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Abstract. A genetic algorithm for detecting a community structure in
attributed graphs is proposed. The method optimizes a fitness function
that combines node similarity and structural connectivity. The communi-
ties obtained by the method are composed by nodes having both similar
attributes and high link density. Experiments on synthetic networks and
a comparison with five state-of-the-art methods show that the genetic ap-
proach is very competitive and obtains network divisions more accurate
than those obtained by the considered methods.
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1 Introduction

Complex networks constitute one of the main formalisms to model and study
relationships of real-world systems. Networks have been mainly studied at the
level of interactions among nodes, i.e. with respect to their structure. However,
nodes are often endowed with a set of characteristics [1] such as work, gender,
hobbies, age, and race. In online social networks, for example, people publish
data regarding their personal profile, thus providing important information for
analyzing relationships and properties of the social systems they participate.
Attributed graphs extend network models by enriching nodes and/or edges with a
set of features that measure the characteristics of the actors and/or the strength
or type of links. As pointed out in [2], when attributes are related to nodes,
attributed graphs are referred to as node-attributed graphs, while when related
to edges, they are called edge-attributed graph. In this paper, we deal only with
node-attributed graphs.

Because of the wealth of data available on social networks, the simultaneous
analysis of the topological structure and the characteristics of the objects com-
posing a network has received, in the last years, the interest of researchers for
finding communities in complex networks. In fact, it has been observed that in
real-world social systems there exists a correlation between attribute values and
connectivity [3], and that the homophily effect, for which individuals are more
likely to create relationships with others having similar attribute values, and the
social influence effect, for which people tend to modify their behavior to be akin



to their friends, often co-occurr. Thus, the utilization of the information coming
from both attributes and links can be beneficial to methods for community de-
tection to obtain groups of nodes not only densely connected, but also having
similar characteristics.

In the last year, several methods for detecting communities in attributed
graphs have been proposed. A recent survey of Bothorel et al. [2] gives a de-
tailed description of the most recent state-of-the-art algorithms. Approaches to
find communities in attributed graphs, according to Bothorel et al. [2], can be
classified into different categories, depending on the strategy adopted. One cat-
egory uses a function to compute the similarity between couples of nodes, and
then reduces the network to a weighted graph. At this point any community de-
tection method for weighted graphs can be used. Neville et al. [4], for instance,
define a similarity measure that computes the number of attribute values two
nodes have in common. They compare three existing graph-partitioning tech-
niques and show that a spectral clustering approach outperforms the others.
The main drawback of these methods is that the number of groups to obtain
must be given as input parameter. Cruz et al. [5] obtain the node similarity by
grouping nodes with a self-organizing map [6] that takes into account the sim-
ilarity between the features. The Louvain method [7] is then used to find the
communities of the weighted graph. Another category of approaches combines
structural and attribute similarity, and applies clustering methods to nodes with
the combined similarity. Combe et al. [8] define a distance measure between two
nodes as the sum of the attribute distance, computed for the features with any
measure such as the Euclidean or the cosine distance, and a structural distance
given by the shortest path between such nodes. A hierarchical agglomerative
clustering is then applied on the computed distance matrix. The unified distance
measure proposed by Papadopoulos et al. [9], extensively described in the next,
follows the same principle. The authors formalize the problem as an optimiza-
tion fuzzy clustering problem with an objective function that assigns different
weights to edges and attributes, computed iteratively with the gradient descent
technique during the clustering process. Dang and Viennet [10] extend the mod-
ularity concept [11] to include the similarity between node attributes. Zhou et
al. [12] builds an attribute augmented graph by adding to the initial graph new
vertices representing the attributes. Elhadi and Agam [13] propose an algorithm
that uses either the structure data, or the attribute data depending on the type
of graph, and then executes the Louvain method in the former case, and the
k-means in the latter case.

