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EVOLUTIONARY CLUSTERING FOR MINING AND TRACKING
DYNAMIC MULTILAYER NETWORKS
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This article proposes a framework for community discovery in temporal multiplex networks by extending the
evolutionary clustering approach to encompass both time and multiple dimensions. In this extended framework,
the problem of finding community structures for time-evolving networks with multiple types of ties is reformulated
by adding the concept of dimensional smoothness, relative to a single timestamp, to that of temporal smooth-
ness, at the base of evolutionary clustering. At each timestamp, the method tries to maximize the quality of the
clustering obtained for the current multidimensional network and to minimize the differences with respect to that
obtained at the previous timestamp. Moreover, the evolution of a community between two consecutive timestamps
is maintained by exploiting the Hungarian approach, which determines the best cluster correspondence between
two consecutive timestamps. Experiments on synthetic and real-world networks show the capability of the approach
in discovering and tracking group organization of actors constituting the network.
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1. INTRODUCTION

In recent years, we are witnessing an increasing interest in the analysis of complex sys-
tems represented as networks. Characterizing network topology is an important aspect to
understand its properties and dynamic behavior. Basic components of real-world systems are
generally connected by multiple and diverse relationships, often occurring at different time
points. For instance, the flow of information generated by people who communicate and
connect through social media, mobile telephone calls, or e-mail messages contains detailed
information on the time the event took place and the kind of interaction that was estab-
lished. In system biology, proteins can interact at different times and have different types
of interactions. Research in network science recently realized that the classical approach of
aggregating these composite interactions among the actors constituting a network provokes
the loss of important information regarding the original system, which could be exploited to
better analyze and describe its features. As pointed out in Kivelä et al. (2014) and Battiston,
Nicosia, and Latora (2013), networks with multiple types of interactions provide a much
more complete description of a system than monoplex networks, generated by the aggrega-
tion of these connections on a single kind of tie, because each connection can have different
meanings and roles.

In this article, a new framework based on multiobjective optimization (Deb 2001; Coello
et al. 2007) and local search is proposed to deal with the problem of detecting commu-
nity structure in temporal multilayer networks and tracking their evolution along time. The
method, named DMultiMOGA (Dynamic Multilayer MultiObjective Genetic Algorithm),
extends the evolutionary clustering framework (Chakrabarti, Kumar, and Tomkins 2006)
to encompass both time and multiple dimensions. In this extended framework, the prob-
lem of finding community structures for time-evolving networks with multiple types of
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ties is reformulated by adding the concept of dimensional smoothness, relative to a single
timestamp, to that of temporal smoothness, at the base of evolutionary cluster-
ing (Chakrabarti et al. 2006). DMultiMOGA optimizes the two objectives of facet quality
FQ and dimensional sharing SQ inside a fixed timestamp, and facet quality FQ and tem-
poral cost T C when a new timestamp starts. The first two objectives guarantee dimensional
smoothing among the layers of a multidimensional network at a current timestamp, while the
substitution of SQ with T C, when a new timestamp begins, ensures temporal smoothness
between consecutive timestamps.

It is worth to point out that, at each timestamp t , layers can be rather different because
both nodes and interactions could be present in a layer but missing in another one. As a
consequence, there could be isolated nodes not assigned to any community. To dampen this
phenomenon, DMultiMOGA performs a local label propagation for each isolated node v
by considering the neighbors of v in all the dimensions and then assigning to v the most
recurring class label of its neighbors in the current community structure.

Moreover, DMultiMOGA, by exploiting the Hungarian algorithm for optimal assign-
ment problem (Kuhn 1955), determines the best correspondence among the communities
obtained between two consecutive timestamps and maintains a trace of the evolution of each
community along the time.

Experiments on synthetic and real-world networks show that the approach is capable to
detect accurate community structures in temporal multilayer networks and maintain a track
of their evolution as time passes.

The article is organized as follows. The next section gives an overview of the most
recent proposals in the field. Section 3 defines temporal multidimensional networks and
the problem of community detection. Section 4 formalizes the problem as a multiobjective
optimization problem. Section 5 describes the proposed approach. In Section 6, the results
of the experiments are reported. Finally, Section 7 concludes the article.

