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Abstract. An extension of Cellular Genetic Programming for data clas-
sification with the boosting technique is presented and a comparison with
the bagging-like majority voting approach is performed. The method is
able to deal with large data sets that do not fit in main memory since
each classifier is trained on a subset of the overall training data. Exper-
iments showed that, by using a sample of reasonable size, the extension
with these voting algorithms enhances classification accuracy at a much
lower computational cost.

1 Introduction

The explosive growth of information in different domains has spurred the devel-
opment of data mining techniques [3] for knowledge extraction from massive data
sets. The availability of fast, efficient, and accurate data mining algorithms, able
to deal with this huge amount of data, too large to fit into the main memory of
computers, is becoming a pressing request. To obtain fast methods several paral-
lel data mining algorithms were realized, such as parallel decision trees [18,17],
and parallel association rules [20]. On the other hand, to improve the accuracy
of any learning algorithm, ensemble techniques, that combine the prediction of
multiple classifiers, each trained on a different training set obtained by means of
resampling, have been introduced.

Bagging [2] and boosting [8] are well known ensemble techniques that re-
peatedly run a weak learner on different distributions over the training data.
Both methods build bags of data of the same size of the original data set by
applying random sampling with replacement. Unlike bagging, boosting tries to
concentrate on harder examples by adaptively changing the distributions of the
training set on the base of the performance of the previous classifiers. It has
been shown that bagging and boosting improve the accuracy of decision tree
classifiers [2,14,1].

Genetic programming (G P)[10] has showed to be a particularly suitable tech-
nique to deal with the task of data classification [7,13, 15,11, 4] by evolving deci-
sion trees. Genetic Programming extended by means of ensemble techniques [9, 5]
enhances classification accuracy of GP. Genetic programming based classifiers,



however, involve a lot of computation and their performances may drastically
degrade when applied to large problems because of the intensive computation of
fitness evaluation of each individual in the population. High performance com-
puting is an essential component for increasing the performances and obtaining
large-scale efficient classifiers [19,6]. To this purpose, several approaches have
been proposed. The different models used for distributing the computation and
to ease parallelize genetic programming, cluster around two main approaches
[19]: the well-known island model and the cellular model. In the island model
several isolated subpopulations evolve in parallel, periodically exchanging by
migration their best individuals with the neighboring subpopulations. In the
cellular model each individual has a spatial location on a low-dimensional grid
and the individuals interact locally within a small neighborhood. The model con-
siders the population as a system of active individuals that interact only with
their direct neighbors. Different neighborhoods can be defined for the cells and
the fitness evaluation is done simultaneously for all the individuals. Selection,
reproduction and mating take place locally within the neighborhood. A parallel
approach to build predictors speeds up the generation process and, at the same
time, allows to deal with large data sets.

Cellular Genetic Programming for data classification (CGPC) enhanced with
an ensemble bagging-like (BagCGPC) technique has been presented in [5] and
showed to enhance both the prediction accuracy and the running time of CGPC.

In this paper we extend CGPC' with a voting classification scheme based on
the boosting technique, and present an experimental comparison of CGPC with
bagging and boosting voting schemes. The approach can deal with large data
sets that do not fit in main memory since each classifier is trained on a subset
of the overall training data. Experiments showed that the extension of CGPC
with these voting algorithms enhances both accuracy and execution time. In
fact, higher accuracy can be obtained by using a sample of reasonable size at
a much lower computational cost. The algorithm could also be used to classify
distributed data which cannot be merged together. For example, in applications
that deal with proprietary, privacy sensitive data, where it is not permitted
moving raw data from different sites to a single central location for mining.

The paper is organized as follows. Next section describes Bagging and Boost-
ing algorithms. Section 3 presents the extension of cellular genetic programming
with the Boosting technique. In section 4, finally, the results of the method on
some standard problems are presented.

2 Ensemble techniques

Let S = {(xs,y:)|¢ = 1,...,N} be a training set where z;, called example, is
an attribute vector with m attributes and y; is the class label associated with
x;. A predictor, given a new example, has the task to predict the class label
for it. Ensemble techniques build T predictors, each on a different subset of the
training set, then combine them together to classify the test set.

