
An Ensemble-based Evolutionary Framework for
coping with Distributed Intrusion Detection

Gianluigi Folino, Clara Pizzuti and Giandomenico Spezzano
Institute for High Performance Computing and Networking (ICAR)

Via P. Bucci 41c, I-87036 - Rende (CS), Italy
E-mail:(folino, pizzuti, spezzano)@icar.cnr.it

Abstract

A distributed data mining algorithm to improve the detection accuracy
when classifying malicious or unauthorized network activity is presented.
The algorithm is based on genetic programming (GP) extendedwith the en-
semble paradigm. GP ensemble is particularly suitable for distributed in-
trusion detection because it allows to build anetwork profileby combining
different classifiers that together provide complementaryinformation. The
main novelty of the algorithm is that data is distributed across multiple au-
tonomous sites and the learner component acquires useful knowledge from
this data in a cooperative way. The network profile is then used to predict
abnormal behavior. Experiments on the KDD Cup 1999 Data showthe ca-
pability of genetic programming in successfully dealing with the problem of
intrusion detection on distributed data.

1 Introduction

The extensive use of Internet and computer networks, besides the known advan-
tages of information exchange, has provided an augmented risk of disruption of
data contained in information systems. In the recent past, several cyber attacks have
corrupted data of many organizations creating them seriousproblems. The avail-
ability of Intrusion Detection Systems(IDS), able to automatically scan network
activity and to recognize intrusion attacks, is very important to protect computers
against such unauthorized uses and make them secure and resistant to intruders.
The task of an IDS is to identify computing or network activity that is malicious
or unauthorized. An IDS is essentially an alarm system for the network. It en-
ables the monitoring of the network for discovering intrusive activity. When an
intrusive activity occurs, the IDS generates an alarm to notify that the network is
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possibly under attack. An IDS, however, can generate ”falsepositives” or ”false
alarms”. So, the main focus of an intrusion detection systemis to design accu-
rate algorithms that characterize the behaviors of individual nodes of the system by
recognizing abnormal behaviors, yet minimizing false alarm rate.

Most current Intrusion Detection Systems collect data fromdistributed nodes
in the network and then analyze them centrally to build a profile defining the nor-
mal user activity. The main drawback of this approach is the rise of security and
privacy problems due to the necessity of transferring data.Moreover, if the central
server becomes the objective of an attack, the whole networksecurity is quickly
compromised.

An alternative solution is to build a network profile by applying distributed data
analysis methods. Distributedprofile-basedintrusion detection systems (dIDS)
offer an alternative to centralized analysis, may afford greater coverage and provide
an increase in security.

In this paper we propose (GEdIDS, Genetic programming Ensemble for Dis-
tributed Intrusion Detection Systems) a distributed data mining algorithm based
on the ensemble paradigm that employs a Genetic Programming-based classifier
as component learner in order to improve the detection capability of the system
[12]. Ensemble paradigm is particularly suitable for distributed intrusion detection
because it allows to build a network profile by combining different classifiers that
together provide complementary information. The classifiers perform the neces-
sary analysis of data at the locations where the data and computational resources
are available and transmit the result of the analysis to the locations where the en-
semble is needed. The idea is that combining together different classifiers, they
yield a better performance than the individual classifiers.The network profile is
then used to predict abnormal user activity. GP ensembles are built using a dis-
tributed cooperative approach based on a hybrid model [3] that combines the island
model with the cellular model.

Each node of the network is considered as an island that contains a learning
component, based on cellular genetic programming, whose aim is to generate a
decision-tree predictor trained on the local data stored inthe node. Every genetic
program, however, though isolated, cooperates with the neighboring nodes by col-
laborating with the other learning components located on the network. Knowledge
about the solutions found so far is diffused by taking advantage of the cellular
model that exchanges the outermost individuals of the population.

