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Multiobjective Optimization and Local Merge for
Clustering Attributed Graphs

Clara Pizzuti, Annalisa Socievole

Abstract—Methods for detecting community structure in com-
plex networks have mainly focused on the network topology,
neglecting the rich content information often associated with
nodes. In the last years, the compositional dimension contained
in many real world networks has been recognized fundamental to
find network divisions which better reflect group organization.
In this paper, we propose a multiobjective genetic framework
which integrates the topological and compositional dimensions
to uncover community structure in attributed networks. The
approach allows to experiment different structural measures
to search for densely connected communities, and similarity
measures between attributes to obtain high intra-community
feature homogeneity. An efficient and efficacious post-processing
local merge procedure enables the generation of high quality
solutions, as confirmed by the experimental results on both
synthetic and real world networks, and the comparison with
several state-of-the-art methods.

Index Terms—Attributed graphs, community detection, multi-
objective optimization, genetic algorithms.

I. INTRODUCTION

GRAPHS constitute a powerful mechanism to model and
analyze relationships of many real world systems. One of

the most relevant activities on complex networks is the division
of the nodes into groups, also called clusters or communities,
satisfying some homogeneity criterion. Graph clustering for
community discovery has been intensively investigated in the
last decades, and a plenty of methods have been proposed
[1] and applied in many different fields. The most popular
and efficient methods, such as, for instance, [2] and [3],
however, approached the problem by focusing only on the
network topology, disregarding the content information often
associated with the actors composing the network. Since the
beginning of the studies in network data, Wasserman and
Faust [4] pointed out that this kind of data includes two types
of information, called variables or dimensions: structural and
compositional. Structural variables measure the ties between
pairs of actors and provide the topological structure of a
network. Compositional variables measure the attributes of
the single actors, such as race, gender, hobbies, etc. In real
world social systems it has been observed that there exists
a correlation between attribute values and connectivity, and
that the homophily and social influence effects co-occur [5].
The former means that individuals are more likely to create
relationships with others having similar attribute values, while
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the latter that people tend to modify their behavior to be like
their friends. Thus, using only the topological structure might
generate not accurate community divisions, missing important
information.

Attributed graphs extend network models by enriching
nodes and/or edges with a set of features that measure the
characteristics of the actors contained in the network. In this
paper we deal only with graphs having node attributes. These
graphs are referred in the literature as node-attributed graphs
[6], to distinguish them from those having attributes related to
edges, and called edge-attributed graphs. In the following, for
attributed graphs we mean node-attributed graphs. As outlined
by Bothorel et al. [6], a good community division in attributed
graphs has to optimize both the structural and compositional
dimensions. The structural quality is the objective of classical
community detection methods, that is communities having
dense intra-cluster connections and sparse inter-cluster con-
nections. The compositional quality can be achieved if the
clusters contain nodes with similar characteristics. A balance
between these two objectives is important in order to obtain
both highly homogeneous and well connected groups of nodes.

In the last years, many methods for community detection
in attributed graphs, based on different strategies, have been
proposed. A detailed overview can be found in [6]. To
obtain a community division that balances both structural
and compositional quality there are two main approaches.
The first one optimizes a single objective that combines the
two quality functions in some way [7], [8], [9], the second
one tries to simultaneously optimize both functions [10].
Single objective optimization identifies a single best solution.
However, how to combine the two measures of link density
and node similarity is a challenging problem because it is
necessary to avoid that one of the two measures prevails on the
other one, thus biasing the computation towards a particular
structure inherent inside the dominating criterion. For instance,
nodes with similar features could be far in the network, thus
relying mainly on attribute similarity could produce sparse,
eventually unconnected, groups of nodes. Optimizing multiple
objectives, on the other hand, allows a simultaneous evaluation
of community division from both the perspectives of link
density and node similarity, which are two competing criteria
to optimize. Multiobjective evolutionary algorithms (MOEAs)
[11], in this context, offer an efficacious solution to the
problem of community detection in attributed networks.

In this paper, a framework based on a multiobjective genetic
algorithm [11] that combines the structural and compositional
dimensions is proposed. The approach, named MOGA-@Net,
MultiObjective Genetic Algorithm for @ttributed Networks,
optimizes simultaneously the structural quality and the intra-
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cluster node similarity. To this end, to maximize the first objec-
tive, we investigate three measures, well known in the commu-
nity detection field, that search for high density communities.
The second objective of intra-community feature homogeneity
is defined according to similarity measures between attributes,
chosen on the basis of the attribute type. Moreover, MOGA-
@Net applies a very efficient and efficacious post-processing
strategy that identifies those communities that can be merged
to obtain solutions of high quality. Recently, the multiobjective
evolutionary algorithm MOEA-SA has been proposed by Li et
al. [10]. However, our approach sensibly differs from it in
several aspects, as will be clear in the following.

The main contributions of the paper can be summarized as
follows.

• A multiobjective framework for detecting community
structure in attributed networks is presented. The frame-
work considers and evaluates three well known objec-
tive functions (modularity, community score and conduc-
tance) to optimize the structural dimension and three node
similarity measures (Jaccard, cosine, and Euclidean based
similarity), to compute attribute homogeneity in order to
optimize the compositional dimension.

• Though the multiobjective framework has been exploited
by several authors for community detection on different
kinds of networks [12], including attributed networks
[10], our method performs a thorough evaluation on both
synthetic and real world networks, showing the efficacy
of multiobjective genetic algorithms to deal with this
problem.

• The main novelty of the framework is the introduction of
a post-processing local search procedure which identifies
those communities that can be merged to provide higher
quality community divisions. The merging strategy, as
experiments highlight, reduces the number of communi-
ties of a solution and sensibly increases the evaluation
measures of the method, often obtaining the ground-truth
solution, or a solution very close to the real division.
For instance, on the Cora and Citeseer networks, the
merge procedure applied on the solutions of the Pareto
Front returns a unique solution which corresponds to the
known division in seven and six classes, respectively.

• An extensive experimentation on synthetic and real world
attributed networks shows that MOGA-@Net obtains
high quality solutions, and a very good performance
when compared to eight non evolutionary state-of-the-
art methods, and with MOEA-SA. Experimental results
have pointed out that our method outperforms all the
contestant methods, obtaining an improvement on syn-
thetic networks between 25% (with respect to the Louvain
method, which is the second best) and 350% (with respect
to the SA-cluster method, which is the worst).

The paper is organized as follows. Section II defines the
problem to solve and formalizes it as a multiobjective cluster-
ing problem. Section III reviews the most recent proposals on
clustering attributed graphs. Section IV describes in detail the
method. Section V reports the evaluation measures adopted to
assess the performance of the considered methods. Section VI
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Fig. 1. Example of attributed network.

presents an extensive experimentation on synthetic networks
for which the ground-truth is known, and on seven real
world attributed networks. Section VII compares the solutions
obtained by MOGA-@Net when the MOEA/D framework is
adopted instead of the NSGA-II multiobjective evolutionary
optimization framework. Section VIII, finally, concludes the
paper and suggests future developments.