In this paper, we propose a method for clustering attributed graphs, named
@NetGA, based on Genetic Algorithms (GAs), that optimizes a fitness function
derived from the unified distance measure of Papadopoulos et al. [9], combining
node similarity and structural connectivity. The communities obtained by the
method are composed by nodes having both similar attributes and high link
density. Experiments on synthetic networks and a comparison with five state-of-
the-art methods show that the genetic approach is very competitive and obtains
network divisions more accurate than those obtained by the considered methods.



The paper is organized as follows. In the next section we give preliminary defini-
tions. In Section 3 the fitness function is introduced and the algorithm @NetGA
is described in detail. Section 4 describes the synthetic networks used for eval-
uating the methods, the algorithms with which @NetGA has been compared,
the evaluation measures adopted to perform the comparison, and the results ob-
tained by all the methods. Section 5, finally, concludes the paper and discusses
future developments.

2 Problem Definition

In this section we give the definition of attributed graph and the community
detection problem for these kind of graphs.

Definition An attributed graph is a 4-tuple G = (V,E,A, F ) where V =
{v1, v2, ..., vN} is a set of N vertices, E ⊆ V × V is a set of M edges, A =
{α1, α2, ..., αA} is the set of numerical and categorical attributes (features), and
F = {a1, a2, ..., aA} is a set of functions. Each node v ∈ V is characterized by
a vector of feature values, obtained by the functions aα : V → Dα, 1 ≤ α ≤ A,
with Dα the domain of attribute α.

The objective of community detection in attributed graphs is to find a par-
tition C = {C1, . . . , Ck} of the nodes of V such that

– intra-cluster density is high and inter-cluster density is low, and
– nodes belonging to the same community are similar, while nodes of different

communities are quite dissimilar.

3 @NetGA Description

The GA method we propose minimizes a fitness function based on the unified
distance measure, introduced by Papadopoulos et al. [9], that takes into account
both the graph structure and the attributes. We first recall the definition of this
distance measure and then we define our fitness function. Given an attributed
graph G(V,E,A, F ), the similar connectivity measures how dissimilar two ver-
tices are with respect to all their outgoing edges as:

SC(i, j) =
1

N

N∑
k=1

[w(i, k)− w(j, k)]2 (1)

where

w(i, j) =

{
1 if (i = j) or (i, j) ∈ E
0 otherwise

(2)

The attribute distance between two nodes measures their dissimilarity with
respect to their attribute values. It is computed as:

AD(i, j) =
∑
α∈A

Wα · δα(i, j),
∑
α∈A

Wα = 1 (3)



where Wα is a weight corresponding to the importance of attribute α, and δα(i, j)
is the attribute distance between nodes i and j for attribute α. For numerical
attributes scaled in the interval [0, 1], δα(i, j) = [aα(i) − aα(j)]2, while, for the
categorical attributes

δα(i, j) =

{
1 if aα(i) = aα(j)
0 otherwise

. (4)

The unified distance measure (udm) balances with appropriates weights the
structural and attribute properties by combining attribute distance (AD) and
similar connectivity (SC) between two nodes i and j as follows

d(i, j) = Wattr ·AD(i, j) +Wlinks · SC(i, j) (5)

where Wattr and Wlinks are weights representing the importance of attributes
and edges, respectively.

Given a network division C = {C1, . . . , Ck}, we define the clustering unified
distance measure cudm(C) of the solution C by computing for each Ci ∈ C,
1 ≤ i ≤ k, the udm of pairs of nodes belonging to Ci, and then averaging the
results with respect to the number k of obtained communities:

cudm(C) =
1

k

∑
C∈C

∑
{i,j}∈C i 6=j

d(i, j) (6)

where k is the number of communities of the solution C, i and j are nodes of
a community C ∈ C and d(i, j) is the unified distance measure between nodes i
and j.