A learning component employs the ensemble method AdaBoost.M2 [14], thus
it evolves a population of individuals for a number of rounds, where a round is a
fixed number of generations. Every round the islands import the remote classifiers
from the other islands and combine them with their own local classifier. Finally,
once the classifiers are computed, they are collected to formthe GP ensemble.
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In the distributed architecture proposed, each island thusoperates cooperatively
yet independently from the others, providing for efficiencyand distribution of re-
sources.

To evaluate the system proposed, we performed experiments using the network
records of the KDD Cup 1999 Data [1]. Experiments on this dataset point out
the capability of genetic programming in successfully dealing with the problem to
improve the detection accuracy.
The main contributions of the paper can be summarized as follows.

A data mining algorithm based on a distributed Genetic Programming model
and ensemble learning for improving detection accuracy is presented.

The algorithm runs on a distributed environment and does notrequire that audit
data present on each node of the network be collected and sentto a central location
to be analyzed.

The network nodes work with their own population, their own data set and
train the classification algorithm on the local data there contained. However, they
cooperate by communicating each other the computed models.This strategy allows
for the realization of an efficient co-evolutionary and cooperative model of GP
since the islands communicate models and not data.

A main advantage of co-evolution and cooperation is the generation of clas-
sification trees of smaller size and an augmented generalization capability of the
ensemble in predicting the class on new data.

The distributed approach, on the other hand, gives significant advantages in
flexibility, extensibility, and fault tolerance since, if anode is temporarily unavail-
able, the other nodes can continue to work by using the information coming from
the currently available nodes.

The paper is organized as follows. The next section gives a brief description
of Intrusion Detection Systems. Section 3 outlines the genetic programming based
ensemble paradigm for distributed IDS. Section 4 describesthe algorithm and its
implementation on a distributed environment. Finally, section 5 presents the results
of our experiments.

2 Background

Intrusion detection Systems originally were developed to examine the activity of a
single computer to process operating system audit records.This approach quickly
expanded to systems looking at network traffic, gathering information produced
in different hosts. Currently the emphasis is on developingIntrusion Detection
Systems able to manage large volumes of data coming from multiple computers in
a distributed system.
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A Distributed Intrusion Detection System (dIDS) can be defined as a collec-
tion of multiple IDS spread over a large network, all of whichcommunicate with
each other to facilitate advanced network monitoring, incident analysis, and in-
stant attack data [8]. One of the main advantages of dIDS is the ability to detect
attack patterns across an entire network, with geographic locations dispersed over
continents. The most important part of an IDS is its detection technique.

Traditionally, signature-based detection techniques have been used to individ-
uate intrusions. Such methods gather features from the network data and detect
intrusions by comparing the feature values to a set of attacksignatures provided by
a human expert. The main drawback of these approaches is thatthey are not able to
discover new types of attacks, since their signature is not contained in the signature
database. This weakness has stimulated research in trying data mining techniques
to solve this task.

Data mining based intrusion detection approaches can be categorized inmisuse
detection[17, 4] andanomaly detection[16, 9]. In misuse detection, each instance
in a set of data is labelled as normal or intrusion and a learning algorithm is trained
over the labelled data. In anomaly detection a model is builtover normal data and
any deviation from the normal model in the new observed data is considered an
intrusion. Misuse detection techniques reaches high degree of accuracy in discov-
ering known intrusions and their variant, but they need to beretrained if new types
of attacks are added to the input data set. On the other hand, anomaly detection
techniques could generate high false alarm rate because normal unseen instances
that differ from the normal behavior modeled are consideredanomalies.

Genetic Programming for intrusion detection has received an increasing inter-
est in the last few years. The first proposal is due to Crosbie and Spafford [7]
which used agent technology to detect anomalous behavior ina system. Each au-
tonomous agent was used to monitor a particular network parameter. However how
to handle communication among the agents was not very clear.Orfila et al. [22]
extended the previous approach to automatically create detection patterns/rules.
The main contribution of this work is the adoption of domain knowledge in de-
signing the function set and the usage of tree size limitations for obtaining simple
and lightweight rules. Experiments have been conducted on publicly available raw
tcp traffic from an enterprise network.