II. PROBLEM DEFINITION

In this section the definition of attributed graph is recalled
and the community detection problem for these graphs is
formalized as a multiobjective clustering problem.

Definition An attributed graph is a 4-tuple G =
(V,E,A, F ) where V = {v1, v2, ..., vn} is a set of n ver-
tices, E = {(vi, vj) : 1 ≤ i, j ≤ n, i 6= j} is a set
of m edges, A = {α1, α2, ..., αA} is the set of attributes
(features), and F = {a1, a2, ..., aA} is a set of functions. Each
node vi ∈ V is characterized by a vector of feature values
Avi = [a1(vi), a2(vi), . . . , aA(vi)], obtained by the functions
aα : V → Dα, 1 ≤ α ≤ A, with Dα the domain of attribute
α.

Figure 1 shows an attributed network with eight nodes
and nine edges. The set of attributes is A = {α1 =
hobby, α2 = degree, α3 = age} with domains Dhobby =
{football, diving, cycling}, Ddegree = {BS,MS,PhD},
Dage = {20 : 30}. The set of functions F =
{ahobby, adegree, aage} is such that ahobby : V → Dhobby ,
adegree : V → Ddegree, aage : V → Dage.
Node v5, for instance, has the feature vector Av5 =
{ahobby(v4), adegree(v4), aage(v4)}={football,MS, 23}. No-
tice that v5 has one link with both v4 and v6. Thus, it could
participate to either {v1, v2, v3} or {v6, v7, v8}, However, by
considering the attributes, it is more similar to v4. Thus, a
community detection method should include it into the cluster
{v1, v2, v3} instead of {v6, v7, v8}.

The objective of the community detection problem, also
called clustering, in attributed graphs is to find a partition
C = {C1, . . . , Ck} of the nodes of V such that:

1) intra-cluster density is high and inter-cluster density is
low, and

2) nodes belonging to the same community are similar,
while nodes of different communities are quite dissimi-
lar.
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Thus, for attributed networks, the objectives to optimize are
two: the structural quality fS and the intra-cluster homogeneity
of node attributes fA. The community detection problem in
this kind of graphs can then be formulated as a multiobjective
clustering problem. To optimize the structural quality different
indexes, used in the literature to capture the intuition of
network community, can be employed. Analogously, to maxi-
mize node homogeneity, several measures computing attribute
similarity, depending on the kind of features, can be adopted.
In the following, the definition of multiobjective clustering
problem is introduced.

A multiobjective attributed graph clustering problem
(Ω,F1,F2, . . . ,Ft) is defined as

min Fi(C), i = 1, . . . , t subject to C ∈ Ω

where Ω = {C1, . . . , Ch} is the set of feasible clusterings
of a network, and F = {F1,F2, . . . ,Ft} is a set of t
competing objectives that must be simultaneously optimized
and obtained through the use of Pareto optimality theory
[13]. Multiobjective optimization aims to the generation and
selection of nondominated solutions, that is those solutions for
which an improvement in one objective requires a degradation
of another one. These solutions are called Pareto-optimal. The
vector F maps the solution space into the objective function
space. When the nondominated solutions are plotted in the
objective space, they are called the Pareto front. The Pareto
front represents the compromise solutions satisfying all the
objectives as best as possible.

III. RELATED WORK

In the last few years, several methods for detecting com-
munities in attributed graphs have been proposed. Moreover,
many researchers have shown that enriching a network with
node attributes can help to detect more meaningful commu-
nities, and that structural and compositional components can
complement each other when some information is missing
or noise is present. For instance, [14] and [15] compared
several algorithms using attributes and not using attributes,
and showed that methods with attributes outperform those
not exploiting them. Moreover, Newman and Clauset [16]
demonstrated that attribute data improve the understanding
of network structure. Recently, a survey by Bothorel et al.
[6] describes and classifies state-of-the-art algorithms into
different categories, depending on the adopted strategy.

A common strategy removes the attributes from nodes and
stores their content on edges, thus transforming the original
attributed graph into a weighted graph where edge weights
represent the similarity measured on nodal attributes. Any
clustering algorithm for weighted graphs can then be applied.
Following this approach, Neville et al. [17], first compute the
matching coefficient between nodes in order to quantify the
number of attributes two nodes have in common, and then
apply spectral clustering [18] to the resulting weighted graph.
In another work, Steinhaeuser and Chawla [19] cluster at-
tributed graphs having both discrete and continuous attributes
by extending the matching coefficient. When the attribute is
discrete, for each common attribute between two nodes, the

edge weight is incremented by 1; for continuous attributes,
a normalized distance between the attributes is computed and
added. Finally, after having normalized edge weights, all nodes
sharing edges with weight greater than a given threshold are
inserted into the same cluster. Differently from the above
works, when computing node similarity, Cruz et al. [7] use
the concept of entropy to measure the similarity of nodes and
define a method that maximizes the modularity and minimizes
the entropy of a partition, since low entropy means groups with
similar objects. The approach first performs modularity opti-
mization, then moves nodes among communities to minimize
the entropy, and repeats these two steps until no more changes
are possible.

The second family of methods combines structural and
attributes dimensions in several different ways. In [8], for
example, Combe et al. define a distance measure between two
nodes as the sum of the attribute distance, computed for the
features with any measure, such as the Euclidean or the cosine
distance, and a structural distance given by the shortest path
between such nodes. A hierarchical agglomerative clustering
is applied on the distance matrix computed accordingly. Dang
and Viennet [20] propose to extend the modularity to include
the similarity among node attributes and build a k-nearest
graph for finding communities with the Louvain method [3].

Community detection methods based on statistical inference
attempt to fit a generative model to the observed data with the
aim of finding the most likely arrangements of communities.
Li et al. [21] focus on the problem of clustering networks
of documents exploiting both the content (topics) and their
references/citations. Xu et al. [9] propose a method named
BAGC, Bayesian Attributed Graph Clustering, that com-
bines structural and compositional attributes by developing
a Bayesian probabilistic model for attributed graphs. The
model generates all the possible combinations of a graph with
features and assigns a probability for each possible clustering
of the vertices, with the aim to find the clustering that gives
the highest probability.

Other methods include walk-based approaches [22], meth-
ods focusing on the discovery of significative patterns [23],
hybrid methods [24] that use either the structure data, or the
attribute data depending on the type of graph. Zhou et al.
[22] proposed a method, named SA-Cluster that builds an
attribute augmented graph by adding to the initial graph new
vertices representing the attributes. An edge between a graph
vertex and an attribute vertex is present if the graph vertex has
that attribute and the edge weight between them reflects the
importance of that attribute. The method uses the neighbor-
hood random walk model on the attributed augmented graph
to compute a unified distance measure between vertices (i.e.,
combination of structural closeness and attribute similarity).
Then it applies a framework similar to the k-medoid clustering
method that iteratively re-assigns nodes to communities until
the overall unified distance measure improves.