2. RELATED WORK

In the last few years, the research in multilayer networks is receiving more attention.
Many studies are focusing on their analysis and mathematical formulation, along with
extensions of the metrics defined for characterizing single-layer networks to the multilayer
ones (Battiston et al. 2013; De Domenico et al. 2013, 2014; Magnani, Micenkova, and
Rossi 2013; Kivelä et al. 2014).

Although there exists a plenty of methods for community detection in single-layer net-
works, approaches for multilayer networks are still at very beginning. Moreover, as regards
the temporal information, a number of methods have been proposed for analyzing and track-
ing dynamic single-layer networks, but approaches that detect communities in multilayer
networks and track these communities over time have not been yet developed.

A popular framework for studying single-layer dynamic networks is evolutionary clus-
tering (Chakrabarti et al. 2006). Evolutionary clustering has been proposed by Chakrabarti
et al. for data clustering, and it relies on the idea of temporal smoothness, that is, it assumes
that rapid changes in a short time period are unlikely to happen. Chi et al. (2009) specialized
this concept to dynamic networks and defined a cost function cost D ˛ � SCC .1� ˛/ � T C
composed of two terms: the snapshot quality SC, which measures how much the obtained
clustering reflects latent community structure at the current timestamp, and the temporal
cost T C, which biases consecutive clusterings to do not sensibly differ from one timestamp
to the next one. ˛ is an input parameter used by the user to emphasize one of the two objec-
tives. When ˛ D 1, the approach returns the clustering without temporal smoothing. When
˛ D 0, the same clustering of the previous timestamp is produced. This cost function has
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been adopted by Lin et al. (2009), Kim and Han (2009), and Folino and Pizzuti (2014).
In particular, Lin et al. employ a stochastic block model for generating communities and a
probabilistic model based on the Dirichlet distribution to catch community evolutions. One
of the main drawbacks of this method is that it assumes a fixed number of communities
over time. In Folino and Pizzuti (2014), the detection of community structure with tempo-
ral smoothness has been formulated as a multiobjective optimization problem, where the
first objective is the maximization of the snapshot quality, achieved through the optimiza-
tion of the modularity concept (Newman and Girvan 2004), and the second objective is the
minimization of the temporal cost, fulfilled by maximizing the normalized mutual informa-
tion (NMI) (Danon et al. 2005) between the community structure obtained at the current
timestamp and that obtained at the previous one.

Mucha et al. (2010) introduced a general framework encompassing time-evolving, mul-
tiscale, and multidimensional networks for determining community structure in multislice
networks. These networks consist of multiple adjacency matrices, where each adjacency
matrix can indifferently represent variations across time (dynamic networks), variations
across different types of connections (multidimensional networks), or even the same net-
work at different scales. Communities can then be detected by applying one of the known
methods for single-layer networks by optimizing a generalized modularity function based
on a suitably redefined null model.

Tang, Liu, and Zhang (2012a) proposed an approach for community discovery in
dynamic and multimode (also called heterogeneous) networks, that is, networks with dif-
ferent types of nodes that evolve. Interactions between two modes, however, are of only
one type. The approach is based on the idea that the interactions between modes can be
approximated by the membership of nodes to their latent community. Thus, communities are
obtained by minimizing the difference between the original interaction graph and the net-
work reordered according to a block model representing the density of group interactions.
To include snapshots of consecutive timestamps, the notion of temporal regularization, sim-
ilar to the concept of temporal smoothness of Chakrabarti et al. (2006), is introduced. To
this end, the objective function to minimize is extended with a term that measures the dif-
ference between the clustering obtained at the current timestamp and that returned at the
previous one.

