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Abstract

A distributed data mining algorithm to improve the detectaxcuracy
when classifying malicious or unauthorized network atfivs presented.
The algorithm is based on genetic programming (GP) extendtfxthe en-
semble paradigm. GP ensemble is particularly suitable itrilduted in-
trusion detection because it allows to builech@work profileby combining
different classifiers that together provide complementafgrmation. The
main novelty of the algorithm is that data is distributedossr multiple au-
tonomous sites and the learner component acquires useful&dge from
this data in a cooperative way. The network profile is therdusepredict
abnormal behavior. Experiments on the KDD Cup 1999 Data ghevea-
pability of genetic programming in successfully dealinghithe problem of
intrusion detection on distributed data.

1 Introduction

The extensive use of Internet and computer networks, besieknown advan-
tages of information exchange, has provided an augmergkdfidisruption of
data contained in information systems. In the recent pagtral cyber attacks have
corrupted data of many organizations creating them sepooislems. The avail-
ability of Intrusion Detection Systems(ID)ble to automatically scan network
activity and to recognize intrusion attacks, is very impottto protect computers
against such unauthorized uses and make them secure astdnmesd intruders.
The task of an IDS is to identify computing or network activihat is malicious
or unauthorized. An IDS is essentially an alarm system ferrtatwork. It en-
ables the monitoring of the network for discovering intvasactivity. When an
intrusive activity occurs, the IDS generates an alarm tifyntiat the network is



possibly under attack. An IDS, however, can generate "fatsstives” or "false
alarms”. So, the main focus of an intrusion detection systeio design accu-
rate algorithms that characterize the behaviors of ind&ischodes of the system by
recognizing abnormal behaviors, yet minimizing falseralaate.

Most current Intrusion Detection Systems collect data faistributed nodes
in the network and then analyze them centrally to build a |grofefining the nor-
mal user activity. The main drawback of this approach is ibe of security and
privacy problems due to the necessity of transferring ddtareover, if the central
server becomes the objective of an attack, the whole neteechrity is quickly
compromised.

An alternative solution is to build a network profile by agply distributed data
analysis methods. Distributegtofile-basedintrusion detection systems (dIDS)
offer an alternative to centralized analysis, may affohtgr coverage and provide
an increase in security.

In this paper we proposé&(Fdl DS, Genetic programming Ensemble for Dis-
tributed Intrusion Detection Systems distributed data mining algorithm based
on the ensemble paradigm that employs a Genetic Prograrmased classifier
as component learner in order to improve the detection dityad the system
[12]. Ensemble paradigm is particularly suitable for distted intrusion detection
because it allows to build a network profile by combining eti#ént classifiers that
together provide complementary information. The clagsifierform the neces-
sary analysis of data at the locations where the data andwtatignal resources
are available and transmit the result of the analysis todbations where the en-
semble is needed. The idea is that combining together eifteclassifiers, they
yield a better performance than the individual classifi@ree network profile is
then used to predict abnormal user activity. GP ensembge$uilt using a dis-
tributed cooperative approach based on a hybrid model §Jabmbines the island
model with the cellular model.

Each node of the network is considered as an island thatinsréalearning
component, based on cellular genetic programming, whaseisaio generate a
decision-tree predictor trained on the local data storatiémode. Every genetic
program, however, though isolated, cooperates with thghbeiring nodes by col-
laborating with the other learning components located emttwork. Knowledge
about the solutions found so far is diffused by taking adsgetof the cellular
model that exchanges the outermost individuals of the @dioul.

A learning component employs the ensemble method AdaBw2$1.4], thus
it evolves a population of individuals for a number of roundéere a round is a
fixed number of generations. Every round the islands impertémote classifiers
from the other islands and combine them with their own lo¢assifier. Finally,
once the classifiers are computed, they are collected to thenGP ensemble.
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In the distributed architecture proposed, each island tpgsates cooperatively
yet independently from the others, providing for efficiermnyd distribution of re-
sources.