The @NetGA method, thus, minimizes the cumd measure to obtain a com-
munity division that takes into account both the similarity of node features,
as well the connections shared by pairs of nodes inside the network structure.
Together with the cumd as fitness function, @NetGA uses the locus-based ad-
jacency representation [14], uniform crossover and neighbor-based mutation. In
the locus-based representation, an individual of the population is represented
through a vector of n genes assuming values in the range {1, . . . , n}. A value j
assigned to the ith gene means that there is a link between the nodes i and j. A
decoding step identifies the connected components of the graph corresponding
to the network division in communities. Uniform crossover generates a random
binary vector of length N , then an offspring is obtained by selecting from the
first parent the genes where the value is 0, and from the second parent the genes
where the value is 1. Finally, the neighbor-based mutation operator randomly
changes the value j of a i-th gene with one of its neighbors.

@NetGA receives in input the graph G = (V,E,A, F ), the weighting fac-
tors Wattr and Wlinks to assign a score to attributes and links, respectively, an
importance weight to each attribute Wα, and performs the following steps:

1. run the Genetic Algorithm on G for a number of iterations by using cumd
as fitness function to minimize, uniform crossover and neighbor mutation as
variation operators;



2. obtain the partition C = {C1, . . . , Ck} corresponding to the solution with
the lowest fitness value cumd(C);

3. merge two communities if the number of inter-cluster connections is higher
than the number of intra-cluster connections.

In the next section, we execute @NetGA on a number of synthetic networks
and compare it with other state-of-the-art methods.

4 Experimental Evaluation

To validate the effectiveness of @NetGA, we performed several simulations on
synthetic networks and compared the results with those obtained by other five
methods. The algorithm has been implemented in Matlab 2015b by using the
Global Optimization Toolbox. Since finding a balanced weight for attributes and
links is not our aim, differently from Papadopoluos et al. [9], for each simulation,
we fixed equal weight to attributes and links, thus setting Wattr = Wlinks = 0.5,
and also Wα = 1/A,∀α. In the following, we describe the synthetic datasets
used, the contestant algorithms, the evaluation measures employed to assess the
quality of the methods, and the results obtained.

4.1 Datasets

We generated a set of synthetic datasets using the LFR-EA benchmark proposed
by Elhadi and Agam [13], which is an extension of the LFR benchmark by
Lancichinetti et al. [15].
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Fig. 1. Network structure and ground truth for the LFR-EA-32 dataset with µ = 0.1
and ν = 0.1: the 32 nodes are partitioned into 3 distinct communities.
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Fig. 2. Network structure and ground truth for the LFR-EA-32 dataset with µ = 0.3
and ν = 0.5: the 32 nodes are partitioned into 4 distinct communities.

The generator uses two parameters µ and ν, both ranging in the interval
[0.1, 0.9], to control the structure and the attribute values, respectively. µ is
called mixing parameter and determines the rate of intra- and inter-communities
connections. Low values of µ give a clear community structure where intra-
cluster links are much more than inter-cluster links. Analogously for ν, called
attribute noise, low values generate similar features of nodes belonging to the
same community. Besides ν, the number of attributes and the size of the domain
Dα of each attribute α must be specified. The combination of µ and ν values
produces graphs with a clear to ambiguous structure and/or attributes. To better
understand the kind of networks that can be generated, Figures 1 and 2 show
two examples of synthetic networks with 32 nodes. The network of Fig. 1 has
both clear structure and attributes (µ = 0.1 and ν = 0.1), while the network of
Fig. 2 has a less clear structure and attributes with medium similarity (µ = 0.3
and ν = 0.5).

The parameters used to generate the LFR-EA datasets are shown in the Table
1. We created networks with 1000 nodes (LFR-EA-1000) by setting 2 numerical
attributes for each node. All the nodes in a community, in particular, share the
same attribute domain values. The attribute’s domain cluster assignment is set
to random selection without replacing, in order to cover all the domain values
across the different communities. We generated ten different instances of the
combination of µ and ν parameters reported in Table 1, and executed @NetGA
by fixing the population size to 300 individuals, the number of generations to 200,
a mutation rate of 0.4, and a crossover fraction of 0.8. These genetic parameters
have been selected with a trial-and-error procedure and choosing the values
giving the best performance of the algorithm.



Table 1. LFR-EA-1000 parameters setting.