Another proposal for detecting novel attacks on network is presented by Lu
and Traore [19]. The authors use Genetic programming to evolve rules whose aim
is to discover attacks.

Linear Genetic Programming was proposed by Song et al. [28, 29] to address
the intrusion detection classification problem over the KDDCUP 1999 data set. An
individual is represented as a linear list of instructions and evaluation corresponds
to the process of program execution associated with a simpleregister machine. In
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section 5 a comparison of our results with those presented bySong et al. will be
done. Linear GP is also adopted by Mukkamala et al. [21] to model intrusion detec-
tion systems and compare its performance with artificial neural networks and sup-
port vector machines. Abraham et al. [2] proposed Linear GP,Multi-Expression
Programming, and Gene Expression Programming for detecting known types of
attacks. The authors pointed out the suitability of GeneticProgramming in devel-
oping accurate IDS.

An hybrid intrusion detection model that combines individual base classifiers
generated by using decision trees and Support Vector Machines, is presented in
[23]. The authors show that the performance of ensemble approach is better than
those of the single classifiers.

Faraoun and Boukelif in [10] proposed an interesting methodwhich consist of
genetically coevolving a population of non-linear transformations on the input data
to be classified, and map them to a new space with a reduced dimension, in order
to get a maximum inter-classes discrimination. The application of the method to
the KDD CUP dataset showed its capability of making accuratepredictions on the
unseen test data.

In [15], Hansen et al. presented a work oriented towards the problem of cy-
berterrorism. In this context a high-level of accuracy in identifying true positives
must be reached and the technique must perform well on unseeninstances. The au-
thors experimented the accuracy reached using non homologous and homologous
crossover. The latter obtained better accuracy in identifying positive and negative
unseen instances in the test set of the KDD CUP 1999 dataset.

It worth to note that none of the above approaches cope with the problem of
intrusion detection in distributed environments.

In the next section we propose the ensemble paradigm as a baseframework to
define a scalable, efficient and distributed algorithm for Intrusion Detection.

3 GP ensembles

Ensemble [14, 6] is a learning paradigm where multiple component learners are
trained for the same task by a learning algorithm, and the predictions of the com-
ponent learners are combined for dealing with new unseen instances. LetS =
{(xi, yi)|i = 1, . . . , N} be a training set wherexi, called example or tuple or in-
stance, is an attribute vector withm attributes andyi is the class label associated
with xi. A predictor (classifier), given a new example, has the task to predict the
class label for it.

Ensemble techniques buildT predictors, each on a different training set, then
combine them together to classify the test set. Boosting wasintroduced by Schapire
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[26] and Freund [27] for boosting the performance of any “weak” learning algo-
rithm, i.e. an algorithm that “generates classifiers which need only be a little bit
better than random guessing” [27].

The boosting algorithm, calledAdaBoost, adaptively changes the distribution
of the training set depending on how difficult each example isto classify. Given
the numberT of trials (rounds) to execute,T weighted training setsS1, S2, . . . , ST

are sequentially generated andT classifiersC1, . . . , CT are built to compute a
weak hypothesisht. Let wt

i denote the weight of the examplexi at trial t. At the
beginningw1

i = 1/n for eachxi. At each roundt = 1, . . . , T , a weak learnerCt,
whose errorǫt is bounded to a value strictly less than 1/2, is built and the weights
of the next trial are obtained by multiplying the weight of the correctly classified
examples byβt = ǫt/(1 − ǫt) and renormalizing the weights so thatΣiw

t+1

i = 1.
Thus “easy” examples get a lower weight, while “hard” examples, that tend to be
misclassified, get higher weights. This induces AdaBoost tofocus on examples that
are hardest to classify. The boosted classifier gives the class labely that maximizes
the sum of the weights of the weak hypotheses predicting thatlabel, where the
weight is defined aslog(1/βt). The final classifierhf is defined as follows:

hf = arg max (

T∑

t

log(
1

βt
)ht(x, y))

Ensemble techniques have been shown to be more accurate thancomponent
learners constituting the ensemble [6, 25], thus such a paradigm has become a hot
topic in recent years and has already been successfully applied in many application
fields.