It is worth pointing out that the methods of Neville et al.
[17], Xu et al. [9], Zhou et al. [22] need as input parameter
the number of clusters to find.

Elhadi and Agam [24] presented the Selection method that,
instead of combining structure and attribute data, it makes
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the choice to use either the structure data, or the attribute
data depending on the type of graph (clear or ambiguous
structure). This method detects the boundaries between clear
and ambiguous graph structure content and relies on the
structure-only method when the graph has a clear structure,
while it applies the attribute-only method when the graph has
an ambiguous structure. Thus it executes the Louvain method
in the former case, and the k-means in the latter case.

Though many approaches based on evolutionary compu-
tation have been proposed for different types of networks,
such as unweighted/weighted [25], [26], [27], [28], [29],
dynamic [30], [31], signed [32], [33], multi-layer [34] (see
[12] for a recent review), proposals for attributed networks are
very few. An evolutionary algorithm that optimizes a fitness
function based on the concept of connection significance has
been presented by He and Chan [35]. The significance of a
connection between a couple of node attributes is computed
by taking into account the frequency of occurrences of edges
connecting nodes with those attributes.

Recently, Li et al. [10] proposed a multiobjective evo-
lutionary algorithm for attributed networks, named MOEA-
SA, which employs the modularity of Newman and Girvan
[2] as objective optimizing link connections, and an attribute
similarity function SA that measures the quality of feature
node similarity. SA is defined as:

SA =

∑c
k=1

∑
i,j∈Ck,i<j

2s(i, j)∑c
k=1 rk(rk − 1)

(1)

where c is the number of communities, rk is the number
of nodes inside the community Ck, s(i, j) is the similarity
of nodes i and j computed as the cosine similarity when
nodes have multiple attributes, while, if a node has a single
discrete attribute, s(i, j) = 1 if the attribute value of nodes
i and j are the same, 0 otherwise. The authors do not
consider continuous attributes. The method uses the locus-
based representation [36] for the population initialization in
order to obtain an initial good solution, then it decodes it into
the label-based representation, where each gene value contains
the class label of the community it belongs to, and uses this
representation for the remaining steps of the algorithm. The
genetic operators are a two-way crossover [37], followed by
a neighborhood correction strategy to repair genes assigned
to a wrong community, and multi-individual-based mutation
operator, that changes the value of a gene by taking into
account the values of other two chromosomes chosen by
binary tournament selection. Finally, a hill-climbing strategy,
proposed in [37], is performed at each generation on the
individual having the best modularity value, and the returned
final solution is the knee point [38] of the Pareto Front.

The method we propose is also based on multiobjective
optimization, but the differences between MOGA-@Net and
MOEA-SA are significant, as will be clear in the next section.

IV. THE MOGA-@NET METHOD

In this section the algorithm MOGA-@Net is described,
along with the objective functions optimized by the method,
the individual representation, and the genetic operators.

A. Objective Functions

As described in Section II, to obtain a good clustering of
an attributed graph, the two objectives of structural quality
and intra-cluster node similarity must be optimized. Yang
and Leskovec [39] classified topological measures in four
categories, based on internal connectivity, external connec-
tivity, combination of internal and external connectivity, and
based on network model, i. e. modularity. We experimented
several of these measures and then those performing the best
from each category have been chosen, excluding the external
category (expansion and Cut Ratio) because giving poor
results. Thus, as first objective to optimize we considered
modularity for network model, community score for the
internal category, and conductance for the combined class.
The same reasoning applies to the second objective of intra-
community feature homogeneity. We experimented different
similarity measures, and then adopted classical similarity
measures between attributes, chosen on the basis of attribute
type. It is worth pointing out that the multiobjective framework
receives as input parameters the kind of fitness functions to
use, thus it is possible to try any kind of combination of the
two objectives. In the following, the topological and attribute
homogeneity measures are described.

Topological measures. The measures we consider are the
modularity function of Newman and Girvan [2], the commu-
nity score [40], and the conductance [41].
Modularity: let k be the number of obtained clusters, lc is the
total number of edges joining vertices inside the community
C, and dc is the sum of the degrees of the nodes of C. The
modularity Q is defined as

Q =

k∑
c=1

[
lc
m
− (

dc
2m

)2] (2)

The first term of each summand is the fraction of edges
inside a community, and the second one is the expected value
of the fraction of edges that would be in the network if edges
fall at random without regard to the community structure.
Values approaching 1 indicate strong community structure.
Community score: let M be the adjacency matrix of G, r
a resolution parameter that has been fixed to 2 for all the
experimentations. The community score is defined as

CS =

k∑
i

score(Ci) (3)

where

score(C) =

∑
i∈C( 1

|C|
∑
j∈CMij)

r

|C|
×
∑
i,j∈C

Mij (4)

It measures the fraction of internal edges of each community
with respect to its size.
Conductance: let C be a cluster with mc edges, and bc =
{(i, j) | i ∈ C, j /∈ C} be the number of edges on the
boundary of C, the conductance is defined as

CO =

k∑
c=1

bc
2mc + bc

(5)
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It measures the fraction of edges starting from a community
and pointing outside it.

Attribute homogeneity. Let Avi and Avj be the attribute
vectors of nodes vi and vj . The quality of a clustering with
respect to attribute homogeneity can be measured as follows.
Similarity based on Jaccard index:

simJI =
1

k

∑
C∈C

∑
vi,vj∈C
vi 6=vj

∣∣Avi ∩Avj ∣∣∣∣Avi ∪Avj ∣∣ (6)

It measures the average fraction of common attributes within
communities. This objective function is suitable for discrete
attributes assuming a finite set of values (e.g., profession, zip
code, etc.).
Cosine-based similarity:

simCOS =
1

k

∑
C∈C

∑
vi,vj∈C
vi 6=vj

Avi ·Avj
‖Avi‖

∥∥Avj∥∥ (7)

It measures the average fraction of similar attributes in terms
of the cosine angle between attribute vectors. Two vectors with
the same orientation have a similarity of 1, two vectors at 90◦

have a similarity of 0, and two diametrically opposed vectors
have a similarity of -1, independently of their magnitude.
This objective function is suitable for textual attributes as
documents represented as term frequencies vectors (in this
case the cosine similarity is bounded in [0,1]) and for binary
attributes.
Similarity based on Euclidean distance:

simED = −1

k

∑
C∈C

∑
vi,vj∈C
vi 6=vj

√∑
α∈A

(aα(vi)− aα(vj))2 (8)

aα(vi) and aα(vj) are the values of attribute α for node vi
and vj respectively. It measures the average distance between
attributes within communities. This objective function is suit-
able for continuous attributes having real numbers as values
(e.g., temperature, height, weight, etc.).

We highlight that, in the implementation, instead of maxi-
mizing the similarity, we minimize the complementary concept
of distance.

