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Abstract. A genetic algorithm for color image segmentation is proposed. The
method represents an image as a weighted undirected graph, where nodes corre-
spond to pixels, and edges connect similar pixels. Similarity between two pixels
is computed by taking into account not only brightness, but also color and texture
content. Experiments on images from the Berkeley Image Segmentation Dataset
show that the method is able to partition natural and human scenes in a number of
regions consistent with human visual perception. A quantitative evaluation of the
method compared with other approaches shows that the genetic algorithm can be
very competitive in partitioning color images.

1 Introduction

Image segmentation is an important problem in pattern recognition that aims at di-
viding an image into a number of regions having high homogeneity inside the same
region, while adjacent regions are significantly dissimilar with respect to some adopted
homogeneity measure. Many approaches have been proposed to segment monochrome
and color images [7, 25, 27]. However, as observed by Cheng et al. [7], color image
segmentation techniques are considered more appealing since they can provide more
information than grey level images, and human eye is able to better detect objects when
color is present. Most of these proposals, as outlined in [7], extend gray level image seg-
mentation methods, such as histogram thresholding, boundary detection, region based
approaches, with color representations. Furthermore, it has been recognized that no
general algorithm exists for all monochrome and color images. Thus, techniques spe-
cialized for particular application domains have been presented [3–6, 12–14].

Among the several techniques proposed for image segmentation, methods represent-
ing an image as a graph [9, 20, 23, 24, 26], in which nodes correspond to pixels, and
an edge between two pixels exists if they are similar, on the base of a suitably defined
similarity criterion, revealed competitive both in terms of efficiency and segmentation
quality [9]. In particular, Shi and Malik [20] introduced the concept of normalized cut
that allows the partitioning of a graph in groups of nodes such that the homogeneity
inside each region is maximized, while minimizing the dissimilarity between regions.
More recently, Maji et al. [16] proposed the biased normalized cut, a modification of
the normalized cut to incorporate priors which can be used for constrained color-texture
based image segmentation.

In this paper a genetic algorithm for color image segmentation that adopts the repre-
sentation of an image as a graph is proposed. The algorithm, named C-GeNCut (Color
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Genetic Normalized Cut), extends the approach proposed in [1] to take into account
color, brightness, and texture, by computing the affinity between two pixels with the In-
tervening Contour cue [8, 10, 11, 15], that uses the multispectral Pb detector as defined
by Arbelaez et al. in [2]. Experiments on ten color images from the Berkeley Image
Segmentation Dataset (BSDS300) [17] show that the method is able to partition natural
and human scenes in meaningful objects. A quantitative evaluation based on the well
known concept of Probabilistic Rand Index, defined by Unnikrishnan et al. [21, 22],
shows that the inclusion of color and texture improves the segmentation accuracy with
respect to the algorithm of Amelio and Pizzuti [1], that considers only the gray-level
information, as well as with the segmentations obtained by the algorithm of Maji et al.
[16] for color images.

The paper is organized as follows. In the next section the problem of image segmen-
tation is defined, together with its formalization as a graph partitioning problem, and a
description of the homogeneity measure adopted. Section 3 describes fitness function,
the genetic representation, and operators employed. Section 4 describes the evaluation
measure used. Section 5 presents the experimental results. Finally, section 6 summa-
rizes the approach.

2 Graph-Based Segmentation

An image R can be represented as a weighted undirected graph G = (V,E,w), where
V is the set of the nodes,E is the set of edges in the graph, andw : E → R is a function
that assigns a value to graph edges. Each node corresponds to a pixel in the image,
and an edge (i, j) connects two pixels i and j, provided that these two pixels satisfy
some property suitably defined that takes into account both pixel characteristics and
spatial distance. The weight w(i, j) associated with a graph edge (i, j) represents the
likelihood that pixels i and j belong to the same image region and provides a similarity
value between i and j. The higher the value of w(i, j), the more likely the two pixels
are members of the same region. Let W be the adjacency weight matrix of the graph G.
Thus Wij contains the weight w(i, j) if the nodes i and j are connected, zero otherwise.
Depending on the method adopted to compute the weights, any two pixels may or may
not be connected.