A key feature of the ensemble paradigm, often not much highlighted, concerns
its ability to solve problems in a distributed and decentralized way.

We adopt such a paradigm to derive a network profile for modeling distributed
intrusion detection systems and investigate the suitability of GP as component
learner.

A GP ensemble offers several advantages over a monolithic GPthat uses a
single GP program to solve the intrusion detection task. First, it can deal with very
large data sets. Second, it can make an overall system easierto understand, modify
and implement in a distributed way. Finally, it is more robust than a monolithic GP,
and can show graceful performance degradation in situations where only a subset
of GPs in the ensemble are performing correctly.

One of the disadvantages of such an approach is the loss of interaction among
the individual GPs during the learning phase. In fact, the individual GPs are often
trained independently or sequentially. This does not take into account the inter-
dependence that exists among the data and could bring to an ensemble overfitting
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them and having weak characteristics of generalization. Tothis aim, we propose a
method that emphasizes the cooperation among the individual GPs in the ensemble
during the building of the solution.

Our approach is based on the use of cooperative GP-based learning programs
that compute profile-based intrusion detection models overdata stored locally at a
site, and then integrate them by applying a majority voting algorithm.

The models are built using the local audit data generated on each node by, for
example, operating systems, applications, or network devices so that each ensem-
ble member is trained on a different training set.

The GP classifiers cooperate using the island model [3] to produce the ensem-
ble members. Each node is an island and contains a GP-based learning component
whose task is to build a decision tree classifier by collaborating with the other
learning components located on the network. Each learning component evolves its
population for a fixed number of iterations and computes its classifier operating
on the local data. Each island may then import (remote) classifiers from the other
islands and combine them with its own local classifier. Finally, once the classifiers
are computed, they are collected to form the GP ensemble.

Diversity is an important problem that must be considered for forming success-
ful ensembles. Genetic programming does not require any change in a training set
to generate individuals of different behaviors. In [13] it is shown that GP enhanced
with a boosting technique improves both the prediction accuracy and the running
time with respect to the standard GP. We adopt the extension of GP with the Ad-
aBoost.M2 algorithm as component learner to construct classification models for
intrusion detection.

The next section describes the GEdIDS algorithm and its implementation using
the dCAGE environment for the distributed execution of genetic programs by a
hybrid island model.

4 The GEdIDS algorithm for dIDS

GEdIDS builds GP ensembles using a hybrid variation of the classic island model
that leads not only to a faster algorithm, but also to superior numerical perfor-
mance. The hybrid model combines the island model with the cellular model [3].

Figure 1 displays the software architecture ofGEdIDS. The figure shows a
network constituted byP nodes, each having its own data setSj, a copy of the
ensemble generated, and aGEdIDS algorithm running on it. EachGEdIDS is
based on the cGP classification algorithm [13], better explained later. cGP runs
for T rounds; for every round it generates a classifier, exchangesit with the other
islands, and updates the weights of the tuples for the next round, according to the
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boosting algorithm.

Figure 1: Software architecture of GEdIDS.

In order to create GP ensembles a distributed computing environment is re-
quired. We use dCAGE (distributed Cellular Genetic Programming System) a
distributed environment to run genetic programs by an island model, which is an
extension of [11].

dCAGE distributes the evolutionary processes (islands) that implement the de-
tection models over the network nodes using a configuration file that contains the
configuration of the distributed system. dCAGE implements the hybrid model as a
collection of cooperative autonomous islands running on the various hosts within
an heterogeneous network that works as a peer-to-peer system. The configuration
of the processors is based on a ring topology.