B. Representation and genetic operators

The method uses the locus-based adjacency representation
[36] where an individual of the population consists of n genes,
with n the number of nodes. Each gene represents a node
and can assume a value j in the range {1, . . . , n}. A value j
assigned to the i-th gene means that there is a link between
the nodes i and j of V , thus i and j are in the same cluster. A
decoding step identifies all the communities of the network.
Uniform crossover is adopted to generate the offspring. Given
two parents, a random binary vector is generated. The child
is obtained by combining the genes of the parents by taking
at position i the value j coming from the first parent, when
the vector value at position i is a 0, and from the second
parent when the vector value is 1. The mutation operator for
each node i randomly changes the gene value with one of the
neighbors of i.

C. Algorithm description

A detailed description of the method is reported in Fig.
2. The method receives in input the two objectives fS and
fA to optimize and the maximum number of generations. At
the first step it initializes the population by assigning to each
node one of its neighbors at random. Until the termination
condition is not satisfied, i.e either a maximum number of
generations has been reached or the objective function does not
improve anymore, each individual of the population is decoded
to obtain a partitioning, and the two objectives are evaluated
(steps 2-5). A rank is then assigned to solutions based on
Pareto dominance (step 6), and a new population is created
by applying the genetic operators to the best selected points
from the combined parent and offspring populations (steps 8-
9). At the end of the computation the method returns the set
of Pareto-optimal solutions. The solution P = {P1, . . . , Pl}
having the highest value of the objective fS is chosen. As last
step the LocalMerge procedure is executed to produce the final
solution C = {C1, . . . , Ck}. The pseudo-code of this method
is described in Fig. 3.

The MOGA-@Net Method:
Input: An attributed graph G = (V,E,A, F ), structure fitness function fS ,

attribute fitness function fA, maximum number of generations T
Output: A partitioning C = {C1, . . . , Ck} of the nodes of G in communities

1 Initialize a population of random individuals by assigning
to each node one of its neighbors

2 while termination condition is not satisfied do
3 for each individual I = {g1, . . . , gn} of the population
4 Decode I to generate a partitioning
5 evaluate the two objectives fS and fA
6 Assign a rank based on Pareto dominance
7 end for each
8 Combine parents and offspring and partition into fronts;
9 Select the best points, and apply the variation operators

to create the next population;
10 end while
11 choose the solution P = {P1, . . . , Pl} from the Pareto

front having the best value of fS
12 Perform local merge on P and
13 Return the merged solution C = {C1, . . . , Ck}

Fig. 2. The pseudo-code of the MOGA-@Net algorithm.

The LocalMerge Method:
Input: A clustering P = {P1, . . . , Pl} of the nodes of the attributed graph

G = (V,E,A, F ) in communities
Output: A clustering C = {C1, . . . , Ck} merging communities of P

1 Let L be a vector of size n such that L(i) = j if node vi ∈ Pj

and CM the confusion matrix of size l× l such that CM(i, j)
is the number of edges between the communities Pi and Pj

2 for i=1, l do
3 if (i has not already been included into another community)
4 let j the column index such that

CM(i, j) ≥ CM(i, j), j ∈ 1, . . . , n, j 6= j

5 let P = Pi if | Pi |≤| Pj |
P = Pj otherwise

6 if (mP ≤ CM(i, j)

7 L(P ) = j
8 end for
9 k = max(L)
10 return the merged solution C = {C1, . . . , Ck}

Fig. 3. The pseudo-code of the LocalMerge algorithm.
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Fig. 4. Example of the LocalMerge procedure with two confusion matrices
to show that the community ordering does not influence the result.

The LocalMerge method uses a vector L of size n, and
the confusion matrix CM of size l × l containing in the
position CM(i, j) the number of connections between the
communities Pi and Pj (step 1). It then examines each row
of CM to check if a community is a candidate to be included
into another one. To this end, it finds the community having
the maximum number of connections with Pi and considers
that having the smallest size, denoted with P (steps 4-5). If the
number mP of internal connections of the community P is less
than the number CM(i, j) of links with the other community,
then the two communities Pi and Pj are merged (steps 6,7).
The number k of communities after merging and the new
community structure are obtained by the label vector L (steps
9,10). It is worth noting that the merge procedure does not
depend on the order in which the communities are analyzed.
In fact, each community Pi is compared always with the
community Pj of the solution P = {P1, . . . , Pl} with which
it has the maximum number of connections, independently
if Pj has already been examined or merged into another
community. It is the vector L that relabel the cluster node
to avoid inconsistencies.

Fig. 4 shows an example of execution of the method. Con-

sider the confusion matrix on the left and the first community
C1 in Fig. 4(a), thus i = 1. C1 has 4 links with community C2,
thus j = 2 and P = C1, C1 being the smallest between C1

and C2. Since 3 = mP < CM(1, 2) = 4, C1 is included
in C2 and its nodes take the label of C2 (Fig. 4(b)). For
i = 2 and i = 3 the communities C2 and C3 have a number
of internal links higher than the inter-layer links, thus they
do not change. For i = 4, instead, P = C4 also satisfies
3 = mP ≤ CM(1, 2) = 3, thus C4 is merged with C2.
The final division is constituted by two clusters, one including
{C1, C2, C4} and the other C3 (Fig. 4(c)). As already pointed
out, the order in which the communities are examined does not
influence the final result. In fact, if we consider the confusion
matrix on the right in Fig. 4(a), the final partitioning is the
same.

V. EVALUATION METRICS

To assess the quality of the solutions obtained by the
algorithm, when the ground-truth division of a network is
known, we use the popular Normalized Mutual Information
measure [42] and a variant introduced in [24] that takes into
account also node attributes. Otherwise, the internal indexes
of density and entropy are employed.

Normalized Mutual Information (NMI). The normalized
mutual information NMI(A,B) of two divisions A and B of
a network is defined as follows. Let C be the confusion matrix
whose element Cij is the number of nodes of community i
of the partition A that are also in the community j of the
partition B.

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(Cijn/Ci.C.j)∑cA

i=1 Ci.log(Ci./n) +
∑cB

j=1 C.j log(C.j/n)
(9)

where cA (cB) is the number of groups in the partition A
(B), Ci. (C.j) is the sum of the elements of C in row i (column
j), and n is the number of nodes. If A = B, NMI(A,B) = 1.
If A and B are completely different, NMI(A,B) = 0.

Cumulative NMI (CNMI). CNMI [24] is a modified NMI
measure allowing the integration of NMI values over different
settings of structure mixing parameter (µ) and attribute noise
(ν):

CNMI =

∑µ∑ν
NMI

S
(10)

where S is the number of samples of the considered network
graphs.

Density. It is defined as

D =
∑
C∈C

mc

m
(11)

where mc is the number of edges of the community C and m
is the total number of edges of the network. It measures the
internal edge density of a partitioning.

Entropy. It is based on the information theory concept of
entropy, and it measures the average Shannon information con-
tent of a set. A highly disordered set with different elements
has a high entropy. Thus, the lower the entropy, the more
homogeneous the attribute values. Entropy is defined as
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E = −
∑
C∈C

nc
n

∑
a∈A

pac log(pac) (12)

where pac is the percentage of nodes in community C with the
attribute value a, nc is the number of nodes on the community
C and n is the number of vertices of the network.