2.1 Affinity Computation

In order to compute the weights, differently from [1], in this approach we employed the
Intervening Contour cue [8, 10, 11, 15] that uses the multispectral Pb detector as defined
in [2]. In this framework, given a generic pixel, the value of the multiscale Pb detector
at that pixel is considered. If the maximum value along a straight line connecting the
two pixels i and j in the image plan is large, then a deep change and, consequently, an
intervening contour is present, indicating that the two pixels don’t belong to the same
segment. Hence, the weight w(i, j) between these pixels will be low. On the other hand,
if the value of the multiscale Pb detector is sufficiently weak, this usually happens in
a region that is flat based on brightness, color and texture, the affinity between the two
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pixels will be very high. More formally, the weight w(i, j) between the pixels i and j
is computed as:

w(i, j) =

{
e−maxp∈line(i,j){mPb(p)}/ρ if ||X(i)−X(j)||2 < r, i �= j

0 otherwise

where line(i,j) is a straight line between i and j, X(i) is the spatial location of the pixel
i, r is a distance threshold and ρ is a constant.

Multiscale Pb detector is based on the Pb detector function Pb(x, y, θ). Given an
image pixel at position (x, y), it represents the posterior probability of a boundary with
orientation θ at that pixel. This measure is obtained by evaluating the difference in local
image brightness, color and texture channels.

Specifically, input image is transformed into four distinct channels. The first three
channels are those of the CIE Lab colorspace: brightness, color a and color b. Color
a represents the position of the color between red/magenta and green, while color b
indicates the position of the color between yellow and blue. The last channel is related to
the image texture content and it assigns to each pixel a texton id. Associations between
pixels and texton ids come from another previous filtering stage. In particular, the input
image is converted to grayscale and processed by a set of 17 Gaussian derivative and
center-surround filters. Consequently, each pixel is represented by a 17-dimensional
vector of responses, composed of one value from each filter. After that, these vectors
are clustered by using k − Means: the cluster centers identify the image textons and
each pixel is associated with the id in [1, k] of the closest cluster center. Experiments
provided 32 as a sufficient value for k. Finally, the texton channel is built, where each
pixel of the original image is substituted by its corresponding texton id.

For each image channel, an oriented gradient signal G(x, y, θ) is computed at posi-
tion (x, y), by placing a circular disc centered at location (x, y) and splitting it into two
half-discs g and h by a diameter at angle θ. For each half-disc, an histogram of the in-
tensity values of the pixels covered by it, is built. The gradient magnitude G at location
(x, y) is defined by the χ2 distance between the two half-disc histograms g and h.

χ2(g, h) =
1

2

∑
i

(g(i)− h(i))2

g(i) + h(i)

Furthermore, gradients at three scales [σ/2, σ, 2σ] are considered for each channel, in
order to detect fine and coarse image features.

The Pb detector processes the channels separately and then combines the oriented
gradient signals obtained from the different channels at multiple scales into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑
s

∑
i

αi,sGi,σ(i,s)(x, y, θ)

where s represents the scales index, i the feature channel index (brightness, color a,
color b and texture) andGi,σ(i,s)(x, y, θ) the oriented gradient signal at (x, y) in channel
i where the radius of the disc is σ(i, s) and the angle is θ. The parameters αi,s weight
the contribution of each gradient signal. The angle θ defining the orientation, takes eight
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different values in the interval [0, π). The final value of the multispectral Pb detector is
the maximum response over the eight orientations:

mPb(x, y) = maxθ{mPb(x, y, θ)}

3 Algorithm

In this section we briefly describe the genetic operators and fitness function proposed
in [1] and adopted also for C-GeNCut. The representation of individuals is based on the
locus-based adjacency representation proposed in [18]. In this graph-based representa-
tion an individual of the population consists of N genes g1, . . . , gN and each gene can
assume allele values j in the range {1, . . . , N}. Genes and alleles represent nodes of
the graph G = (V,E,w) modelling an image, and a value j assigned to the ith gene
is interpreted as a link between the pixels i and j. The initialization process assigns to
each node i one of its neighbors j, and the kind of crossover operator adopted is uniform
crossover. The mutation operator randomly assigns to each node i one of its neighbors.
For both initialization and mutation, an important aspect to consider is the determina-
tion of the neighbors of each node. The concept of neighbors of a node introduced in [1]
takes into account not only the spatial closeness but also the pixel affinity. More in de-
tails, given a generic node i in the graph, let wh

max = {w1, . . . , wh | w1 ≥, . . . ,≥ wh}
be the first h highest weights of row i in the weight adjacency matrix W .

The h nearest neighbors of i, denoted as nnh
i , are then defined as nnh

i = {j |
w(i, j) ∈ wh

max}. nnh
i is thus the set of those pixels that are no more than r pixels apart

from i, and that have maximum similarity with i. It is worth to note that, even if h is
fixed to 1, the number of nearest neighbors of i could be sufficiently large if many of
its spatial neighbors have the same maximum weight wh

max. This definition of nearest
neighbors guaranties to choose the most similar neighbors during the initialization pro-
cess, and to bias the effects of the mutation operator towards the most similar neighbors,
thus it contributes to improve the results of the method.

The fitness function is an extension of the concept of normalized cut of Shi and Malik
[20]. Let G = (V,E,w) be the graph representing an image, W its adjacency matrix,
and P = {R1, . . . , Rk} a partition of G in k clusters.

For a generic cluster R ∈ P , let

cr =
∑

i∈R,j /∈R Wij mr =
∑

i∈R,j∈R Wij m =
∑

i∈V,j∈V Wij

be respectively the sum of weights of edges on the boundary of R, the sum of weights
of edges inside R, and the total graph weight sum. The weighted normalized cut WNCut
measures for each cluster in P the fraction of total edge weight connections to all the
nodes in the graph

WNCut =
k∑

r=1

cr
mr + cr

+
cr

(m−mr) + cr

Because of the affinity measure w defined in the previous section, more uniform regions
can be obtained with low cut values between the subgraphs representing the regions and
the rest of the graph. This implies that low values of WNcut are preferred.
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4 Evaluation Measure: Probabilistic Rand Index

In the Berkeley dataset, for each image, multiple human-traced segmentations for color
images are available. All the segmentations are considered equally reliable. As observed
in [22], when multiple ground-truth segmentations are available for the same image,
the comparison should be made against all the manually obtained segmentations. To
this end, Unnikrishnan et al. [21, 22] introduced the Probabilistic Rand Index as an
extension of the concept of Rand Index [19], employed to assess clustering methods.
Given a set {S1, . . . , ST } of ground-truth segmentations of an image I consisting of n
pixels, and a test segmentation S, the Probabilistic Rand Index is defined as :

PRI(S, {S1, . . . , ST } =
1

H

∑
i<j

[cijpij + (1 − cij)(1 − pij)]

where cij denotes the event that pixels i and j have the same label, pij is its probability,
and H = n∗(n−1)/2 is the total number of pixel pairs. The PRI value varies between
0 and 1. When its value is 0 it means that S and {S1, . . . , ST } are completely dissimilar.

5 Experimental Results

In this section we present the results of C-GeNCut on ten images from the Berkeley
Image Segmentation Dataset (BSDS300) [17] and compare the performances of our
algorithm in partitioning natural and human scenes in meaningful objects with the seg-
mentations obtained by the algorithm of Maji et al. [16] (Biased NCut) for color im-
ages, in the following referred as C-NCut, and by the algorithm of Amelio and Pizzuti
[1] (GeNCut), that takes into account only grayscale information, on the same images.

The version of the Biased NCut software is written in MATLAB and it is available at
http://ttic.uchicago.edu/ smaji/projects/biasedNcuts/. However we eliminated the inter-
active mode from the available algorithm specifically for performing comparisons with
our technique.