The island model is based on subpopulations that are createdby dividing the
original population into disjunctive subsets of individuals, usually of the same size.
Each subpopulation can be assigned to one processor and a standard (panmictic)
GP algorithm is executed on it. Occasionally, migration process between subpop-
ulations is carried out after a fixed number of generations. For example, then best
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individuals from one subpopulation are copied into the other subpopulations, thus
allowing the exchange of genetic information between populations.

Our hybrid model modifies the island model by substituting the standard GP
algorithm with a cellular GP (cGP) algorithm. In the cellular model each individual
has a spatial location, a small neighborhood and interacts only within its neighbor-
hood. The main difference in a cellular GP, with respect to a panmictic algorithm,
is its decentralized selection mechanism and the genetic operators (crossover, mu-
tation) adopted. Our model, as illustrated in figure 2, adopts a toroidal 2-D grid and
the selection and mating operations are performed, cell by cell, only among the in-
dividual assigned to a cell and its neighbors. Selection, reproduction, and mating
take place locally within the neighborhood. The individualto mate with the central
individual k is chosen among the individuals in the Moore neighborhood and the
best of the two offsprings replaces the current individualk. At each generation,
the borders of the populations (the individuals on the left and on the right borders
of the grid) are exchanged among neighboring peers, in an asynchronous fashion
(i.e. if the borders do not arrive to a peer before starting the computation, the peer
goes on with the old trees), so that all the islands can be thought as parts of a single
population.

Figure 2: the cGP grid and the Moore neighborhood

GEdIDS uses the cGP algorithm to inductively generate a GP classifier as a
decision tree for the task of data classification. Decision trees, in fact, can be inter-
preted as composition of functions where the function set isthe set of attribute tests
and the terminal set are the classes. The function set can be obtained by converting
each attribute into an attribute-test function. For each attributeA, if A1, . . . An are
the possible valuesA can assume, the corresponding attribute-test functionfA has
arity n and if the value ofA is Ai thenfA(A1, . . . An) = Ai. When a tuple has
to be evaluated, the function at the root of the tree tests thecorresponding attribute
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and then executes the argument that outcomes from the test. If the argument is a
terminal, then the class name for that tuple is returned, otherwise the new function
is executed. The fitness is the number of training examples classified in the correct
class.

Let pc, pm be crossover and mutation probability
for each cell i in the populationdo in parallel

evaluate the fitness ofti
end parallel for

while not MaxNumberOfGenerationdo
for each cell i in the populationdo in parallel

generate a random probabilityp
if (p < pc)

select the cellj, in the neighborhood ofi,
such thattj has the best fitness
produce the offspring by crossingti andtj
evaluate the fitness of the offspring
replace ti with the best of the two offspring
if its fitness is better than that ofti

else
if ( p < pm + pc) then

mutate the individual
evaluate the fitness of the newti

else
copy the current individual in the population

end if
end if

end parallel for
end while

Figure 3: The algorithmCGP

cGP is described in figure 3. At the beginning, for each cell, the fitness of each
individual is evaluated. Then, at each generation, every tree undergoes one of the
genetic operators (reproduction, crossover, mutation) depending on the probability
test. If crossover is applied, the mate of the current individual is selected as the
neighbor having the best fitness, and the offspring is generated. The current tree is
then replaced by the best of the two offsprings if the fitness of the latter is better
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than that of the former. The evaluation of the fitness of each classifier is calculated
on the entire training data. After the execution of the number of generations defined
by the user, the individual with the best fitness represents the classifier.