VI. EXPERIMENTAL EVALUATION

We test the effectiveness of our approach on two classes
of datasets: synthetic and real world datasets. The former
are computer generated networks allowing the creation of the
ground-truth useful to assess the similarity between the syn-
thetically generated and the detected communities. The latter
datasets, extracted from real environments, better represent the
real network behavior. For some of them, the partitioning in
communities is not known. We compare MOGA-@Net with
eight state-of-the-art methods on the synthetic networks by
exploiting the experimentation performed by Elhadi and Agam
[24], while on the real world datasets, a comparison with
the evolutionary multiobjective method MOEA-SA of Li et al.
[10], which is the most similar to our approach, is carried
out by using the results reported by the authors. Notice that
MOEA-SA has not been tested on synthetic networks. The
MOGA-@Net algorithm has been written in MATLAB2015b,
by using the Global Optimization Toolbox, which implements
the NSGA-II framework of Deb et al. [43]. The following
sections describe in detail the datasets, the algorithms used
for comparison, and the results obtained by the simulations.

A. Synthetic Networks

The synthetic networks have been generated by using the
benchmark proposed by Elhadi and Agam [24], named LFR-
EA, which is an extension of the LFR benchmark of Lanci-
chinetti et al. [44]. The generator uses two parameters µ and ν,
both ranging in the interval [0.1, 0.9], to control the structure
and the attribute values, respectively. µ is called mixing pa-
rameter and determines the rate of intra- and inter-communitiy
connections. Low values of µ give a clear community structure
where intra-cluster link are much more than inter-cluster links.
Analogously for ν, called attribute noise, low values generate
similar features of nodes belonging to the same community.
Besides ν, the number of attributes and the size of the domain
Dα of each attribute α must be specified. The combination
of µ and ν values produces graphs with a clear to ambiguous
structure and/or attributes.

We generated a benchmark of networks consisting of 1000
nodes, in the following named LFR-EA-1000. The parameters
used to generate it are the same of those employed in [24] and
shown in Table I. All the nodes in a community share the same
attribute domain values. Specifically, the nodes are labeled
with two attributes that assume numerical values. Finally,
the attribute’s domain cluster assignment is set to random
selection without replacing, in order to cover all the domain
values across the different communities. We generated ten
different instances of the combination of µ and ν parameters
reported in Table I.

TABLE I
LFR-EA-1000 PARAMETERS SETTING.

Parameter Value
Number of nodes (N ) 1000

Average degree (k) 25
Maximum degree (maxk) 40

Exponent for the degree distribution (t1) 2
Mixing parameter (µ) [0.1; 0.9]

Exponent for the community size distribution (t2) 1
Minimum for the community sizes (minc) 60
Maximum for the community sizes (maxc) 100

Number of overlapping nodes (on) 0
Number of memberships of the overlapping nodes (om) 0

Number of attributes (nattr) 2
Attribute’s domain cluster assignment (ainf ) 1

Attribute # 1 domain size 3
Attribute # 1 noise (ν) [0; 0.9]

Attribute # 2 domain size 15
Attribute # 2 noise (ν) [0; 0.9]

1) Comparison with existing algorithms: to assess the
quality of the results obtained by MOGA-@Net, we compare it
with eight different algorithms, each representative of a type of
approach: (1) structure-only, (2) attribute-only, (3) composite,
(4) selection and (5) ensemble. These methods have been
used by Elhadi and Agam [24] to evaluate their Selection
algorithm. The structure-only (Louvain [3]) and the attribute-
only (k-means [45]) focus on just one of the two aspects of the
attributed graphs, i.e. the links and the attributes of the nodes,
respectively. Composite algorithms, on the contrary, consider
both the structure of the graphs and their attributes (SA-cluster
[22], BAGC [9], Entropy based [7]). The Selection approach
[24], fixed a structure-only method and an attribute-only
method, opportunistically switchs between the two methods
to manage the graph structure ambiguity. These latter methods
have been described in Section III. Finally, ensemble methods
make use of a structure-only method and an attribute-only
method, and then use cluster ensemble techniques to merge
the results of the two classes of algorithms. Elhadi and Agam
proposed to combine the results of the Louvain and k-means
methods inside the two cluster ensemble methods HGPA and
CSPA of Strehl and Ghosh [46]. It is worth pointing out that
the results of these methods are those reported in [24].

2) Results: Parameter setting. As first experiment, we
analyzed the behavior of MOGA-@Net for different genetic
parameter values with the aim to find the best setting giving
good results for the benchmark datasets. To this end, we fixed
the attribute noise to ν=0.5, in order to have an attributed
graph with attributes that are sufficiently ambiguous, and then
varying the mixing parameter µ in the interval [0.1, 0.5, 0.9]
to have clear, less clear, and mixed community structure,
respectively. For this experiment, we used modularity as fitness
function for the intra-community link optimization, and the
similarity based on the Euclidean distance as intra-community
attributes’ homogeneity fitness function, being the attributes
numerical, and computed the NMI values obtained by the
method when varying the population size, the crossover frac-
tion and the mutation rate. Fig. 5(a) shows the NMI values as
a function of the crossover fraction for different mutation rates
when µ = 0.1 and the population size 100. In this case, the
structure of the attributed graph is clear: it is well structured
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in communities with few inter-communities edges and many
intra-community edges. In such situation, a high crossover
fraction (0.8) with a low mutation rate (0.2) gives the highest
NMI. For µ = 0.5 (Fig. 5(b)), the structure of the attributed
graph is more ambiguous. Again the crossover fraction 0.8
gives the highest NMI value but combined with a mutation
rate of 0.4. As the graph structure becomes totally ambiguous,
as in the case of µ = 0.9 (Fig. 5(c)), the highest NMI is
given by a lower crossover fraction of 0.4 with a mutation
rate of 1. However, we observe that for a crossover fraction of
0.8, the NMI remains high also for lower mutation rates (0.6,
0.4 and 0.8). Thus, we conclude that for MOGA-@Net a good
combination of the genetic parameters is crossover fraction 0.8
and mutation rate 0.4, since they result in high NMI values
over all the mixing parameters considered.

Table II shows the NMI values, with the standard devia-
tion in parenthesis, for different population sizes and mixing
parameters with crossover fraction 0.8 and mutation rate 0.4.
The simulations show that the best setting for the population
is 300 individuals since it results in the highest NMI values.

TABLE II
MOGA-@NET NMI VALUES FOR DIFFERENT POPULATION SIZES WITH

CROSSOVER FRACTION 0.8 AND MUTATION RATE 0.4 ON THE
LFR-EA-1000 DATASET.

