimization problem where the objective functions are
obtained by extending the Negative Ratio Association (NRA)
and Ratio Cut (RC), introduced in [51].

Thus, the signed network clustering problem is reformulated
as the minimization of the objectives:

SRA = −
k∑
i=1

L+(Ci,Ci)−L−(Ci,Ci)
|Ci|

SRC =
k∑
i=1

L+(Ci,Ci)−L−(Ci,Ci)
|Ci|

(41)

where L+(Ci, Ci) =
∑

i∈Ci,j∈Ci
Aij , Aij > 0 and

L−(Ci, Ci) =
∑

i∈Ci,j∈Ci
| Aij |, Aij < 0.

A multiobjective variant of these methods, also for signed
networks, has been proposed by Li et al. [72]. The objective
functions are the same of Gong et al. [47] (formula (41)).
The main differences with Cai et al. [15] and Gong et al.
[47] are the definition of the Γ function, and a replacement

operation that substitutes only a subset of the solutions in the
new generation. The new Γ function is defined as:

Γ(y) =

{
1 if rand(0, 1) ≤ 1/(1 + e−y)
0 othewise

(42)

Ant Colony Optimization. ACO mimics the foraging behav-
ior of ants [31]. Ant movement is controlled by pheromone,
which evaporates over time, and its concentration is an indi-
cator of the quality of the solution. In these algorithms there
are two important issues: the probability of choosing a route
and the evaporation rate of pheromone. The probability of
choosing a route from node i to node j is given by the rule:

pij =
φαijd

α
ij∑n

i,j=1 φ
α
ijd

α
ij

(43)

where α > 0, β > 0 are the influence parameters, φij is the
pheromone concentration of the route between i and j, and dij
is a heuristic function that reflects the tendency of selecting
the edge from i to j.

Chen et al. [19] proposed an algorithm based on ant colony
optimization that adopts the concept of associate degree be-
tween nodes as a heuristic function. Let A = (Aij) be the
adjacency matrix of the network and Ak = (Akij) the number
of k-step paths connecting two nodes. The associate degree is
defined as:

dij = k1A
1
ij + k2A

2
ij + . . .+ kpA

p
ij (44)

where p is a positive constant integer, ki, i = 1, . . . , p
are coefficients. The pheromone updating is then performed
according to the formula:

φij(t+ 1) = ρφij(t) +

m∑
k=1

∆φkij(t) (45)

m is the number of ants, ∆φkij = C × Q(Sk), with C a
constant, and Q(Sk) the modularity value of the solution Sk,
if i and j are in the same community, 0 otherwise.

A different heuristic information, based on the Pearson
correlation, has been proposed by Honghao et al. [60]. Given
two nodes i and j, the Pearson correlation is defined as:

C(i, j) =

∑
l∈V (Ail − µi)(Ajl − µj)

nσiσj
(46)

where Ail is the lth element of the ith row in the adjacency
matrix, µi the average and σi the standard deviation. Then

dij =
1

1 + e−C(i,j)
(47)

The formula for pheromone updating uses the best modu-
larity value obtained at the current iteration, and only edges
whose nodes belong to the current best solution receive this
value.

Firefly algorithm. This metaheuristic method is based on
the flashing patterns and behavior of fireflies [111]. It assumes
that fireflies are unisexual, they are attracted to other fireflies
proportionally to their brightness, the brightness is determined
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by the landscape of the objective function. The movement of
a firefly is defined as

xt+1
i = xti + β0e

−γr2ij (xtj − xti) + αεti (48)

where the second term in the formula is the attractiveness
function, with β0 the attractiveness when the distance r = 0.
The third term is a randomization with parameter α, and εti is
a vector of random numbers.

Amiri et al. [10] adopted this approach to design a multi-
objective method that optimizes community score and com-
munity fitness, by introducing some variations to improve
solutions. They maintain an external repository to store the
non-dominated solutions and apply a niching mechanisms to
preserve diversity. Moreover, they assume that the fireflies can
have different sex, and the parameter α is dynamically tuned
by using a chaotic sequences, as proposed in [17], instead of
random ones.