Bagging (bootstrap aggregating) was introduced by Breiman in [2] and it is



based on bootstrap samples (replicates) of the same size of the training set S.
Each bootstrap sample is created by uniformly sampling instances from S with
replacement, thus some examples may appear more than once while others may
not appear in it. T bags By, ..., Br are generated and T classifiers C!,...,CT
are built on each bag B;. The number T of predictors is an input parameter. A
final classifier classifies an example by giving as output the class predicted most
often by C',...,CT, with ties solved arbitrarily.

Boosting was introduced by Schapire [16] for boosting the performance of any
“weak” learning algorithm, i.e. an algorithm that “generates classifiers which
need only be a little bit better than random guessing” [8]. The boosting al-
gorithm, called AdaBoost, adaptively changes the distribution of the sample
depending on how difficult each example is to classify. Given the number T' of
trials to execute, T weighted training set Si,5s,..., ST are sequentially gener-
ated and T classifiers C',...,C”T are built to compute a weak hypothesis h;.
Let w! denote the weight of example z; at trial ¢. At the beginning w; = 1/n
for each z;. At each trial ¢t = 1,...,T, a weak learner C*, whose error €’ is
bounded to a value strictly less than 1/2, is built and the weights of the next
trial are obtained by multiplying the weight of the correctly classified examples
by 8t = €'/(1 — €') and renormalizing the weights so that Xwit' = 1. Thus
“easy” examples get a lower weight, while “hard” examples, that tend to be
misclassified, get higher weights. This induces AdaBoost to focus on examples
that are hardest to classify. The boosted classifier gives the class label y that
maximizes the sum of the weights of the weak hypotheses predicting that label,
where the weight is defined as In(1/8%). Freund and Schapire [8] showed theo-
retically that AdaBoost can decrease the error of any weak learning algorithm
and introduced two versions of the method. In the next section we present the
extension of GP by using AdaBoost.M1.

Regarding the application of ensemble techniques to Genetic Programming,
Iba in [9] proposed to extend Genetic Programming to deal with bagging and
boosting. A population is divided in a set of subpopulations and each subpop-
ulation is evolved on a training set sampled with replacement from the original
data. Best individuals of each subpopulation participate to voting to give a pre-
diction on the testing data. Experiments on some standard problems using ten
subpopulations showed the effectiveness of the approach. Another extension of
Cellular Genetic Programming for data classification to induce an ensemble of
predictors was presented in [5]. Each classifier was trained on a different subset
of the overall data, then they were combined to classify new tuples by applying
a simple majority voting algorithm, like bagging. Results on a large data set
showed that the ensemble of classifiers trained on a sample of the data obtains
higher accuracy than a single classifier that uses the entire data set at a much
lower computational cost.



3 BoostCGPC

Boost Cellular Genetic Programming Classifier (BoostCGPC), is described in
figure 1. Given the training set S = {(z1,¥1),--.(zn,y~n)} and the number P of
processors to use to run the algorithm, we partition the population in P subpop-
ulations, one for each processor and draw P samples from S of size n < N. Each
subpopulation is evolved for k generations and trained on its local sample by run-
ning CGPC. To take advantage of the cellular model of genetic programming,
subpopulations are not independently evolved, but they exchange the outmost
individuals in an asynchronous way. On each processor at each generation, every
tree undergoes one of the genetic operators (reproduction, crossover, mutation)
depending on the probability test. If crossover is applied, the mate of the current
individual is selected as the neighbor having the best fitness, and the offspring
is generated. The current string is then replaced by the best of the two offspring
if the fitness of the latter is better than that of the former. After k generations,
the individual with the best fitness is selected for participating to vote. In fact
the P best individuals of each subpopulation are exchanged among the P sub-
populations and constitute the ensemble of predictors that will determine the
weights of the examples for the next round.