MetaFac (metagraph factorization) is an approach proposed by Lin et al. (2011) to
extract community structure from dynamic multirelational and multidimensional social
data. The concept of multirelational and multidimensional network is analogous to that of
multimode network of Tang et al. (2012a), that is, there can exist a number of different types
of nodes, interacting through diverse relationships. Networks are represented with a mul-
tirelational hypergraph, where each vertex corresponds to a set of nodes of the same type,
and an hyperedge connects all the nodes of the same type. Communities of a metagraph are
extracted by applying a multirelational factorization method. Data are represented as mul-
tiple conjunct data tensors, where each conjunction is realized through a multigraph. The
approach is able to deal with time-varying relations by applying an incremental metagraph
factorization. Also, MetaFac assumes that the community structure to search for should
not deviate too much from that obtained at the previous timestamp. Moreover, MetaFac
needs the number of communities as input parameter. This number cannot change during
the evolution.

The most recent proposals to find groups in multidimensional networks can be found in
Tang, Wang, and Liu (2009, 2012b) and Dong et al. (2014). In particular, Tang et al. (2009)
observe that there are two main approaches to deal with multidimensional networks. The
former is a naive strategy that considers a multidimensional network as one dimensional,
by using the average interaction network among nodes. The other approach consists in
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optimizing the score function for all the dimensions. Because Tang et al. use modularity,
they propose to optimize the total layer modularity. Besides these two approaches, they
propose a new method, named principal modularity maximization, that consists of two
main steps. First, for each dimension, the so-called structural features, corresponding to the
top eigenvectors with positive eigenvalues, are extracted; then these features are combined
to obtain latent communities. Tang et al. (2012b) extended their approach by analyzing
four different strategies to integrate structural features. One of the main drawbacks of the
proposal is that the number of communities must be given as input parameter.

An approach similar to principal modularity maximization has been proposed by Dong
et al. (2014). They combine the first k eigenvectors of the graph Laplacian matrices corre-
sponding to layers, to compute a jointly smooth spectrum of couples of layers, by solving an
optimization problem that tries to minimize the differences among the eigenvectors of these
matrices. Then they apply the K-means clustering method to group nodes in k clusters. The
number k must be fixed in advance.

Li, Ng, and Ye (2014), instead of finding a network partitioning, deal with the problem
of building a seed-based community for a multidimensional network, that is, given a seed
node, neighboring nodes are added to the seed community provided that they are similar.

It is worth to point out that methods proposed in Lin et al. (2011), Tang et al. (2012a,
2009, 2012b), and Dong et al. (2014) all assume that the number of communities is given
beforehand. Furthermore, Chi et al. (2009), Lin et al. (2009), and Folino and Pizzuti (2014)
are able to deal with dynamic single-layer networks, Lin et al. (2011) and Tang et al. (2012a)
work with dynamic multimode networks, and Tang et al. (2009, 2012b) and Dong et al.
(2014) consider multidimensional, but not dynamic, networks. Our proposal is different
from all the methods described previously. We consider multiplex networks that evolve over
time and discover communities from these time-varying multidimensional social data by
exploiting the concept of temporal smoothness of evolutionary clustering to smooth both
time and multiple types of interactions. Moreover, DMultiMOGA automatically determines
the number of communities to find and does not need it as input parameter.

3. PROBLEM DEFINITION

In this section, we define the most general concept of multilayer network, as proposed
by Kivelä et al. (2014); then the restrictions to represent a temporal network with different
types of interactions are introduced.

A single-layer network is a graph G D .V;E/, where V is the set of nodes and E is
the set of links that connect the objects of V . A multilayer network consists of a network
at multiple levels, that is, with multiple types of edges. Thus, the notion of layer, along
with nodes and edges, must be considered. Each layer represents a combination of different
features of the network, called aspects or facets. More formally, a multilayer network M is
defined as a quadruple:

M D .VM ; EM ; V;L/

where V is the set of nodes, L D ¹Laº
l
aD1 is a sequence of sets of elementary layers La,

VM � V �L1�: : :�Ll contains only the set of combinations of nodes and elementary layers
effectively present in a layer, EM � VM � VM is a set of couples of possible combinations
(Kivelä et al. 2014). Nodes could be connected to any other both inside the same layer and
across layers.
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FIGURE 1. Example of dynamic multilayer network with four timestamps and three types of relationships.