Bat Algorithm. This approach is inspired by the behavior of
bats and their capability of echolocation, a type of sonar, that
allows them to detect prey and to avoid obstacles [112]. Bats
emit sound waves whose loudness gradually reduces while
frequency of emission gets faster, as the distance to the prey is
closer. If xi is the position of the bat at time t, fi the frequency
varying in the interval [fmin, fmax], vi the velocity, i.e. the
change degree of its position, r the emission rate and A the
loudness, these values are updated with the rules:

fi = fmin+ (fmax− fmin)ε, vt+1
i = vti + (xti−x∗)fi (49)

where x∗ is the current best solution.

xt+1
i = xti+vti , At+1

i = αAti, rti = r0
i [1−exp(−βt)] (50)

Hassan et al. [57] observed that the bat algorithm cannot
directly be applied for community detection. Thus, a dis-
cretization and redesign of the bat movement is necessary
before using the approach. Let the vector state of an artificial
bat be x = (x1, . . . , xn), the velocity vector v = (v1, . . . , vn),
and g(xi) the group assignment of node i. The distance to the
current best solution x∗ is computed as :

di = (xi − x∗i ) =

{
1 if g(xi) 6= g(x∗i )
0 if g(xi) = g(x∗i )

(51)

Then the new position value is computed as

xnewi =

{
x∗i if vi ≥ 1
xi othewise

(52)

Another discrete bat algorithm has been proposed by Song
et al. [103] to discover communities by making discrete the
values of x and v. The new discrete velocity formula is defined
as follows. Let Sig(vti) = 1/(1 + exp(−vti)) be the sigmoid
function, and rand a random number in the range (0,1), then
vti = 1 if Sig(vti) > rand, 0 otherwise.

13 CONCLUSION

Evolutionary computation has been successfully applied to
many real-world problems as an optimization technique, and
showed to be competitive also for the study of complex

networks. The paper presented an up-to-date review on evolu-
tionary methods for community detection. Though research in
this context is rather recent, there has been a surge of interest
and many methods have been proposed to deal with complex
networks. A main contribution of the survey is that it sys-
tematizes the several approaches presented in the literature by
providing the basic common principles for the design of meth-
ods that solve the problem of uncovering community structure.
In particular, the most popular representation schemes, along
with the crossover and mutation operators apt for them are
described in detail, by discussing advantages or drawbacks
of each, and the most common fitness functions adopted by
methods are also analyzed. A categorization in single objective
and multiple objectives optimization has been given. Though
many surveys for community detection are available in the
literature [42], [92], [41], [24], [84], [109], [79], [91], [56], [1],
[7], [90], specific reviews for evolutionary based approaches
are few [16]. The paper sensibly extends the work of Cai et al.
[16] by including multilayer networks, and by giving a more
detailed description of individual representation and associated
operators.

To summarize the approaches described in the paper, Table
1 reports the single objective methods, and Table 2 the
multiobjective ones. For each approach, the kind of repre-
sentation, crossover, mutation, fitness function employed, and
if overlapping is allowed, are reported. When present, local
search strategies adopted to improve the methods are included.
For the multiobjective methods, also the type of network and
the multiobjective evolutionary optimization method used are
added. Moreover, Table 3 summarizes the other bio-inspired
approaches. The tables, for all the methods, report also the
real-world networks and/or the kind of synthetic dataset used
for evaluating the quality of results. Finally, Table 4 contains
the list of all these networks, along with the web address from
which it is possible to download the network. Links to the
source codes for the methods, when available, are reported in
the References Section.

The review highlighted that, though there is a lot of work
on networks representing a single type of interaction, further
investigation is necessary as regards overlapping community
detection and multilayer networks. In fact, new representation
schemes are desirable to efficiently deal with overlapping
communities, and novel ideas to tackle the dynamic and multi-
relational aspects of networks.

Another aspect that it is worth pointing out is that evolu-
tionary algorithms are time consuming, thus, though they are
competitive with the non-evolutionary approaches as regards
the quality of the obtained solution, they are not able to cope
with large networks, very common in the current big data
era, where networks with millions of nodes are generated.
The need of developing parallel implementations, considering
the inbuilt parallel characteristics of evolutionary methods, to
accelerate the response times is an important issue to make
them comparable with the other methods available in the
literature. Moreover, more efficient representations, such as
variable length chromosomes, should be investigated to reduce
both time and space requirements.