Figure 2 illustrates the basic framework for the parallel implementation of
the BoostCGPC' algorithm on a distributed memory parallel computer. We as-
sume that each training sample S;,2 = 1,..., P resides on a different processor
within the parallel computer. We use the diffusion model of GP to parallelize in a
natural way the implementation of BoostCGPC'. The size of each subpopulation
Q;,i=1,..., P present on a node, must be greater than a threshold determined
from the granularity supported by the processor. Each processor, using a training
sample S; and a subpopulation ); implements a classifier process CGPC; as a
learning algorithm and generates a classifier. For efficiency reasons, the individ-
uals within a subpopulation are combined into a single process that sequentially
updates each individual. This reduces the amount of internal communication
on each process, increasing the granularity of the application. Communication
between processors is local and asynchronous. The configuration of the structure
of the processors is based on a ring topology and a classifier process is assigned
to each. During the boosting rounds, each classifier process maintains the lo-
cal vector of the weights that directly reflect the prediction accuracy on that
site. At each boosting round the hypotheses generated by each of these classi-
fiers (CGPC; in Figure 2) are combined to produce the ensemble of predictors.
Then, the ensemble is broadcasted at each classifier process to locally recalculate
the new vector of the weights and a copy of the ensemble is stored in a reposi-
tory. After the execution of the fixed number T of boosting rounds, the classifiers
stored in the repository are used to evaluate the accuracy of the classification
algorithm. Note that, the algorithm can also be used to classify distributed data
which cannot be merged together. For example, in applications that deal with
proprietary, privacy sensitive data, where it is not permitted moving raw data
from different sites to a single central location for mining.



Given S = {(z1,y1),-..(x~v,yn)}, v € X
with labels y; € Y = {1,2,...,k}, and a population @ of size ¢
For j =1, 2, ..., P (for each processor in parallel)
Draw a sample S; with size n for processor j
Initialize the weights w; = % fori=1,...,n,
where n is the number of training examples on each processor j.
Initialize the subpopulation @;, for i =1,..., P
with random individuals
end parallel for
Fort=1,23,...,T
Forj =1, 2, ..., P (for each processor in parallel)
Train CGPC on the sample S; using a weighted
fitness according to the distribution w’
Compute a weak hypothesis hj; : X =Y
Exchange the hypotheses h;; among the P processors
let D; =1 if arg max hj (i) # s
0 otherwise
Compute the error €5 = 3" w!D;
if €5 > 1/2 break loop
Set Bf =€ /(1 —€b),
Update the weights w’ : wit" = 2(1 — %) x w} if hj (i) = v
2¢’ x w} otherwise
end parallel for
end for ¢
output the hypothesis :

hy = arg mazx (3% >y log(5:)D5)
J
where D} = 1 if hj¢(zi) = yi, 0 otherwise

Fig. 1. The algorithm parallel BoosTCGPC

4 Experimental Results

In this section we compare BagC'GPC', BoostCGPC and classical CGPC using
some well known data sets taken from the UCI Machine Learning Repository
[12]. The data sets are described in table 1 and present different characteristics in
the number and type (continuous and nominal) of attributes, two classes versus
multiple classes and number of tuples. In particular, the last two are real large
data sets. C'ens contains weighted census data extracted from the 1994 and 1995
current population surveys conducted by the U.S. Census Bureau and CovType
comprises data representing the prediction of forest cover type from cartographic
variables determined from US Forest Service and US Geological Survey. The
experiments were performed on a Linux cluster with 16 dual-processor 1,133
Ghz Pentium III nodes having 2 Gbytes of memory connected by Myrinet and
running Red Hat v7.2.

The parameters used for the experiments are shown in table 2. All results
were obtained by averaging 10-fold cross-validation runs. In order to do a fair
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Fig. 2. Implementation of BoostCGPC on a distributed memory parallel computer.

Table 1. Data sets used in the experiments

Dataset| Attr. | Tuples| Classes
Adult 14 48842 2
SatImage| 36 6435
Segment | 20 2310
Census 42 299285
Covtype | 54 581012

NN S

comparison among CGPC, BagCGPC', and BoostCGPC we used 5 processors
for all the three algorithms, population size 500 and number of generations 500
for CGPC. To obtain the same parameters, BagCGPC was executed 5 times
on five processors in parallel, with population size 100 on each processor (for a
total size of 100 x 5=500) and number of generations 100 (for a total number
of generations 100 x 5=500), thus generating 25 classifiers. On the other hand,
the number T of rounds of BoostCGPC was 5, again on 5 processors, popula-
tion size 100 on each processor, number of generations 100 for each round, thus
generating the same total population size, number of generations, and number
of classifiers, i.e. 500, 500, and 25, respectively. In table 3 we report the mean
error rate over the 10-fold-cross-validations, execution time in seconds, and size
of the classifiers. For these experiments CGPC used the complete data sets for
training, while both BagCGPC and BoostCGPC employed only the 20% of
the overall data sets. Note that in the case of the ensembles, the size is the sum
of the 25 classifiers composing the ensemble; thus the average size of a single
tree can be obtained dividing this size by 25. From the table we can observe
that BagCGPC and BoostCGPC always obtain better results than CGPC in
terms of mean error, time and average tree size, the only exception being an