Given a network constituted byP nodes,
each having a data setSj

For j = 1, 2, . . ., P (for each island in parallel)
Initialize the weights associated with each tuple
Initialize the populationQj with random individuals

end parallel for
For t = 1,2,3,. . ., T (boosting rounds)

For j = 1, 2, . . ., P (for each island in parallel)
Train cGP onSj using a weighted fitness
according to the weight distribution
Compute a weak hypothesis
Exchange the hypotheses among theP islands
Update the weights

end parallel for
end for t

Output the hypothesis

Figure 4: The GEdIDS algorithm using AdaBoost.M2

The pseudo-code of the GEdIDS algorithm is shown in figure 4. Each is-
land is furnished with a cGP algorithm enhanced with the boosting technique Ad-
aBoost.M2, a population initialized with random individuals, and operates on the
local audit data weighted according to a uniform distribution. The selection rule,
the replacement rule and the asynchronous migration strategy are specified in the
cGP algorithm. Each island generates the GP classifier by running for a certain
number of iterations, necessary to compute the number of boosting rounds. During
the boosting rounds, each classifier maintains the local vector of the weights that
directly reflect the prediction accuracy on that site. At each boosting round the
hypotheses generated by each classifier are exchanged amongall the processors in
order to produce the ensemble of predictors. In this way eachisland maintains the
entire ensemble and it can use it to recalculate the new vector of weights. After
the execution of the fixed number of boosting rounds, the classifiers are used to
evaluate the accuracy of the classification algorithm for intrusion detection on the
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Table 1: Class distribution for training and test data for KDDCUP 99 dataset

Normal Probe DoS U2R R2L Total
Train 97277 4107 391458 52 1126 494020
Test 60593 4166 229853 228 16189 311029

entire test set.
In the next section, we experimentally prove the capabilityof our approach on

the KDD CUP data set.

5 System evaluation and results

5.1 Data sets description

We performed experiments over the KDD Cup 1999 Data set [1]. Though this data
set has been judged not representative of a realistic IDS scenario [20], it is a ref-
erence data set, extensively used to compare results of different intrusion detection
techniques. The data set comes from the 1998 DARPA IntrusionDetection Eval-
uation Data [18] and contains a training data consisting of 7weeks of network-
based attacks inserted in the normal data, and 2 weeks of network-based attacks
and normal data for a total of 4,999,000 of connection records described by 41
characteristics. The main categories of attacks are four: DoS (Denial of Service),
R2L (unauthorized access from a remote machine), U2R (unauthorized access to
a local superuser privileges by a local unprivileged user),PROBING (surveillance
and probing). However a smaller data set consisting of the 10% the overall data set
is generally used to evaluate algorithm performance. In this case the training set
consists of 494,020 records among which 97,277 are normal connection records,
while the test set contains 311,029 records among which 60,593 are normal con-
nection records. Table 1 shows the distribution of each attack type in the training
and the test set. Note that the test set is not from the same probability distribution
as the training data, in fact it includes specific attack types not in the training data.
This makes the task more realistic.

5.2 Performance measures

To evaluate our system, besides the classical accuracy measure, the two standard
metrics ofdetection rateandfalse positive ratedeveloped for network intrusions,
have been used. Table 2 shows these standard metrics. Detection rate is computed
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as the ratio between the number of correctly detected attacks and the total number
of attacks, that is

DR =
#TruePositive

#FalseNegative + #TruePositive

False positive ( also said false alarm) rate is computed as the ratio between the
number of normal connections that are incorrectly classifies as attacks and the total
number of normal connections, that is

FP =
#FalseAlarm

#TrueNegative + #FalseAlarm

These metrics are important because they measure the percentage of intrusions the
system is able to detect and how many misclassifications it makes. To visualize the
trade-off between the false positive and the detection rates, the ROC (Receiving
Operating Characteristic) curves [24] are also depicted. Furthermore, to compare
classifiers it is common to compute the area under the ROC curve, denoted asAUC
[5]. The higher is the area, better is the average performance of the classifier.

Table 2:Standard metrics to evaluate intrusions.