The survey can be a starting point for researchers interested
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TABLE 1
A summarization of single-objective methods.

METHOD REPR. FITNESS CROSSOVER MUTATION LOCAL
SEARCH

OVERLAP NETWORKS

Tasgin and Bingol [106]
(2007)

label Q one-way random clean-up no ZKC, KPB, GN

Firat et al. [36] (2007) medoid pair-wise
distances sum

two-point random - no synthetic

Gog et al. [44] (2007) label Q collaborative random - no ZKC

Pizzuti [86] (2008) locus CS uniform neighbor best no ZKC, BD, ACF, KPB,
GN

Pizzuti [88] (2009) locus CS uniform neighbor best yes ZKC, BD, ACF, KPB,
GN

Li et al. [70] (2009) label Q one-way random nl copies no ZKC, BD, LM,
Ucinet, Pajek

He et al. [58] (2009) label Q multi-
individual

majority
neig. label

- no ZKC, ACF, GN

Shi et al. [98] (2009) locus Q two-point random - no ZKC, ACF, CN

Jin et al. [64] (2010) locus Q uniform neighbor marginal
node

no ZKC, BD, ACF, KPB,
JM, WA, SFI

Chira and Gog [21] (2011) locus CS collaborative random - no ZKC, BD, KPB

Gong et al. [49] (2011) label D two-way neighbor neighbor
label

no ZKC, BD, ACF,
KPB,LFR

Gong et al. [48] (2012) label D two-way neighbor la-
bel

- no ZKC, BD, ACF, KPB,
LFR

Jia et al. [63] (2012) label Q binary rand/1 clea-up no ZKC, ACF, GN

Shang et al. [95] (2013) label Q two-way random simulated
annealing

no ZKC, BD, ACF, KPB,
LFR

Liu et al. [76] (2013) locus Q uniform neighbor inside mu-
tation

no GN, LFR, ZKC, BD,
ACF, KPB, JM, WA,
SFI

Shi et al. [97] (2013) locus Q uniform neighbor inside mu-
tation

yes ZKC, BD, ACF, KPB,
WA, LM, PG, LFR

Zadeh et al. [116] (2015) locus CS uniform neighbor no no ZKC, BD, KPB

in approaching the problem of community detection with
computational models inspired by evolution in nature. The
knowledge of a different computational paradigm with respect
to traditional approaches can be beneficial to explore new
strategies and principles to deal with this problem.
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[46] Sergio Gómez, Pablo Jensen, and Alex Arenas. Analysis of com-
munity structure in networks of correlated data. Physical Review,
E80(1):016114, 2009.

[47] Maoguo Gong, Qing Cai, Xiaowei Chen, and Lijia Ma. Complex
network clustering by multiobjective discrete particle swarm optimiza-
tion based on decomposition. IEEE Trans. Evolutionary Computation,
18(1):82–97, 2014.

[48] Maoguo Gong, Qing Cai, Yangyang Li, and Jingjing Ma. An improved
memetic algorithm for community detection in complex networks. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2012, Brisbane, Australia, June 10-15, 2012, pages 1–8, 2012.

[49] Maoguo Gong, Bao Fu, Licheng Jiao, and Haifeng Du. A memetic
algorithm for community detection in networks. Physical Review,
E84:056101, 2011.

[50] Maoguo Gong, Licheng Jiao, Haifeng Du, and Liefeng Bo. Multiob-
jective immune algorithm with nondominated neighbor-based selection.
Evolutionary Computation, 16(2):225–255, 2008.

[51] Maoguo Gong, Lijia Ma, Qingfu Zhang, and Licheng Jiao. Community
detection in networks by using multiobjective evolutionary algorithm
with decomposition. Physica A, 391(15):4050–4060, 2012.

[52] Maoguo Gong, Ling-Jun Zhang, Jing-Jing Ma, and Licheng Jiao. Com-
munity detection in dynamic social networks based on multiobjective
immune algorithm. Journal of Computer Science and Technology,
27(3):455–467, 2012.

[53] Maoguo Gong, Lining Zhang, Licheng Jiao, and Wenping Ma. Differ-
ential immune clonal selection algorithm. In Proceedings of the Intern.
Symposium on Intelligent Signal Processing and Communication Sys-
tems, pages 666–669, 2007.