In this article, we consider networks constituted by only two aspects. The first aspect
L1 D ¹T

1; : : : ; T T º represents the temporal information, that is, the time in which a con-
nection between two nodes occurred, while the second one L2 D ¹D1; : : : ;Dd º gives
the type of interaction among nodes. The set of combinations of a fixed elementary layer
T t 2 L1 with all the elementary layers Dj 2 L2, j D 1; : : : ; d will be called multiplex (or
multidimensional) network at time t and denoted as T t D ¹N t

1 ;N t
2 ; : : : ;N t

d
º, where each

N t
i is the network representing one of the elementary layers of L2.

A temporal multilayer network is then defined as a sequence DM D ¹T 1; : : : ; T T º of
multiplex networks, where each T t , t D 1; : : : ; T is a snapshot of the multiplex network at
time t , referred as timestamp or timestep.

In the following, we assume that each node represents the same entity in each layer it
appears and that cross-edges of the same node at different snapshots are implicit. We do not
consider any other type of cross-edges; thus, links between two nodes exist only inside the
same elementary layer.

An example of temporal multilayer network can be seen in Figure 1. The first
aspect L1 D ¹T1; T2; T3; T4º is the temporal information about the network and con-
sists of four timestamps. The second aspect L2 D ¹D1;D2;D3º represents three
different types of connections between nodes. Thus, there are 12 different layers
¹.T1;D1/; .T1;D2/; : : : ; .T4;D3/º. By grouping them with respect to the same timestamp,
there are four multiplex networks T t D ¹N t

1 ;N t
2 ;N t

3º, t D 1; : : : ; 4. The temporal network
DM D ¹T 1; : : : ; T 4º thus consists of four multiplex networks. At each timestamp, differ-
ent kinds of links between nodes can be observed. For instance, at time T1, nodes 4 and 6
are connected with respect to the first and third relationships, that is, in N 1

1 and N 1
3 , but

not with respect to the second type of connection. In N 1
2 , they are isolated nodes. Along

the time axis, it is possible to observe how layers evolve. For example, at time T 4, nodes 4
and 6 are connected in all the N 4

1 , N 4
2 , and N 4

3 networks.
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4. COMMUNITY DISCOVERY WITH TEMPORAL AND
DIMENSIONAL SMOOTHING

The discovery of latent community structure in time-varying multidimensional net-
works poses two main challenging tasks. The first is that the communities obtained at each
timestamp t should be consistent with the structure of all the layers present at time t , and,
at the same time, they should not differ too much from those found at the previous times-
tamps. The second one is that, to understand their evolution, communities should be tracked
over time.

To deal with the former problem, it is first necessary to define the concept of community
structure for a multidimensional network; then the generalization for evolving ones must be
considered.

In this article, we propose to extend the evolutionary clustering framework to encompass
both time and multiple dimensions. In this extended framework, the problem of finding
community structures for time-evolving networks with multiple types of ties is reformulated
by adding the concept of dimensional smoothness, relative to a single timestamp, to that of
temporal smoothness, at the base of evolutionary clustering (Chakrabarti et al. 2006).

To this end, we first need to define the concept of shared latent community structure
for a single timestamp. Tang et al. (2009), for multidimensional networks, formulated this
notion as a grouping of nodes such that a quality function is maximized for each layer. We
modify this idea by adding the concept of dimensional smoothness, achieved by computing
the similarity among the divisions obtained for each layer.

Thus, let DM D ¹T 1; : : : ; T T º be a temporal multilayer network, where each T t D
¹N t

1 ;N t
2 ; : : : ;N t

d
º is a snapshot of the multiplex network at time t . We enrich the evolu-

tionary clustering framework by introducing the concepts of facet quality FQ and sharing
cost SQ, analogous to those of snapshot quality SC and temporal cost T C, respectively.
Facet quality guarantees that the clustering found for the i th layer under consideration max-
imizes the adopted quality function as much as possible, while the sharing cost means that
the clustering of the current facet agrees as much as possible with the clustering obtained
for the other i � 1 layers. In this extended framework, a shared community structure among
the networks N t

i of T t is obtained by iteratively optimizing both facet quality and sharing
cost. The community structure obtained for the last layer d is considered the best sharing
community structure among the d layers.