To evaluate the system proposed, we performed experimsinig the network
records of the KDD Cup 1999 Data [1]. Experiments on this dafapoint out
the capability of genetic programming in successfully uhealith the problem to
improve the detection accuracy.

The main contributions of the paper can be summarized asafsll

A data mining algorithm based on a distributed Genetic Rnogning model
and ensemble learning for improving detection accuracydsented.

The algorithm runs on a distributed environment and doesauptire that audit
data present on each node of the network be collected antbseoentral location
to be analyzed.

The network nodes work with their own population, their owatadset and
train the classification algorithm on the local data thenetaimed. However, they
cooperate by communicating each other the computed motaksstrategy allows
for the realization of an efficient co-evolutionary and cegtive model of GP
since the islands communicate models and not data.

A main advantage of co-evolution and cooperation is the igeioa of clas-
sification trees of smaller size and an augmented generatizeapability of the
ensemble in predicting the class on new data.

The distributed approach, on the other hand, gives signifiadvantages in
flexibility, extensibility, and fault tolerance since, ifr@de is temporarily unavail-
able, the other nodes can continue to work by using the irdtion coming from
the currently available nodes.

The paper is organized as follows. The next section givesed tescription
of Intrusion Detection Systems. Section 3 outlines the tiepeogramming based
ensemble paradigm for distributed IDS. Section 4 desciibeslgorithm and its
implementation on a distributed environment. Finallyteech presents the results
of our experiments.

2 Background

Intrusion detection Systems originally were developedkeng@ne the activity of a
single computer to process operating system audit recatds.approach quickly
expanded to systems looking at network traffic, gatheririgrination produced
in different hosts. Currently the emphasis is on developittgusion Detection
Systems able to manage large volumes of data coming fronipteutiomputers in
a distributed system.



A Distributed Intrusion Detection Systerd[(D.S) can be defined as a collec-
tion of multiple IDS spread over a large network, all of whimbmmunicate with
each other to facilitate advanced network monitoring,dant analysis, and in-
stant attack data [8]. One of the main advantages of dIDSeisHility to detect
attack patterns across an entire network, with geograpltibns dispersed over
continents. The most important part of an IDS is its detectérhnique.

Traditionally, signature-based detection technique< leen used to individ-
uate intrusions. Such methods gather features from theonetdata and detect
intrusions by comparing the feature values to a set of atagiatures provided by
a human expert. The main drawback of these approaches thdlyaire not able to
discover new types of attacks, since their signature ismiained in the signature
database. This weakness has stimulated research in trgtagrdning techniques
to solve this task.

Data mining based intrusion detection approaches can bgarated ifmisuse
detection[17, 4] andanomaly detectiofil6, 9]. In misuse detection, each instance
in a set of data is labelled as normal or intrusion and a lagraigorithm is trained
over the labelled data. In anomaly detection a model is buér normal data and
any deviation from the normal model in the new observed datonsidered an
intrusion. Misuse detection techniques reaches high dagfraccuracy in discov-
ering known intrusions and their variant, but they need toe@ined if new types
of attacks are added to the input data set. On the other handhaly detection
techniques could generate high false alarm rate becausgahanseen instances
that differ from the normal behavior modeled are considamamalies.

Genetic Programming for intrusion detection has receivethereasing inter-
est in the last few years. The first proposal is due to Croshit Spafford [7]
which used agent technology to detect anomalous behavesystem. Each au-
tonomous agent was used to monitor a particular networlopeter. However how
to handle communication among the agents was not very ddita et al. [22]
extended the previous approach to automatically createctiat patterns/rules.
The main contribution of this work is the adoption of domamowledge in de-
signing the function set and the usage of tree size limitatfor obtaining simple
and lightweight rules. Experiments have been conductedibtigly available raw
tcp traffic from an enterprise network.

Another proposal for detecting novel attacks on networkresented by Lu
and Traore [19]. The authors use Genetic programming tovevales whose aim
is to discover attacks.