Population size µ NMI

100
0.1 0.9 (0.073)
0.5 0.962 (0.058)
0.9 0.934 (0.072)

300
0.1 0.943 (0.061)
0.5 0.963 (0.042)
0.9 0.924 (0.069)

500
0.1 0.934 (0.062)
0.5 0.943 (0.046)
0.9 0.933 (0.046)

LFR-EA-1000 network. Fixed the genetic parameters, we
compared MOGA-@Net with state-of-the art algorithms by
executing the method for all the combinations of µ and ν
values, by using the three fitness functions of modularity,
community score, and conductance. Since the attributes are
numerical, we considered as second objective the similarity
based on the Euclidean distance simED (formula (8)). Table
III shows the values of CNMI obtained by MOGA-@Net and
the other algorithms considered for the comparison. MOGA-
@Net, finding on average 13 communities, outperforms all
the other algorithms. The modularity function, in particular,
achieves the highest CNMI value, showing the effectiveness
of using a multiobjective genetic algorithm for exploiting both
graph structure and attributes in a composite way. The other
algorithms of the same class, such as BAGC and Entropy-
Based, achieve CNMI values comparable to the structure-
only Louvain. SA-Cluster performs the worse among the com-
posite methods, showing to not be able to correctly identify
communities. The ensemble methods HGPA and CSPA,
combining the Louvain and the K-means methods, obtain
medium-low CNMI values. This is due to the fact that the
low NMI values of the K-means negatively influence the
Louvain results, inducing low CNMI values. The Selection
method shows a good CNMI value compared to the other
methods. When the structure of the graph becomes less clear

TABLE III
COMPARISON OF CUMULATIVE NMI BETWEEN MOGA-@NET AND THE

OTHER STATE-OF-THE ART ALGORITHMS ON THE LFR-EA-1000
DATASET. THE SECOND OBJECTIVE IS THE EUCLIDEAN DISTANCE.

Method Type CNMI
MOGA-@Net (fS=modularity) Composite 0.878 (0.071)

MOGA-@Net (fS=community score) Composite 0.8717 (0.07)
MOGA-@Net (fS=conductance) Composite 0.863 (0.061)

Louvain [3] Structure-only 0.699
K-means [45] Attributes-only 0.354

BAGC [9] Composite 0.613
EntropyBased [7] Composite 0.696
SA-Cluster [22] Composite 0.193
Selection [24] Switching 0.776

HGPA [46] Ensemble 0.454
CSPA [46] Ensemble 0.482

(high µ), it is able to properly find the boundary between
clear and ambiguous graph structure content, opportunistically
exploiting the attribute-based clustering through the K-means.
In fact, the Louvain method is able to achieve very high NMI
values for high and medium mixing parameters, independently
from the attribute noise since it works only on the graph struc-
ture, the K-means, independently from the mixing parameter,
obtains high NMI values only for low attribute noise. Thus
the Selection method performs the best among the considered
approaches, though MOGA-@Net outperforms it.

B. Real world Networks

We now test the performance of MOGA-@Net over a set
of real world attributed graphs. Specifically, we focus on
networks having the ground-truth (Cora and Citeseer)1, and
on networks that do not have the ground-truth. Two networks,
Amazon US Politics Books 2 and Political Blogs [47] have
a single attribute, while the Facebook Ego Networks [48],
have multiple attributes. Table IV summarizes their features.
MOGA-@Net has been executed 10 times and the average
results are reported. In the following, we briefly introduce
the datasets and detail the results of the experiments we
performed.

1) Datasets: Cora contains a set of nodes representing
scientific publications, where an edge between two nodes
is a citation from a publication to another. The dictionary,
consisting of a set of unique words, represents the attributes’
domain of this network. If a word is present in the paper, the
attribute for that word is set to 1, 0 otherwise. Each publication
has been classified into seven classes: 1) neural networks,
2) rule learning, 3) reinforcement learning, 4) probabilistic
methods, 5) theory, 6) genetic algorithms, and 7) case-based
reasoning.

Citeseer is another dataset of publication citations where
each node belongs to one of the following six categories:
1) agents, 2) information retrieval (IR), 3) databases (DB),
4) artificial intelligence (AI), 5) human-computer interaction
(HCI), and 6) machine-learning (ML).

Amazon US Politics Books is composed by US politics
books sold by Amazon.com during the presidential elections

1Both datasets are available at https://linqs.soe.ucsc.edu/
2Available at http://www-personal.umich.edu/ mejn/netdata/
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Fig. 5. NMI values for different crossover fractions and mutation rates, by setting (a) µ = 0.1, (b) µ = 0.5, (c) µ = 0.9, and the population size to 100.

of 2004. The edges between books represent co-purchasing re-
lationships. Each book has an attribute indicating the political
position: 1) conservative, 2) liberal, or 3) neutral.

Political Blogs contains hyperlinks between political we-
blogs in the US. Each weblog has an attribute with two values:
conservative or liberal.

Facebook Ego Networks is a collection of 10 ego networks
including 4039 Facebook users and 193 circles. Each user,
directly connected to his/her friends connected to other friends,
has several attributes that have been anonymized through
one-hot encoding. For our analysis we consider the 3 ego
networks of the dataset named 686, 3437 and 3980 having
nodes distributed in 14, 32 and 17 circles, respectively.

2) Results: Citation networks with ground-truth. Table
V shows the comparison between MOGA-@Net, MOEA-SA,
Louvain and K-means on the Cora and Citeseer datasets in
terms of NMI. For both datasets, having binary attributes, we
considered the cosine distance as second fitness function. It
can be seen that MOGA-@Net is able to perfectly match
the ground-truth both in Cora and in Citeseer. It is worth
pointing out that the choice of the first fitness function does
not influence the output of the algorithm. We highlight that
MOGA-@Net is able to find the right number of communities
in a situation in which the number of attributes is very high.
MOEA-SA, on the contrary, achieves NMI values of 0.46
and 0.35. Louvain obtains 38 communities and an NMI
value of 0.603 on the Cora dataset, and 72 communities and
NMI = 0.534 on the Citeseer dataset. Thus this method,
with the topological information alone, divides the network
in many small communities. The K-means method, instead,
even though it receives as input the correct number of groups,
achieves NMI values rather low, 0.289 and 0.327, respec-
tively, showing that the compositional variables alone are not
sufficient to find a good clustering. These results confirm
the importance of considering both structural and attribute
components to obtain high quality partitions.

Single-attributed political networks with no ground-
truth. The Amazon US Politics Books and the Political Blogs
networks, indicated as ’Polbooks’ and ’Polblogs’, have a single
attribute denoting the political leaning, often used as ground-
truth division. In such a case, since we use this information as
attribute, the two indexes of density and entropy are computed,
by considering the Euclidean distance as second objective to
minimize. As already outlined, high values of density represent
communities well-separated in terms of structure, while low
entropy values indicate homogeneous communities from the
attributes perspective. From Table VI we can observe that for
the Polbooks dataset, MOGA-@Net average values of density

TABLE IV
FEATURES OF THE REAL WORLD DATASETS.