Parameter Value

Number of nodes (N) 1000
Average degree (k) 25
Maximum degree (maxk) 40
Exponent for the degree distribution (t1) 2
Mixing parameter (µ) [0.1; . . .; 0.9]
Exponent for the community size distribution (t2) 1
Minimum for the community sizes (minc) 60
Maximum for the community sizes (maxc) 100
Number of overlapping nodes (on) 0
Number of memberships of the overlapping nodes (om) 0
Number of attributes (T ) 2
Attribute’s domain cluster assignment (ainf) 1
Attribute # 1 domain size 3
Attribute # 1 noise [0.1; 0.5; 0.9]
Attribute # 2 domain size 15
Attribute # 2 noise [0.1; 0.5; 0.9]

4.2 Algorithms in Comparison

We compared @NetGA to five types of algorithms: (1) structure-only, i.e. a
classical community detection method that does not consider the attributes, (2)
attribute-only, i.e. a method that uses only node similarity, (3) composite, i.
e. that builds an attribute augmented graph, (4) ensemble, i.e. that combines
different clustering results, and (5) selection, i.e. that decides which method
to use depending on the graph. In the following, we briefly summarize these
algorithms.

– Louvain [7] (structure-only) aims at optimizing the modularity [11] of a
partition using a greedy technique. First, the method searches small com-
munities locally optimizing modularity. Then, each community found is con-
sidered a node and modularity-based community detection is applied again
until a hierarchy of high-modularity communities is obtained.

– k-means [16] (attribute-only) is considered one of the most famous cluster-
ing algorithms. Data points are randomly assigned to a number k of clusters.
Then, the centroid of each cluster is computed and every data point is as-
signed to its closest centroid. These steps are repeated until there are not
assignments of data points to clusters, and a stopping criterion is reached.

– SA-Cluster [12] (composite) builds an attribute augmented graph by adding
to the initial graph new vertices representing the attributes. An edge between
a graph vertex and an attribute vertex is present if the graph vertex has that
attribute and the edge weight between them reflects the importance of that
attribute. The method uses the neighborhood random walk model on the
attributed augmented graph to compute a unified distance measure between
vertices (i.e., combination of structural closeness and attribute similarity).



– CSPA [13] (ensemble) is a modified version of the Cluster-based Similarity
Partitioning Algorithm of Strehl and Gosh [17] that combines Louvain and
the k-means cluster labels through a cluster ensemble. A cluster ensemble
solves the clustering problem in two steps. In the first step, a data set is taken
as input and an ensemble of clustering solutions is generated as output. In
the second step, the cluster ensemble is taken as input and these solutions
are combined to produce a single clustering as the final output. CSPA uses
binary similarity matrices for representing the similarity between objects in
the same cluster. Through these similarity matrices, CSPA establishes a
pairwise similarity measures and realizes a combined clustering.

– Selection [13] (selection), instead of combining the structure and the at-
tribute data, this method makes the choice to use either the structure data,
or the attribute data depending on the type of graph (clear or ambiguous
structure). It detects the boundaries between clear and ambiguous graph
structure content and applies the structure-only method of Louvain when
the graph has a clear structure, while the k-means attribute-only method
when the graph has an ambiguous structure.

4.3 Evaluation Measures

To assess the quality of the solutions, we use the following evaluation measures.

– Normalized Mutual Information (NMI). The normalized mutual infor-
mation NMI(A,B) [18] of two divisions A and B of a network is defined as
follows. Let C be the confusion matrix whose element Cij is the number of
nodes of community i of the partition A that are also in the community j of
the partition B.

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1 Cij log(Cijn/Ci.C.j)∑cA

i=1 Ci.log(Ci./n) +
∑cB

j=1 C.j log(C.j/n)
(7)

where cA (cB) is the number of groups in the partition A (B), Ci. (C.j) is
the sum of the elements of C in row i (column j), and n is the number of
nodes. If A = B, NMI(A,B) = 1. If A and B are completely different,
NMI(A,B) = 0.