Table 2. Main parameters used in the experiments

Name Value
max_depth_for_new_trees 6
max_depth_after_crossover 17
max_mutant_depth 2
grow_method RAMPED
selection_method GROW
crossover_func_pt_fraction 0.7
crossover_any_pt_fraction 0.1
fitness_prop_repro_fraction 0.1
parsimony factor 0

error of 8.33 of BoostCGPC for the Cens data set and an error of 38.03 of
BagCGPC for the CovType data set. Considering that the ensemble methods
use only the 20% of the data set, these results are impressive and substantiate
the already showed characteristics of this kind of approach in improving ac-
curacy. As regard the comparison between BagCGPC and BoostCGPC, it is
worth to note that BoostCGPC' obtains always mean error and tree size lower
than BagCGPC, except for mean error of Census data set. Execution times of
BoostCGPC, however, are worse than those of BagCGPC, though we can ob-
serve that while for the smallest data set (Segment, 2310 tuples) the execution
time of BoostCGPC is 2.5 times more than that of BagCGPC, for the biggest
data set (CovType, 581012 tuples) the execution time is 1.5 times more than
that of BagCGPC'. Furthermore, in the latter case, BagCGPC gives an error of
38.03, while BoostCGPC error is 33.65. The running time increase is mainly due
to the weight computations and to the necessity of exchanging the hypotheses
found after each round.

We wanted also to investigate the influence of the sample sizes on the accu-
racy of the method. To this end we used the CovType data set and run CGPC
with the overall data set, while BoostCGPC was executed with 5%, 10%, and
20% of the tuples for 5 rounds, each round using an increasing number of clas-
sifiers. Figure 3 shows the effect of these different sample sizes on accuracy as
the number of classifiers generated increases at each round. Parameters are the
same of the previous experiments. CGPC used a population size equal to 100
x number of classifiers of the boosting algorithm. From the figure we can note
that when BoostCGPC is trained on a sample of size 5% the overall data set,
it is not able to outperform CGPC working on the entire data set. But, as the
size increases, BoostCGPC' is able to obtain an error lower than CGPC. An
ensemble of two classifiers, 5 round, for a total of 10 classifiers, using the 10%
of the data set obtains higher accuracy. Augmenting the sample size and the
number of classifiers a further increase can be obtained. Using from 5 to 10 clas-
sifier at each round seems to be a good compromise between results obtained



Table 3. Comparing error, execution time, and size of the best tree for CGPC (using
the complete data set), BagCGPC (20% tuples, 25 classifiers), and BoostCGPC (20%
tuples, 5 rounds x 5 classifiers)

Dataset
CGPC Adult| Sat [Segment|Census|CovType

Error 17.18 |23.02| 12.73 5.19 36.27
Time (sec) 4230 |1212| 1498 32820 66145

Size 233 | 122 205 389 112
BagCGPC

Error 17.01 |22.33| 12.45 5.08 38.03
Time (sec) 528 | 83 46 3743 11277

Size 6055 |3549| 2806 14614 1636

BoostCGPC

Error 16.53 (21.22| 10.90 8.33 33.65
Time (sec) 796 | 207 119 4448 16502

Size 4290 |2930 755 8328 1467

and resources employed. In fact figure 3 shows a slow decrease of the mean error
after these values.

5 Conclusions

An extension of Cellular Genetic Programming for data classification to induce
an ensemble of predictors that uses a voting classification scheme based on boost-
ing technique was presented, and a comparison with bagging like majority vot-
ing approach was performed. Experiments showed that the extension of CGPC
with these voting algorithm enhances both accuracy and execution time. The
approach is able to deal with large data sets that do not fit in main memory
since each classifiers is trained on a subset of the overall training data. Experi-
ments on a large real data set showed that, analogously to BagCGPC, higher
accuracy can be obtained by using a sample of reasonable size at a much lower
computational cost, and that sample size influences the achievable accuracy.
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