Linear Genetic Programming was proposed by Song et al. [J&o2address
the intrusion detection classification problem over the KODP 1999 data set. An
individual is represented as a linear list of instructiond avaluation corresponds
to the process of program execution associated with a sireglster machine. In
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section 5 a comparison of our results with those presenteslomg et al. will be

done. Linear GP is also adopted by Mukkamala et al. [21] toghiotrusion detec-
tion systems and compare its performance with artificiataenetworks and sup-
port vector machines. Abraham et al. [2] proposed LinearNBRti-Expression

Programming, and Gene Expression Programming for detgktiown types of
attacks. The authors pointed out the suitability of Geretimgramming in devel-
oping accurate IDS.

An hybrid intrusion detection model that combines indidtbase classifiers
generated by using decision trees and Support Vector Meshie presented in
[23]. The authors show that the performance of ensembleoappris better than
those of the single classifiers.

Faraoun and Boukelif in [10] proposed an interesting methibith consist of
genetically coevolving a population of non-linear tramsfations on the input data
to be classified, and map them to a new space with a reducedsiione in order
to get a maximum inter-classes discrimination. The apiitinaof the method to
the KDD CUP dataset showed its capability of making accypegeictions on the
unseen test data.

In [15], Hansen et al. presented a work oriented towards thbl@gm of cy-
berterrorism. In this context a high-level of accuracy ieritifying true positives
must be reached and the technique must perform well on umsstances. The au-
thors experimented the accuracy reached using non hom@agal homologous
crossover. The latter obtained better accuracy in idantfpositive and negative
unseen instances in the test set of the KDD CUP 1999 dataset.

It worth to note that none of the above approaches cope wéltptbblem of
intrusion detection in distributed environments.

In the next section we propose the ensemble paradigm as drhasmvork to
define a scalable, efficient and distributed algorithm forusion Detection.

3 GP ensembles

Ensemble [14, 6] is a learning paradigm where multiple camepd learners are
trained for the same task by a learning algorithm, and thdigiens of the com-
ponent learners are combined for dealing with new unsedarioss. LetS =
{(z;,y;)]i = 1,..., N} be a training set where;, called example or tuple or in-
stance, is an attribute vector with attributes andy; is the class label associated
with z;. A predictor (classifier), given a new example, has the tagbredict the
class label for it.

Ensemble techniques builll predictors, each on a different training set, then
combine them together to classify the test set. Boostingntasiuced by Schapire



[26] and Freund [27] for boosting the performance of any “kdaarning algo-
rithm, i.e. an algorithm that “generates classifiers whiekdonly be a little bit
better than random guessing” [27].

The boosting algorithm, calledda Boost, adaptively changes the distribution
of the training set depending on how difficult each exampl® islassify. Given
the numbefl of trials (rounds) to execut; weighted training setS1, So, ..., St
are sequentially generated affticlassifiersC’,...,CT are built to compute a
weak hypothesi;. Letw! denote the weight of the example at trial t. At the
beginningw} = 1/n for eachz;. Ateach round = 1,...,T, a weak learne€'t,
whose errok! is bounded to a value strictly less than 1/2, is built and teeyhts
of the next trial are obtained by multiplying the weight oétborrectly classified
examples bys* = ¢! /(1 — ') and renormalizing the weights so thagw!t = 1.
Thus “easy” examples get a lower weight, while “hard” exaespthat tend to be
misclassified, get higher weights. This induces AdaBooktdas on examples that
are hardest to classify. The boosted classifier gives tiss tdely that maximizes
the sum of the weights of the weak hypotheses predicting &, where the
weight is defined atg(1/3"). The final classifief.; is defined as follows:

T

hy = arg max (Zlog( Yhi(z,y))

1
g

Ensemble techniques have been shown to be more accuratedimponent
learners constituting the ensemble [6, 25], thus such aljgamahas become a hot
topic in recent years and has already been successfulliedpplmany application
fields.

A key feature of the ensemble paradigm, often not much rggkdid, concerns
its ability to solve problems in a distributed and deceireal way.