The C-GeNCut algorithm has been written in MATLAB 7.14 R2012a, using the Ge-
netic Algorithms and Direct Search Toolbox 2. In order to set parameter values, a trial
and error procedure has been employed and then the parameter values giving good re-
sults for the benchmark images have been selected. Thus we set crossover rate to 0.9,
mutation rate to 0.2, elite reproduction 10% of the population size, roulette selection
function. The population size was 100, the number of generations 60. The value h of
nearest neighbors to consider has been fixed to either 1 or 2. As already pointed out,
this does not mean that the number of neighbors is 1 or 2, but that the first (and second)
most similar neighbors are taken into account for the initialization and mutation oper-
ators. The fitness function, however, is computed on the overall weight matrix. For all
the data sets, the statistical significance of the results produced by C-GeNCut has been
checked by performing a t-test at the 5% significance level. The p-values returned are
very small, thus the significance level is very high since the probability that a segmen-
tation computed by C-GeNCut could be obtained by chance is very low.

The weight matrix of each image is computed in the same way for both C-NCut and
C-GeNCut methods, and, as already described in section 2, it is based on the Intervening
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Fig. 1. Segmentation of C-GeNCut on ten images of the Berkeley Image Segmentation dataset
(BSDS300). For each image, the original version together with the segmentation result of C-
GeNCut are presented.

Contour framework that uses the multiscale Pb detector by fixing r = 5 and ρ = 0.1.
About the Pb detector, the parameterσ, which defines the scales, is set to 5 pixels for the
brightness channel, while for color and texture channels σ is set to 10 pixels. The pa-
rameters αi,s are fixed to 0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.02, 0.02, 0.02, 0.01, 0.01
and 0.01. The weight matrix of each image is computed for GeNCut as in [1], by fixing
r = 10, number of scales 3, number of orientations 4 and σ = 0.1. The value h of
nearest neighbors to consider has been fixed to either 1 or 2.

In order to compare C-GeNCut and C-NCut, given an image I , we executed C-NCut
as many times as the different number of segmentations available for I , by giving as
input the distinct values k of ground-truth segments corresponding to the color human-
segmentations. This implies that C-NCut has been executed for the best input parameter
value k. For each image and for each distinct number of segments from the ground-truth
segmentations, C-NCut has been run 10 times. The average values of the Probabilis-
tic Rand Index (PRI) [21] have been computed, together with the standard deviation,
for the partitioning found by C-NCut and GeNCut, and compared with that obtained
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Table 1. Probabilistic Rand Index evaluated for C-NCut, C-GeNCut and GeNCut on a subset of
the Berkeley Image Segmentation Dataset (BSDS300). PRI represents the Probabilistic Rand
Index, nc the number of segments.

GeNCut C-GeNCut C-NCut
nc PRI nc PRI nc PRI

5 0.7299 (0.0003)
24 0.7858 (0.0008)
4 0.7333 (0.0001)

I1 11 0.6443 (0.0637) 5 0.7526 (0.0263) 23 0.7862 (0.0003)
41 0.7858 (0.0002)
17 0.7856 (0.0006)
5 0.6728 (0)
3 0.7068 (0.0001)
8 0.6794 (0.0078)

I2 8 0.7035 (0.0081) 3 0.7613 (0.0063) 7 0.6799 (0.0001)
9 0.6774 (0.0001)
11 0.6545 (0.0001)
16 0.6446 (0.0001)
30 0.6202 (0.0007)

I3 13 0.7041 (0.0183) 11 0.7052 (0.0183) 10 0.6651 (0.0017)
26 0.6235 (0.0009)
7 0.7277 (0.0003)
3 0.8200 (0.0001)

I4 16 0.7889 (0.0368) 5 0.8339 (0.0213) 5 0.8260 (0.0001)
8 0.7082 (0.0144)
6 0.8047 (0.0001)
7 0.8168 (0.0001)
6 0.8338 (0.0001)
10 0.7977 (0.0001)

I5 13 0.8088 (0.0198) 7 0.8235 (0.0065) 8 0.8191 (0.0060)
15 0.7861 (0.0001)
13 0.7565 (0.0001)
6 0.7455 (0.0003)