Predicted label
Normal Intrusions

Actual Class Normal True Negative False Alarm
label Intrusions False Negative True Positive

5.3 Experimental setup

The experiments were performed by assuming a network composed by 10 dual-
processor 1,133 Ghz Pentium III nodes having 2 Gbytes of memory. The training
set of 499,467 tuples was equally partitioned among the 10 nodes using a random
sampling, thus containing 1/10 of instances for each class.On each node we run
AdaBoost.M2 as base GP classifier with a population of 100 elements for 10
rounds, each round consisting of 100 generations. The GP parameters used are
the same for each node and they are shown in table 3. All the experiments have
been obtained by running the algorithm 10 times and averaging the results. Each
ensemble has been trained on the train set and then evaluatedon the test set.

13



Table 3: Main parameters used in the experiments

Name Value
max depthfor new trees 6

max depthafter crossover 17
max mutantdepth 2

grow method RAMPED
selectionmethod GROW

crossoverfunc pt fraction 0.7
crossoverany pt fraction 0.1
fitnessprop repro fraction 0.1

parsimonyfactor 0

Figure 5: ROC curves.
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Table 4: Detection Rate and False Positive Rate for GEdIDS (avg, best Det. Rate
and Best False Pos. Rate) after 2, 5 and 10 rounds.

Detection Rate FP Rate Accuracy
Avg GEdIDS 0.907483 0.023154 0.901569

2 rounds Best Det. Rate 0.910267 0.045658 0.909548
Best FP Rate 0.903428 0.012931 0.911478
Avg GEdIDS 0.907038 0.008324 0.917586

5 rounds Best Det. Rate 0.911434 0.013632 0.919644
Best FP Rate 0.908815 0.004621 0.920468
Avg GEdIDS 0.905812 0.005648 0.918624

10 rounds Best Det. Rate 0.911522 0.005941 0.923592
Best FP Rate 0.910165 0.004340 0.923782

Table 5: Classification accuracy of GEdIDS for each class, after 2, 5 and 10 rounds.

2 rounds 5 rounds 10 rounds
normal 97.6846% 99.1676% 99.44%
probe 15.6505% 68.7326% 71.97%
DoS 96.1086% 96.5456% 96.53%
u2r 2.0614% 2.9825% 5.18%
r2l 2.5264% 3.2380% 3.60%

Table 6: Comparison with kdd-99 cup winners and other approaches

Algorithm Detection Rate FP Rate ROC Area
Winning Entry 0.919445 0.005462 0,956991
Second Place 0.915252 0.005760 0,954746

Best Linear GP - FP Rate 0.894096 0.006818 0,943639
Avg GEdIDS 0.905812 0.005648 0.950082

Best GEdIDS - FP Rate 0.910165 0.004340 0.952912

5.4 Results and comparison with other approaches

The results of our experiments are summarized in table 4 where the detection rate,
false positive rate, and accuracy are reported after 2, 5, and 10 rounds of the boost-
ing algorithm. For each of them the table shows the average values obtained by
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running the algorithm 10 times, and the best values obtainedwith respect to the
false positive and detection rates. The table shows that increasing the number of
boosting rounds has a positive effect on both the false positive rate and accuracy,
while the average detection rate slightly diminishes, though the best value obtained
among the 10 executions improves. Table 5 reports the classification accuracy de-
tailed for each class, after 2, 5, and 10 rounds, respectively, attained on the test set
by averaging results coming from 10 different executions ofGEdIDS. The table
points out that the prediction is worse on the two classes U2Rand R2L. For this
two classes, however, there is a discrepancy between the number of instances used
to train each classifiers on every node and the number instances to classify in the
test set (only 52 and 228 tuples respectively for training, while 1126 and 16189 for
testing).