Dataset Graph Type Nodes Edges Attributes
Cora Citation 2708 5429 1433

Citeseer Citation 1787 3285 3703
Polbooks Books co-purchasing 105 441 1
Polblogs Blogs hyperlinks 1490 19090 1
Ego 686 Friendship 170 1656 63

Ego 3437 Friendship 542 4749 262
Ego 3980 Friendship 58 143 42

D, when using modularity and community score, are lower
than MOEA-SA, though MOGA-@Net achieves the maximum
value of density of 0.9751 for conductance. Regarding the
entropy E, we find that MOGA-@Net always outperforms
MOEA-SA. Considering the number of communities, MOGA-
@Net finds a number of communities between 3, which
corresponds to the nodes’s division in conservative, liberal
and neutral, and 9, while MOEA-SA finds 5 communities.
In Polblogs, independently from the intra-community link
optimization function, MOGA-@Net always results in an
entropy value of 0, while MOEA-SA achieves an average value
of 0.0813. Moreover, MOGA-@Net finds the solution having
the maximum density with 2 communities, that effectively
corresponds to the bipartition of weblogs in conservative
and liberal. MOEA-SA, on the contrary, with a number of
communities ranging between 3 and 11, results in an average
density value of 0.9062.

Multi-attributed Facebook networks with no ground-
truth. The results obtained for the Facebook ego networks
with multi-attributes are shown in Table VII. Since the at-
tributes are binary, we minimize the cosine distance as fitness
function for the attribute similarity. In Ego 686 and Ego 3437,
the MOGA-@Net results in terms of average density and
average entropy are similar for all the objective functions.
MOEA-SA performs worst on Ego 686, but achieves higher
values of density on the Ego 3437 and Ego 3980, though
higher values of entropy on Ego 3437. Figure 6 shows the
circles with the corresponding number of nodes they contain.
It is worth pointing out that MOGA-@Net finds a number
of communities that reflects the distribution of nodes within
these circles. For instance, the number of circles with size
greater than one in Ego 3437 is 22, the same average number
of communities obtained by MOGA-@Net. All these results
demonstrate the very good performance of MOGA-@Net.

VII. COMPARISON BETWEEN NSGA-II AND MOEA/D

Multiobjective evolutionary algorithms have been shown to
be effective methods in solving multiobjective problems be-
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TABLE V
COMPARISON OF NMI BETWEEN MOGA-@NET, MOEA-SA, Louvain

AND K-means ON THE CORA AND CITESEER CITATION NETWORKS.

Method Cora NMI Citeseer NMI
MOGA-@Net(fS=modularity) 1 1

MOGA-@Net(fS=community score) 1 1
MOGA-@Net(fS=conductance) 1 1

MOEA-SA 0.46 (0.001) 0.35 (0.004)
Louvain 0.603 0.534
K-means 0.289 0.327
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Fig. 6. Distributions of nodes within circles in Facebook Ego Networks.

cause of their population based nature which allows to obtain
multiple Pareto optimal solutions in a single run [49]. There
are two main frameworks to find the Pareto optimal solutions:
the dominated-based framework and the decomposition-based
framework. In the dominated-based framework a multiob-
jective optimization problem is optimized by simultaneously
optimizing all the objectives relying on the Pareto-dominance
principle [13]. The most famous multiobjective framework of
this family is the Nondominated Sorting Genetic Algorithm
(NSGA-II) proposed by Deb et al. in [43]. NSGA-II builds a
population of competing individuals and ranks them on the ba-
sis of nondominance. In the decomposition-based framework
a multiojective optimization problem is decomposed into a
number of scalar optimization subproblems by using decom-
position methods. The single-objective subproblems are then
simultaneously solved by evolving a population of solutions.
MOEA/D is the most famous representative of this category
[50].

The experimentation presented in the previous section, as
outlined, used the Global Optimization Toolbox of Matlab,
which implements the NSGA-II framework of Deb et al. [43].
In this section we compare these results with those obtained
by using the MOEA/D framework instead of the NSGA-II
framework only when using as first objective function the
modularity. The results for the other objectives are similar.

Figure 7(a) and Figure 7(b) show the Pareto Front obtained
by using NSGA-II and MOEA/D on the synthetic network
with mixing parameter µ = 0.5 and attribute noise ν = 0.5,
before the execution of LocalMerge method and after, re-
spectively. The figures point out that the solutions obtained
with MOEA/D have lower modularity and higher distance.
Moreover, the NMI value is at most 0.42, while with NSGA-
II the highest value is 0.984, corresponding to the solution with
highest modularity. The behavior on the LFR networks with
different values of µ and ν are similar, thus we do not report
them for space problems.

Figure 8 shows the same information for the Cora network.
In such a case the modularity value of the solutions obtained

with NSGA-II before the merge is much higher than those
found with MOEA/D, though the cosine distance among the
attributes is lower for the latter. However, after the merge, the
NSGA-II solutions all converge to a unique solution which
coincides with the ground-truth. The LocalMerge procedure
improves also the solutions obtained with MOEA/D, which
reduces to 4, one of which is also that corresponding to the
ground-truth.

Regarding the Citeseer network, MOGA-@Net obtains a
Pareto Front with only one solution, which is the ground-truth
solution, independently of the multiobjective framework.

Figure 9 shows the Pareto Fronts for the other real world
networks, again before and after the local merge. In these
cases, the ground-truth is known for the Polbooks and Polblogs
networks, however the class label has been used as the unique
attribute characterizing these two networks, while for the other
networks the true division is not known. Thus, for these real-
world networks the density and entropy values, the former
considers the internal density of the partitions, the latter the
attribute homogeneity, are reported. From the results it can
be observed that on these networks the behavior of the two
MOEA frameworks seems similar. With NSGA-II, in general,
the size of the Pareto Front is lower, the solutions have higher
modularity, lower distance, higher density, except for Polbooks
and Ego 3437, and lower entropy for Polbooks and Ego
686. In order to better understand the behavior of the two
frameworks, we analyzed more in detail the Polbooks and
Polblogs networks. As outlined, for these two test problems
the true division is known. However, even if the class label
has been considered an attribute, we computed the NMI of the
solutions obtained by the two frameworks, with the highest
value of modularity, by considering the ground-truth division
determined by the class label. We obtained for Polbooks
NMI=0.841 and NMI=0.627 for the NSGA-II and MOEA/D
frameworks, respectively, while for Polblogs NMI=1 and
NMI=0.25, respectively. Thus, again, when comparing the two
frameworks with respect to the ground-truth division NSGA-
II outperforms MOEA/D. From the results, it is clear that the
two measures of density and entropy are not able to clearly
discriminate between the two frameworks, thus it is rather
difficult to state the superiority of an approach with respect
to the other by taking into account only these two measures.
However, we can conclude that the NSGA-II framework is
more appropriate than MOEA/D for finding the true network
divisions.

VIII. CONCLUSION

The paper proposed a multiobjective genetic algorithm for
the community detection problem that integrates the struc-
tural and compositional dimensions contained in attributed
networks. The multiobjective framework allows to balance the
information contained into the actors composing the network
and their topological connections to obtain divisions that are
both well connected and with similar nodes. An extensive
experimentation on synthetic and real world networks showed
the very good performance of our approach when compared
with state-of-the-art methods. MOGA-@Net is often capable
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TABLE VI
COMPARISON OF DENSITY AND ENTROPY BETWEEN MOGA-@NET AND MOEA-SA ON AMAZON US POLITICS BOOKS AND POLITICAL BLOGS

NETWORKS.