[54] D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of
communities in dynamic social networks. In International Conference
on Advances in Social network Analysis and Mining (ASONAM’10),
pages 176–183, 2010.

[55] Julia Handl and Joshua Knowles. An evolutionary approach to multi-
objective clustering. IEEE Transactions on Evolutionary Computation,
11(1):56–76, 2007.

[56] Steve Harenberg, Gonzalo Bello, L. Gjeltema, Stephen Ranshous,
Jitendra Harlalka, Ramona Seay, Kanchana Padmanabhan, and Nagiza
Samatova. Community detection in large-scale networks: a survey and
empirical evaluation. WIREs Comput. Stat., 6(6):426–439, 2014.

[57] Eslam Ali Hassan, Ahmed Ibrahem Hafez, Aboul Ella Hassanien, and
Aly A. Fahmy. A discrete bat algorithm for the community detec-
tion problem. In 10th International Conference on Hybrid Artificial
Intelligence Systems, HAIS, pages 188–199, 2015.

[58] Dongxiao He, Zhe Wang, Bin Yang, and Chunguang Zhou. Genetic
algoritm with ensemble learning for detecting community structure
in complex networks. In 4th International Conference on Computer
Sciences and Convergence Information Technology, IEEE, pages 702–
707, 2009.

[59] John H. Holland. Adaptation in Natural and Artificial Systems. MIT
Press, Cambridge, MA, USA, 1992.

[60] Chang Honghao, Feng Zuren, and Ren Zhigangg. Community detection
using ant colony optimization. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2013, Cancún, Mexico, 20-23 June,
2013, pages 3072–3078, 2013.

[61] Eduardo Raul Hruschka, Ricardo J. G. B. Campello, Alex A. Freitas,
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TABLE 2
A summarization of multiobjective methods.

METHOD REPR. FITNESS CROSS MUTATION MOEA OV NETWORKS

Pizzuti [87] (2009), [89]
(2012)

locus F1: CS uniform neighbor NSGA-II no undirected

F2: P(C) ZKC, BD, ACF, KPB, Er-
dos, SC, DB

Folino and Pizzuti [38]
(2010)

locus F1: CS uniform neighbor NSGA-II no dynamic

F2 : NMI FO, Kim and Han

Kim et al. [66] (2010) locus F1: min-max cut uniform - NSGA-II no dynamic
F2: silhouette YTV

Agrawal [2] (2011) locus F1: fQ uniform neighbor NSGA-II no undirected
F2: fQCS ZKC, BD, ACF,GN

Shi et al. [101], (2010),
[99] (2012)

locus F1: intra(C) two-
point

random PESA-II no undirected, ZKC, ACF,
KPB

F2: inter(C) WA, LM, CN, CM, NS,
PG, GN

Liu et al. [77] (2010) (A 〈P〉, F1: fquality(A) - - NSGA-II yes undirected
A 〈C〉) F2: fseparated(A) ZKC, BD

F3: foverlapping(A) ACF, KPB

Gong et al. [52] (2012) locus F1: Q uniform neighbor NNIA no dynamic
F2 : NMI CPC, FO

Gong et al. [51] (2012) locus F1: NRA uniform neighbor MOEA/D no undirected
F2 : RC ZKC, BD, ACF, KPB,GN

Amelio and Pizzuti [5]
(2013), [8] (2016)

locus F1: QS uniform neighbor NSGA-II no signed

F2 : F (C) GGS, SPP, WE, signed
LFR

Chen et al. [20] (2013) locus F1: D uniform neighbor NSGA-II no dynamic
F2 : NMI modified LFR

Du et al. [32] (2013) locus F1 : PD exchange random PESA-II no undirected
F2: EQ one

gene
BD, ACF, LM

Folino and Pizzuti [39]
(2014)

locus F1: Q uniform neighbor NSGA-II no dynamic

F2 : NMI CPC, EM, Lin, Greene,
Kim and Han

Amelio and Pizzuti [6]
(2014)

locus F1: Q uniform neighbor NSGA-II no multilayer

F2 : NMI YTC,ECCS,Tang,Greene

Ma et al. [78] (2014) locus F1 : Q locus neighbor MOEA/D no dynamic
F2 : NMI CPC, FO, Kim and Han