We adopt such a paradigm to derive a network profile for madalistributed
intrusion detection systems and investigate the suitphif GP as component
learner.

A GP ensemble offers several advantages over a monolithith&Puses a
single GP program to solve the intrusion detection taskstHircan deal with very
large data sets. Second, it can make an overall system &asiederstand, modify
and implement in a distributed way. Finally, it is more rattiien a monolithic GP,
and can show graceful performance degradation in situsatidrere only a subset
of GPs in the ensemble are performing correctly.

One of the disadvantages of such an approach is the losseoddtibn among
the individual GPs during the learning phase. In fact, tlvidual GPs are often
trained independently or sequentially. This does not take account the inter-
dependence that exists among the data and could bring toseméie overfitting
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them and having weak characteristics of generalizatiorthiBoaim, we propose a
method that emphasizes the cooperation among the indhv@Rsiin the ensemble
during the building of the solution.

Our approach is based on the use of cooperative GP-basaihtp@rograms
that compute profile-based intrusion detection models da&a stored locally at a
site, and then integrate them by applying a majority votilggpathm.

The models are built using the local audit data generatechoh rode by, for
example, operating systems, applications, or networkcdevéo that each ensem-
ble member is trained on a different training set.

The GP classifiers cooperate using the island model [3] tdym® the ensem-
ble members. Each node is an island and contains a GP-basethtecomponent
whose task is to build a decision tree classifier by collatimgawith the other
learning components located on the network. Each learrongponent evolves its
population for a fixed number of iterations and computes lassifier operating
on the local data. Each island may then import (remote) iflassfrom the other
islands and combine them with its own local classifier. Fjnaince the classifiers
are computed, they are collected to form the GP ensemble.

Diversity is an important problem that must be considereddoning success-
ful ensembles. Genetic programming does not require anygehia a training set
to generate individuals of different behaviors. In [13kishown that GP enhanced
with a boosting technique improves both the prediction emuand the running
time with respect to the standard GP. We adopt the extengi@Powith the Ad-
aBoost.M2 algorithm as component learner to construcsifieation models for
intrusion detection.

The next section describes the GEdIDS algorithm and itséamphtation using
the dCAGE environment for the distributed execution of gienprograms by a
hybrid island model.

4 The GEdIDSalgorithm for dIDS

GEdIDS builds GP ensembles using a hybrid variation of thesit island model
that leads not only to a faster algorithm, but also to suparignerical perfor-
mance. The hybrid model combines the island model with tHalaemodel [3].
Figure 1 displays the software architectureCcfdIDS. The figure shows a
network constituted by? nodes, each having its own data $gt a copy of the
ensemble generated, and-&'dl DS algorithm running on it. Eacli EdIDS is
based on the cGP classification algorithm [13], better éxpthlater. cGP runs
for T rounds; for every round it generates a classifier, exchamgdgth the other
islands, and updates the weights of the tuples for the nextdcaccording to the



boosting algorithm.
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Figure 1: Software architecture of GEdIDS.

In order to create GP ensembles a distributed computinga@mmient is re-
quired. We use dCAGE (distributed Cellular Genetic Programg System) a
distributed environment to run genetic programs by an islaodel, which is an
extension of [11].

dCAGE distributes the evolutionary processes (islands)ithplement the de-
tection models over the network nodes using a configuratleriffat contains the
configuration of the distributed system. dCAGE implemehéshybrid model as a
collection of cooperative autonomous islands running envirious hosts within
an heterogeneous network that works as a peer-to-peensys$tee configuration
of the processors is based on a ring topology.

The island model is based on subpopulations that are créstdividing the
original population into disjunctive subsets of indivitkjausually of the same size.
Each subpopulation can be assigned to one processor anddarstgpanmictic)
GP algorithm is executed on it. Occasionally, migrationcess between subpop-
ulations is carried out after a fixed number of generatioms.eikample, tha best



individuals from one subpopulation are copied into the ogubpopulations, thus
allowing the exchange of genetic information between paipuns.