Table 6 compares our approach with the first and second winnerof the KDD-99
CUP competition and the linear genetic programming approach proposed by Song
et al. [28]. The table shows the values of the standard metrics described above. In
particular we show the detection rate, the false positive rate, and the ROC area of
these three approaches and those obtained byGEdIDS. For the latter we show
both the average values of the 10 executions and the best value with respect to the
false positive rate (for the sake of comparison with a GP-based approach). It is
worth to note that, as regards Linear GP, the authors in theirpaper [28] reported
only the best values found. From the table we can observe thatthe average and best
GEdIDS detection rates are 0.905812 and 0.910165, respectively, while those of
the first two winners are 0.919445 and 0.915252. As regard thefalse positive rate
the average value ofGEdIDS 0.005648 is lower than the second entry, while the
best value obtained 0.004340 is lower than both the first and second entries. Thus
the goodness of the solutions found byGEdIDS is not very different from the
winning entry and from the Linear GP approach. These experiments emphasizes
the capability of genetic programming to deal with this kindof problem. Figure 5
shows an enlargement of the ROC curves of the methods listed in table 6 and better
highlights the results of our approach.

Finally we comparedGEdIDS with the other well known classifications meth-
odsC4.5, and its boosting and bagging versions.

We used the implementations contained in theWEKA [30] open source soft-
ware available at http://www.cs.waikato.ac.nz/ml/weka/. For this experiment we
report the classification accuracy of all the methods, detailed for each class, and
the global detection rate and false positive rate. In particular, for GEdIDS, we
presents the results obtained when each node works with 10%,50%, and 100%
of the data set. Table 7 points out that when the ensemble is built by using only
the 10% of the data set on each node,GEdIDS has a generalization capability
reduced with respect to the other methods. This behavior is clearly a consequence
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Table 7: Comparison betweenGEdIDS and C4.5, boosting and bagging C4.5.

GEdIDS C4.5 BoostC4.5 BagC4.5
10% 50% 100%

normal 99.44% 99.48% 99.51% 99.49% 99.50% 99.48%
probe 71.97% 81.51% 81.83% 74.70% 79.09% 79.67%
DoS 96.53% 97.03% 97.10% 97.27% 97.27% 97.27%
u2r 5.18% 9.47% 10.04% 2.63% 8.33% 5.32%
r2l 3.60% 7.36% 7.44% 5.84% 6.22% 4.64%

Det. Rate 0.90581 0.91295 0.91357 0.91096 0.91117 0.91112
FP rate 0.005648 0.005225 0.004915 0.005067 0.005017 0.005166

of the fact that the size of the training set is too small for some kind of attacks.
For example, the class U2R consists of 52 training tuples, thus each node receives
only 5 tuples. This implies that the predictive accuracy of the ensemble can not be
good on the 228 tuples of the test set. However, as soon as the size of the train-
ing set augments, we can note thatGEdIDS outperforms the other approaches.
For example, the predictive accuracy of the two most difficult classes, U2R and
R2L, increases from 5.18 to 9.47 and 10.04 as regards U2R, andfrom 3.60 to 7.36
and 7.44 as regards R2L, when 10%, 50% and 100% of the trainingset is used.
The table shows also the good outcomes of detection rate and false positive rate of
GEdIDS.

To statistically validate the results, we performed a two-tailed paired t-test at
95% confidence interval. The values in bold of the column 50% of GEdIDS
highlight when our algorithm obtains an error lower than theother approaches,
meaningful with respect to the statistical test.

6 Conclusions

A distributed intrusion detection approach based on Genetic Programming and ex-
tended with the ensemble paradigm, to classify malicious orunauthorized network
activity has been presented. GP ensembles are built using a distributed cooperative
approach based on a hybrid model that combines the cellular and the island mod-
els. The combination of these two models provides an effective implementation of
distributed GP, and the generation of classifiers with good classification accuracy.
A main advantage of the distributed architecture is that it enables for flexibility, ex-
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tensibility, and efficiency since each node of the network works with its local data,
and communicate with the other nodes, to obtain the results,only the local model
computed, but not the data. This architecture is thus particularly apt to deal with
enormous amount of data generated at different locations. Experimental results
showed the suitability of GP as component learner of the ensemble for this kind of
problems. An extension that deserves to be investigated regards the possibility of
considering not batch data sets but data streams that changeonline on each node of
the network.
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