Li et al. [71] (2014) label F1: QS one-way positive NSGA-II no signed
F2: signed D neighbor GGS, SPP, signed LFR

Liu et al. [75] (2014) (A 〈P〉, F1: fpos−in - - NSGA-II yes signed
A 〈C〉) F2: fpos−out GGS, SPP, signed LFR

Wu and Pan [108] (2015) label F1: 1− Intra(C) one-way neighbor NNIA no unsigned
F2 : 1− Inter(C) ZKC, BD, ACF, KPB,

WA, LM, CN, CM, NS,
PG, GN

Yuxin et al. [115] (2015) locus F1: NFS uniform neighbor NSGA-II no unsigned ZKC, BD
F2 : NS ACF, SFI, NS, PG, LFR

Amelio and Pizzuti [9]
(2016)

locus F1: Q uniform neighbor NSGA-II no dynamic, multilayer

F2 : NMI Greene, Tang, ECCS
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TABLE 3
A summarization of bio-inspired methods

APPROACH REFERENCE FITNESS NETWORKS

PARTICLE SWARM Cai et al. [15] QS SPP, GGS, EGFR, MP, Yeast, EC
Gong et al. [47] (2014) F1: SRA ZKC, BD, ACF

F2 : SRC SFI, NS, PG, LFR
Cai et al. [14] Q ZKC, DB, ACF, SFI, EMC, NS, PG, PGP,

LFR
Li et al. [72] QS signed LFR, SPP, GGS, EGFR, MP, Yeast,

EC

ANT COLONY Chen et al. [19] Q ZKC, BD, ACF, KPB, GN
Honghao et al. [60] Q ZKC, BD, ACF, KPB, LFR

FIREFLY Amiri et al. [10] F1 : CS ZKC, BD, ACF, KPB, LFR
F2 : P(C)

BAT Hassan et al. [57] Q ZKC, BD, ACF
Song et al. [103] Q ZKC, ACF, KPB, GN

TABLE 4
Networks and reference web site to download.

NETWORK WEB ADDRESS

Zackary’s Karate Club (ZKC)
Bottlenose Dolphins (BD)
American College Football (ACF)
Kreb’s Political books (KPB)
World adjacencies (WA) http://www-personal.umich.edu/ mejn/netdata/
Santa Fe Institute (SFI)
Les Misérables (LM)
Celegans neural (CN)
Netscience(NS)
Power grid (PG)

Erdos http://www.oakland.edu/enp/thedata.html

Scientometrics (SC) http://www.garfield.library.upenn.edu/histcomp/index.html

Jazz musicians (JM) http://deim.urv.cat/ alexandre.arenas/data/welcome.htm
Celegans methabolic (CM)

Florentine Families (FF) http://deim.urv.cat/ manlio.dedomenico/data.php
Eu. Conf. on Complex Systems (ECCS
2013)

Gahuku-Gama (GGS) http://networkrepository.com/ucidata gama.php

English Wikipedia (EW) http://konect.uni-koblenz.de/networks/elec
E-mail communication (EMC) http://konect.uni-koblenz.de/networks/arenas-email

Cell Phone Calls (CPC) http://www.cs.umd.edu/hcil/VASTchallenge08/

Enron mail (EM) ftp://ftp.isi.edu/sims/philpot/data/enronmysqldump.sql.gz

Football (FO) http://www.jhowell.net/cf/scores/scoresindex.htm

You Tube Videos (YTV) http://netsg.cs.sfu.ca/youtubedata

PPI Yeast http://faculty.uaeu.ac.ae/nzaki/ProRank.htm

Macrophage (MP) http://www.macrophages.com

Escherichia coli (EC) http://regulondb.ccg.unam.mx

Slovene Parliamentary Party (SPP) http://vlado.fmf.uni-lj.si/pub/networks/data/soc/samo/stranke94.htm
Ucinet http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/UciData.htm
Pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm

Wikipedia Elections WE http://konect.uni-koblenz.de/networks/elec

GN benchmark https://sites.google.com/site/santofortunato/inthepress2
LFR benchmark

Directors Board (DB)
You Tube contact network (YTC)
Tang et al. [104]
Lin et al. [74] upon request to the authors
Greene et al. [54]
Kim and Han [67]
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