Our hybrid model modifies the island model by substituting standard GP
algorithm with a cellular GP (cGP) algorithm. In the cellutaodel each individual
has a spatial location, a small neighborhood and interaxysvathin its neighbor-
hood. The main difference in a cellular GP, with respect ta@npictic algorithm,
is its decentralized selection mechanism and the genegiatp's (crossover, mu-
tation) adopted. Our model, as illustrated in figure 2, aslagbroidal 2-D grid and
the selection and mating operations are performed, celebyanly among the in-
dividual assigned to a cell and its neighbors. Selectigmoguction, and mating
take place locally within the neighborhood. The individta@amate with the central
individual k is chosen among the individuals in the Moore neighborhoatithe
best of the two offsprings replaces the current individialAt each generation,
the borders of the populations (the individuals on the left an the right borders
of the grid) are exchanged among neighboring peers, in amcheynous fashion
(i.e. if the borders do not arrive to a peer before startimgabmputation, the peer
goes on with the old trees), so that all the islands can bagtitas parts of a single
population.

____________

/'

k-neighborhood N

Figure 2: the cGP grid and the Moore neighborhood

GEdIDS uses the cGP algorithm to inductively generate a @gsifier as a
decision tree for the task of data classification. Decisiead, in fact, can be inter-
preted as composition of functions where the function sisteaset of attribute tests
and the terminal set are the classes. The function set caotd@ed by converting
each attribute into an attribute-test function. For eattibate A, if A;,... A, are
the possible valued can assume, the corresponding attribute-test fungtiohas
arity n and if the value ofA is A; then f4(A;,... A,) = A;. When a tuple has
to be evaluated, the function at the root of the tree testsdhesponding attribute



and then executes the argument that outcomes from the tdbe argument is a
terminal, then the class name for that tuple is returnedratise the new function
is executed. The fitness is the number of training exampéssitied in the correct

class.

Let p., p., be crossover and mutation probability
for each cell i in the populatiordo in parallel
evaluate the fitness of;
end parallel for
while not MaxNumberOfGeneratiodo
for each cell i in the populatiordo in parallel
generate a random probability
if (p < pc)
select the cellj, in the neighborhood af,
such that; has the best fitness
produce the offspring by crossing; andt;
evaluate the fitness of the offspring
replace t; with the best of the two offspring
if its fitness is better than that of
else
if (p < pm + pc) then
mutate the individual
evaluate the fitness of the new
else
copy the current individual in the populatig
end if
end if
end parallel for
end while

n

Figure 3: The algorithncGP

cGP is described in figure 3. At the beginning, for each dadl,fitness of each
individual is evaluated. Then, at each generation, evesy tindergoes one of the
genetic operators (reproduction, crossover, mutatiopgading on the probability
test. If crossover is applied, the mate of the current inldial is selected as the
neighbor having the best fithess, and the offspring is géeerd he current tree is
then replaced by the best of the two offsprings if the fithdsb® latter is better
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than that of the former. The evaluation of the fithess of eda$sdier is calculated
on the entire training data. After the execution of the nunabgenerations defined
by the user, the individual with the best fitness represémslassifier.

Given a network constituted b§ nodes,
each having a data séf
Forj=1,2,..., P (for eachisland in parallel)
Initialize the weights associated with each tuple
Initialize the population?); with random individuals
end parallée for
Fort=1,2,3,..., T (boosting rounds)
Forj=1,2,..., P (for each island in parallel)
Train ¢cGP on S; using a weighted fitness
according to the weight distribution
Compute a weak hypothesis
Exchange the hypotheses among tlitislands
Update the weights
end paralléd for
end for t