– Cumulative NMI (CNMI). CNMI [13] is a modified NMI measure allow-
ing the integration of NMI values over different settings of structure mixing
parameter µ and attribute noise ν:

CNMI =

∑µ∑ν
NMI

S
(8)

where S is the number of samples of the network graphs considered.

4.4 Results

Fig. 3 shows the results obtained by @NetGA and the methods described in the
previous section for the experiments conducted on the LFR-EA-1000 datasets.



Each subplot refers to a value of the mixing parameter µ ranging from 0.1 to 0.9,
with three degrees of attribute noise (0.1: low, 0.5: medium, 0.9: high) reported
on the x-axis and the corresponding NMI values on the y-axis.

The Louvain algorithm, being a structure-only method, obtains rather stable
values of the NMI, independently from the ν values. For 0.1 ≤ µ ≤ 0.4, the
network graph has a clear structure and the method is able to correctly identify
the underlying communities. As the mixing parameter increases, the NMI value
sensibly decreases, especially for 0.7 ≤ µ ≤ 0.9. For these mixing parameter
values, the normalized mutual information is below 0.2.

The NMI values returned by the k-means method, since using only the
attributes, are not influenced from the network structure. It is able to find com-
munities with an NMI value medium-high only when the graph attributes are
clear. Differently from Louvain, the k-means method is not able to match the
ground-truth with good NMI values. The highest value of 0.75 is reached only
when the attribute noise is 0.1.

SA-Cluster performs the worse in our settings. Even if it uses both structure
and attributes, it is not able to correctly identify the communities. The NMI
values it obtains are between 0.5 and 0.6 for µ = 0.1 and all the three ν values.
It reduces below 0.2 for µ ≥ 0.5.

CSPA, combining Louvain and k-means through cluster ensemble, performs
better than SA-Cluster. However, the low NMI values of k-means in medium-high
attribute noise situations influence the high NMI Louvain values in situations
of low mixing parameter. Thus, the resulting NMI value of CSPA sensibly
decreases with the ensemble.

The Selection method, being driven by both attributes and structure, per-
forms better than the previous methods. It obtains an NMI value equal to 1
for 0.1 ≤ µ ≤ 0.5 for all the attribute noise settings. When the structure of
the graph becomes less clear (0.7 ≤ µ ≤ 0.9), it is able to properly find the
boundary between clear and ambiguous graph structure content. By exploit-
ing the attribute-based clustering through k-means, Selection obtains an NMI
value around 0.75 when ν = 0.1. However, for ν = 0.5 and ν = 0.9 these values
drastically decrease below 0.3 and 0.2, respectively.

@NetGA is able to achieve very high NMI values for all the mixing param-
eter values. In particular, for high µ values, @NetGA outperforms all the other
algorithms for all the attribute noise values considered. Moreover, as Table 2
shows, @NetGA achieves the highest CNMI value, obtained by averaging the
NMI values for all the attributes and structure settings, compared to the other
methods considered. @NetGA, for this cumulative metric, reaches 0.98, while
the Selection method, which is the best performing method when compared to
the other attribute and structure based contestant methods, achieves only 0.77.
As such, @NetGA is able to better exploit both the attributes and the structure
of the graph on all the settings considered.



Fig. 3. NMI results of the evaluated methods on the LFR-EA-1000 datasets.
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Table 2. Cumulative NMI of the methods on the LFR-EA-1000 datasets.

Method CNMI

Louvain 0.69
k-means 0.35
SA-Cluster 0.24
CSPA 0.49
Selection 0.77
@NetGA 0.98



5 Conclusion

Genetic Algorithms, in the last years, showed to be a valid approach for the
detection of community structure in complex networks. The method we pro-
posed for attributed graphs confirms their ability also in this kind of networks,
where nodes are characterized by a set of features. This additional information
can be very important, combined with the topological structure, to detect rele-
vant communities that share common characteristics. A comparison with other
five methods, finding communities with different strategies, on synthetic net-
works has highlighted the capability of the genetic approach to obtain more
accurate divisions. Future work aims at experimenting the method on real-world
attributed networks.
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