I6 4 0.8036 (0.0186) 6 0.8288 (0.0379) 19 0.7405 (0.0001)
23 0.7405 (0.0013)
6 0.7512 (0.0018)
4 0.7345 (0.0001)

I7 9 0.7308 (0.0118) 6 0.7820 (0.0101) 10 0.7101 (0.0062)
2 0.5763 (0)
5 0.7827 (0.0001)
8 0.8217 (0.0001)

I8 10 0.8215 (0.0002) 5 0.8361 (0.0163) 7 0.8122 (0.0001)
10 0.8109 (0.0012)
6 0.7399 (0.0001)
5 0.7352 (0.0001)
3 0.7114 (0.0001)

I9 18 0.7425 (0.0059) 6 0.7653 (0.0076) 9 0.7212 (0.0001)
8 0.7041 (0.0001)
28 0.6825 (0.0009)
39 0.8339 (0.0005)
10 0.8557 (0.0001)
8 0.8446 (0.0001)

I10 8 0.7797 (0.0375) 8 0.8361 (0.0075) 15 0.8471 (0.0001)
26 0.8405 (0.0001)
24 0.8447 (0.0001)
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by C-GeNCut on the same images. Since C-GeNCut and GeNCut generate a single
segmentation, the average value of PRI is the same for each of the values of ground-
truth segments of the image under consideration.

Table 1 reports the PRI for C-GeNCut, C-NCut and GeNCut. In particular, for each
image I we computed the PRI value of the segmentation returned by C-GeNCut and by
GeNCut, considered as test segmentation, against the set of ground-truth segmentations
associated with I in the Berkeley dataset. As regards C-NCut, the PRI values have
been computed by considering as test segmentation that obtained by C-NCut for each
of the executions performed, i.e. one for the input parameter k fixed to the number
of segments obtained by C-GeNCut, and one for every distinct value of ground-truth
segments available for the image under consideration.

For example, if we consider image I1, for which five human segmentations are avail-
able, C-GeNCut found a segmentation of 5 segments with PRI value equal to 0.7526,
while GeNCut obtained 11 regions and PRI value 0.6443. The PRI values for C-
NCut are 0.7299, 0.7858, 0.7333, 0.7862, 0.7858, 0.7856 when as test segmentations
are used those obtained for input parameter k equal to 5, which is the number of seg-
ments returned by C-GeNCut, and 24, 4, 23, 41, and 17, respectively, that correspond
to the distinct number of segments from the ground-truth segmentations. Note that, for
images I2, I4, I6, I7, and I10 C-GeNCut found a number of segments equal to one of
the ground-truth segmentations.

The table points out that the PRI value of C-GeNCut is always higher than the cor-
responding PRI value of GeNCut. Furthermore, the PRI value of C-GeNCut is the
highest for seven out of the ten images, i.e. for I2, I3, I4, I6, I7,I8, and I9, also with
respect to C-NCut. As regards the other three images, C-NCut overcomes C-GeNCut
on I1 for 4 out of 6 segmentation values, on I5 for 1 out of 5 segmentation values, and
on I10 for 5 out of 6 segmentation values. C-GeNCut thus improves the results of the
genetic approach when color and texture information are included, and it is competitive
with respect to C-NCut, that is specialized for color images.

Finally, in Figure 1, for each of the ten images, we present the segmentation out-
puts of C-GeNCut by depicting the contours of the regions on the original image. The
visual perception of the segmentation results is quite positive: the main objects of a
scene are identified and the most meaningful features extracted from the images by the
segmentation process.

6 Conclusions

The paper presented a graph-based approach to image segmentation that employs ge-
netic algorithms. The method extends the method proposed in [1], by considering not
only brightness but also color and texture for image segmentation. The method revealed
particularly apt to deal with color-texture images modeled as graphs. In fact, as experi-
mental results showed, the genetic approach is able to segment color-texture images in a
number of regions that well adhere to the human visual perception, and it is competitive
with state-of-the-art methods for color image segmentation.
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