Output the hypothesis

Figure 4: The GEdIDS algorithm using AdaBoost.M2

The pseudo-code of the GEdIDS algorithm is shown in figure échBs-
land is furnished with a cGP algorithm enhanced with the tioggechnique Ad-
aBoost.M2, a population initialized with random individsiaand operates on the
local audit data weighted according to a uniform distribati The selection rule,
the replacement rule and the asynchronous migration gyrates specified in the
cGP algorithm. Each island generates the GP classifier hyirrgrfor a certain
number of iterations, necessary to compute the number attimgorounds. During
the boosting rounds, each classifier maintains the locabvedt the weights that
directly reflect the prediction accuracy on that site. Atheloosting round the
hypotheses generated by each classifier are exchanged aththegprocessors in
order to produce the ensemble of predictors. In this way edahd maintains the
entire ensemble and it can use it to recalculate the new wettoeights. After
the execution of the fixed humber of boosting rounds, thesiflass are used to
evaluate the accuracy of the classification algorithm fowsion detection on the
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Table 1: Class distribution for training and test data forlXCUP 99 dataset

Normal Probe DoS U2R R2L Total
Train 97277 4107 391458 52 1126 494020
Test 60593 4166 229853 228 16189 311029

entire test set.
In the next section, we experimentally prove the capabhilftpur approach on
the KDD CUP data set.

5 System evaluation and results

5.1 Data setsdescription

We performed experiments over the KDD Cup 1999 Data set [i¢ugh this data
set has been judged not representative of a realistic IDisagice[20], it is a ref-
erence data set, extensively used to compare results efafiffintrusion detection
techniques. The data set comes from the 1998 DARPA Intru3&tection Eval-
uation Data [18] and contains a training data consisting ofeéks of network-
based attacks inserted in the normal data, and 2 weeks obriebased attacks
and normal data for a total of 4,999,000 of connection rexafelscribed by 41
characteristics. The main categories of attacks are fou8 (Denial of Service),
R2L (unauthorized access from a remote machine), U2R (hodméd access to
a local superuser privileges by a local unprivileged ugeROBING (surveillance
and probing). However a smaller data set consisting of t&é the overall data set
is generally used to evaluate algorithm performance. ks ¢hse the training set
consists of 494,020 records among which 97,277 are nornmadextion records,
while the test set contains 311,029 records among whicl980ake normal con-
nection records. Table 1 shows the distribution of eacltlatigpe in the training
and the test set. Note that the test set is not from the sarbalgitity distribution
as the training data, in fact it includes specific attack $ypet in the training data.
This makes the task more realistic.

5.2 Performance measures

To evaluate our system, besides the classical accuracyumeedise two standard
metrics ofdetection rateandfalse positive rataleveloped for network intrusions,
have been used. Table 2 shows these standard metrics. iDetede is computed
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as the ratio between the number of correctly detected atiaolt the total number
of attacks, that is

B #TruePositive
- #FalseNegative + #TruePositive
False positive (also said false alarm) rate is computedeasatio between the

number of normal connections that are incorrectly classd#eattacks and the total
number of normal connections, that is

DR

#FalseAlarm
#TrueNegative + # FalseAlarm

These metrics are important because they measure the fagyeari intrusions the
system is able to detect and how many misclassificationskemaro visualize the
trade-off between the false positive and the detectiorsyatee ROC (Receiving
Operating Characteristic) curves [24] are also depictadthErmore, to compare
classifiers it is common to compute the area under the RO@cdenoted ad U C
[5]. The higher is the area, better is the average performahthe classifier.

FP =

Table 2:Standard metrics to evaluate intrusions.

Predicted label
Normal | Intrusions
Actual Class| Normal || True Negative| False Alarm
label Intrusions| False Negative True Positive

5.3 Experimental setup

The experiments were performed by assuming a network casdplog 10 dual-
processor 1,133 Ghz Pentium Ill nodes having 2 Gbytes of mgnide training

set of 499,467 tuples was equally partitioned among the #ésiasing a random
sampling, thus containing 1/10 of instances for each cl@seach node we run
AdaBoost. M2 as base GP classifier with a population of 100 elements for 10
rounds, each round consisting of 100 generations. The Gineders used are
the same for each node and they are shown in table 3. All theriempnts have
been obtained by running the algorithm 10 times and avegatji@ results. Each
ensemble has been trained on the train set and then evabrathd test set.
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Table 3: Main parameters used in the experiments