Dataset Methods Dmax Dmin Davg Emax Emin Eavg nC

Polbooks

MOGA-@Net (f1=modularity) 0.9433 0.7485 0.841 (0.0571) 0.161 0.1349 0.1518 (0.0105) 4-7
MOGA-@Net (f1=community score) 0.8435 0.678 0.7843 (0.0507) 0.183 0.1589 0.1667 (0.0091) 5-9
MOGA-@Net (f1=conductance) 0.9751 0.8072 0.8811 (0.0813) 0.1807 0.1663 0.1731 (0.0057) 3-7
MOEA-SA 0.8934 0.8005 0.8463 (0.0253) 0.4888 0 0.2304 (0.1278) 5

Polblogs

MOGA-@Net (f1=modularity) 0.926 0.9229 0.9252 (0.1213) 0 0 0 5-6
MOGA-@Net(f1=community score) 0.9258 0.9246 0.9256 (0.0003) 0 0 0 5-6
MOGA-@Net (f1=conductance) 1 0.9256 0.9332 (0.023) 0 0 0 2
MOEA-SA 0.9134 0.89 0.9062 (0.0059) 0.1827 0 0.0813 (0.0564) 3-11

TABLE VII
COMPARISON OF DENSITY AND ENTROPY BETWEEN MOGA-@NET AND MOEA-SA ON FACEBOOK EGO NETWORKS.

Dataset Methods Dmax Dmin Davg Emax Emin Eavg nC

Ego 686

MOGA-@Net (f1=modularity) 0.9885 0.9408 0.9634 (0.0145) 0.0839 0.0635 0.0753 (0.0058) 2-6
MOGA-@Net (f1=community score) 0.9758 0.9541 0.9637 (0.0064) 0.08 0.0699 0.0747 (0.0038) 4-5
MOGA-@Net (f1=conductance) 0.9849 0.9504 0.962 (0.0102) 0.0909 0.07 0.0753(0.007) 3-4
MOEA-SA 0.7101 0.5954 0.666 (0.0262) 0.2946 0.2737 0.2811 (0.0059) -

Ego 3437

MOGA-@Net (f1=modularity) 0.8653 0.8015 0.8344 (0.0237) 0.1079 0.0997 0.1042 (0.0273) 20-23
MOGA-@Net(f1=community score) 0.8499 0.8044 0.8305 (0.0151) 0.1079 0.0978 0.1034 (0.0031) 20-23
MOGA-@Net (f1=conductance) 0.8532 0.814 0.8352 (0.0098) 0.1086 0.0998 0.1023 (0.0026) 20-22
MOEA-SA 0.9522 0.6641 0.8417 (0.0989) 0.1089 0.1003 0.1042 (0.0029) -

Ego 3980

MOGA-@Net (f1=modularity) 0.7756 0.5289 0.6565 (0.1003) 0.3252 0.3018 0.314 (0.0079) 4-8
MOGA-@Net (f1=community score) 0.7101 0.4782 0.592 (0.071) 0.3275 0.2976 0.3144 (0.0081) 5-9
MOGA-@Net(f1=conductance) 0.7028 0.4624 0.5442 (0.028) 0.3591 0.2699 0.3142 (0.031) 2-7
MOEA-SA 0.7552 0.6294 0.6921 (0.0362) 0.2991 0.2719 0.2887 (0.0061) -
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Fig. 7. Comparison of the Pareto Fronts obtained with NSGA-II and MOEA/D on the synthetic dataset with parameters µ = 0.5 and ν = 0.5. (a) Pareto
Fronts returned by the method under the NSGA-II (blue circle) and the MOEA/D (red cross symbol) frameworks. (b) Pareto Fronts after applying the Local
Merge procedure to each Pareto Front Solution. (c) NMI values of each solution.
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Fig. 8. Comparison of the Pareto Fronts obtained with NSGA-II and MOEA/D on the Cora network. (a) Pareto Fronts returned by the method under the
NSGA-II (blue circle) and the MOEA/D (red cross symbol) frameworks. (b) Pareto Fronts after applying the Local Merge procedure to each Pareto Front
Solution. (c) NMI values of each solution.

to obtain the ground-truth division, like for instance, the Cora
and Citeseer real world networks, or a partitioning very close
to the real division. Moreover, the local search procedure
properly reduces the number of solutions of the Pareto Front,
and sensibly improves the quality of the communities. The
method has been experimented with two MOEAs frameworks.
The results show that MOGA-@Net performs well for both
the NSGA-II and MOEA/D multiobjective evolutionary frame-
works, even if NSGA-II seems more suitable for this kind
of problem. It is worth pointing out that several studies,

mainly on many-objective optimization [51], [52], [53], com-
paring multiobjective frameworks on problems with different
characteristics, have observed there is not a MOEA method
which outperforms all the others in all the types of problems.
For instance, Li et al. [51], have outlined that ”none of the
approaches has a clear advantage over the others, although
some of them are competitive on most of the problems”.
Analogous considerations are done in [52]. Understanding the
behavior and mechanisms of MOEAs on the different kinds
of domains is still an open problem, as outlined in [54].
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Fig. 9. Comparison of the Pareto Fronts obtained with NSGA-II and MOEA/D: (a)-(d) Polblogs, (e)-(h) Polbooks, (i)-(l) Ego 686, (m)-(p) Ego 3437, (q)-(t)
Ego 3980. (a), (e), (i), (m), (q): Pareto Fronts returned by the method under the NSGA-II (blue circle) and the MOEA/D (red cross symbol) frameworks. (b),
(f), (j), (n), (r): Pareto Fronts after applying the Local Merge procedure to each Pareto Front Solution. (c), (g), (k), (o), (s) Density values of each solution.
(d), (h), (l), (p), (t): Entropy values of each solution.

Recently, Li et al. [10] proposed the multiobjective method
MOEA-SA for attributed networks. However, the differences
between MOGA-@Net and MOEA-SA are numerous and note-
worthy. First of all, MOEA-SA does not consider continuous
attribute values and thus defines a similarity function between
two feature vectors based on the cosine similarity, and the
modularity function [2] as first objective. We do not restrict
the attribute type and allow to experiment different topological
fitness functions. The representation adopted by this method is
the label-based, while MOGA-@Net uses the locus-based one.
Consequently, genetic operators are different because depend-
ing on the adopted representation. MOGA-@Net, moreover,
employs a local merge procedure that avoids to obtain very
small communities densely connected with neighboring larger
communities. A comparison on seven real world networks
highlights that MOGA-@Net obtains community structures
more accurate than those obtained by MOEA-SA. Future work
will explore other structural and similarity measures, and will
try to extend the approach to dynamic networks and with
multiple layers.
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