Name Value
max.depthfor_new.trees 6
max. depthafter.crossover 17
max.mutantdepth 2
grow_method RAMPED
selectionmethod GROW
crossoverfunc_pt fraction 0.7
crossoverany.pt fraction 0.1
fitnessprop.reprafraction 0.1
parsimonyfactor 0

~4—=GEdIDS =#= Winning Entry =~ Second Place ===BestGEdIDS =&=Best Linear GP

o
4

Detection Rate
o
©
8

0,005 0,006 0,007 0,008
False Positive Rate

Figure 5: ROC curves.
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Table 4. Detection Rate and False Positive Rate for GEdID§, (@est Det. Rate
and Best False Pos. Rate) after 2, 5 and 10 rounds.

Detection Rate | FP Rate | Accuracy
Avg GEdIDS 0.907483 0.023154| 0.901569
2rounds | Best Det. Rate 0.910267 0.045658| 0.909548
Best FP Rate 0.903428 0.012931| 0.911478
Avg GEdIDS 0.907038 0.008324| 0.917586
5rounds | Best Det. Rate] 0.911434 0.013632| 0.919644
Best FP Rate 0.908815 0.004621| 0.920468
Avg GEdIDS 0.905812 0.005648| 0.918624
10rounds | Best Det. Rate| 0.911522 0.005941| 0.923592
Best FP Rate 0.910165 0.004340| 0.923782

Table 5: Classification accuracy of GEdIDS for each clagsr @f 5 and 10 rounds.

2rounds | 5rounds | 10 rounds
normal | 97.6846%| 99.1676%| 99.44%
probe | 15.6505%)| 68.7326%| 71.97%
DoS | 96.1086%)| 96.5456%| 96.53%
u2r 2.0614% | 2.9825% 5.18%
r2l 2.5264% | 3.2380% 3.60%

Table 6: Comparison with kdd-99 cup winners and other amtres

Algorithm Detection Rate FP Rate ROC Area
Winning Entry 0.919445 0.005462  0,956991
Second Place 0.915252 0.005760 0,954746
Best Linear GP - FP Rate 0.894096 0.006818 0,943639
Avg GEdIDS 0.905812 0.005648  0.950082
Best GEdIDS - FP Rate 0.910165 0.004340 0.952912

5.4 Resultsand comparison with other approaches

The results of our experiments are summarized in table 4entherdetection rate,
false positive rate, and accuracy are reported after 2,c61@mounds of the boost-
ing algorithm. For each of them the table shows the averalyevabtained by
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running the algorithm 10 times, and the best values obtaivithd respect to the
false positive and detection rates. The table shows thatasig the number of
boosting rounds has a positive effect on both the false ipesitite and accuracy,
while the average detection rate slightly diminishes, ¢iotine best value obtained
among the 10 executions improves. Table 5 reports the fitag&in accuracy de-
tailed for each class, after 2, 5, and 10 rounds, respegtigtthined on the test set
by averaging results coming from 10 different execution&éfdI DS. The table
points out that the prediction is worse on the two classes BfRR2L. For this
two classes, however, there is a discrepancy between thkarnwohinstances used
to train each classifiers on every node and the number iregaocclassify in the
test set (only 52 and 228 tuples respectively for traininigijevi126 and 16189 for
testing).

Table 6 compares our approach with the first and second waofriee KDD-99
CUP competition and the linear genetic programming apprgacposed by Song
et al. [28]. The table shows the values of the standard nsedéscribed above. In
particular we show the detection rate, the false positite, @nd the ROC area of
these three approaches and those obtaine@ By DS. For the latter we show
both the average values of the 10 executions and the best watlu respect to the
false positive rate (for the sake of comparison with a GRetbapproach). It is
worth to note that, as regards Linear GP, the authors in gager [28] reported
only the best values found. From the table we can observétihaterage and best
GEdIDS detection rates are 0.905812 and 0.910165, respectivhlie those of
the first two winners are 0.919445 and 0.915252. As regarthtbe positive rate
the average value @i EdI DS 0.005648 is lower than the second entry, while the
best value obtained 0.004340 is lower than both the first andrsl entries. Thus
the goodness of the solutions found GYdI DS is not very different from the
winning entry and from the Linear GP approach. These exmarisnemphasizes
the capability of genetic programming to deal with this kisfdoroblem. Figure 5
shows an enlargement of the ROC curves of the methods listedile 6 and better
highlights the results of our approach.

Finally we compared: EdI DS with the other well known classifications meth-
ods(C'4.5, and its boosting and bagging versions.

We used the implementations contained intHids K’ A [30] open source soft-
ware available at http://www.cs.waikato.ac.nz/ml/wekBgbr this experiment we
report the classification accuracy of all the methods, @eteor each class, and
the global detection rate and false positive rate. In paldi¢c for GEdID.S, we
presents the results obtained when each node works with 50%, and 100%
of the data set. Table 7 points out that when the ensembleilisblpuusing only
the 10% of the data set on each nod&,dI DS has a generalization capability
reduced with respect to the other methods. This behavide&lg a consequence
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Table 7: Comparison betweé&nEdI DS and C4.5, boosting and bagging C4.5.

GEdIDS C45 BoostC4.5 | BagC4.5
10% 50% 100%

normal | 99.44% | 99.48% | 99.51% | 99.49% | 99.50% | 99.48%
probe 71.97% | 81L51% 81.83% | 74.70% | 79.09% | 79.67%
DoS 96.53% | 97.03% | 97.10% | 97.27% | 97.27% | 97.27%
uzr 5.18% 9.47% 10.04% | 2.63% 8.33% 5.32%
r2l 3.60% 7.36% 7.44% 5.84% 6.22% 4.64%
Det. Rate| 0.90581 | 0.91295| 0.91357 | 0.91096 | 0.91117 | 0.91112
FP rate | 0.005648| 0.005225| 0.004915| 0.005067| 0.005017 | 0.005166

of the fact that the size of the training set is too small fanedkind of attacks.
For example, the class U2R consists of 52 training tupless éach node receives
only 5 tuples. This implies that the predictive accuracyhef énsemble can not be
good on the 228 tuples of the test set. However, as soon a&thefghe train-
ing set augments, we can note tliakd/ DS outperforms the other approaches.
For example, the predictive accuracy of the two most difficldsses, U2R and
R2L, increases from 5.18 to 9.47 and 10.04 as regards U2Rr@mnd3.60 to 7.36
and 7.44 as regards R2L, when 10%, 50% and 100% of the trag@hg used.
The table shows also the good outcomes of detection rateatsaldositive rate of
GEdIDS.

To statistically validate the results, we performed a taitet paired t-test at
95% confidence interval. The values in bold of the column 5%/'&dIDS
highlight when our algorithm obtains an error lower than thieer approaches,
meaningful with respect to the statistical test.

6 Conclusions

A distributed intrusion detection approach based on Gemetigramming and ex-
tended with the ensemble paradigm, to classify malicioushauthorized network
activity has been presented. GP ensembles are built usiistridated cooperative
approach based on a hybrid model that combines the cellnththe island mod-
els. The combination of these two models provides an effieathplementation of
distributed GP, and the generation of classifiers with gdagsification accuracy.
A main advantage of the distributed architecture is thatdtdes for flexibility, ex-
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tensibility, and efficiency since each node of the networkksavith its local data,

and communicate with the other nodes, to obtain the resuitg,the local model

computed, but not the data. This architecture is thus peatiy apt to deal with

enormous amount of data generated at different locationgerimental results
showed the suitability of GP as component learner of therehkefor this kind of

problems. An extension that deserves to be investigatextdedhe possibility of
considering not batch data sets but data streams that cbalige on each node of
the network.
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