Let CS t1; : : : ; CS td be the community structures obtained for each elementary layer
of a multiplex network T t D ¹N t

1 ;N t
2 ; : : : ;N t

d
º, at timestamp t . We say that CS D

¹C1; : : : ; Ckº is a shared community structure of T t if the two functions are maximized:

fq.CS;N t
i /; i D 1; : : : ; d (1)

fs.CS; CS ti /; i D 1; : : : ; d (2)

where (1) is the quality function computed on the network N t
i by using the community

structure CS, and (2) is a function that computes the similarity between CS and the commu-
nity structure obtained for N t

i by maximizing fq , independently from the other layers. fq
and fs can be any functions computing the quality of a clustering and the similarity between
two clusterings, respectively.

Thus, we search for a community structure CS that maximizes a fitness function on each
elementary layer N t

i while taking into account the similarity with the clustering obtained
on the other layers. For instance, a shared community structure of the example network of
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Figure 1 at time T1 could be given by the clustersC1 D ¹1; 2; 3º and C2 D ¹4; 5; 6º because
this is presenting the highest intersection level with the clusters of the other layers.

This framework is then utilized between couples of consecutive timestamps t � 1
and t by resorting to the dynamic evolutionary approach where the temporal cost T C is
guaranteed by considering the similarity between the community structure CS t�1 obtained
for the previous timestamp and that found for the first elementary layer CS t1 of the current
timestamp.

In the next section, a detailed description of the method DMultiMOGA is given, along
with the functions used to ensure facet quality, sharing cost, and temporal cost. Moreover,
a methodology, based on the Hungarian algorithm for optimal assignment problems (Kuhn
1955), to deal with community tracking, is also proposed.

5. THE DMULTIMOGA METHOD

DMultiMOGA is a multiobjective genetic algorithm (Coello et al. 2007) that uncovers
community structure with temporal and dimensional smoothing by optimizing two com-
petitive objectives both inside a fixed timestamp and when a new timestamp starts. Before
giving a detailed description, a brief description of evolutionary multiobjective optimization
is reported, along with the genetic representation adopted and the objective functions used
by the method.

5.1. Evolutionary Multiobjective Optimization

A multiobjective problem is a problem where a number k of objective functions must
be simultaneously optimized. A general multiobjective problem (�;F1;F2; : : : ;Fh) is
defined as

min Fi .S/; i D 1; : : : ; h subject to S 2 �

where � D ¹S1; : : : ;Skº is the set of feasible solutions, and F D ¹F1;F2; : : : ;Fhº is a
set of h single criterion functions. Because F is a vector of competing objectives that must
be simultaneously optimized, there is not one unique solution to the problem, but a set of
solutions are found through the use of Pareto optimality theory (Coello et al. 2007). Given
two solutions S1 and S2 2 �, solution S1 is said to dominate solution S2, denoted as
S1 � S2, if and only if

8i W Fi .S1/ � Fi .S2/ ^ 9 i s:t: Fi .S1/ < Fi .S2/

A Pareto-optimal solution is a nondominated solution for which an improvement in
one objective requires a degradation of another. More formally, the set of Pareto-optimal
solutions ˘ is defined as

˘ D ¹S 2 � W 6 9S 0 2 � with S 0 � Sº

This definition means that there are several trade-off solutions, called Pareto-optimal
front for the plot of nondominated solutions in the objective space. Multiobjective evo-
lutionary algorithms are stochastic optimization techniques that find such Pareto-optimal
solutions. It is worth pointing out that evolutionary methods avoid divergence problems,
often present in natural evolution, because of the fitness-based search that selects individuals
optimizing an objective function.
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FIGURE 2. Locus-based representation (b) of an individual for N 1
1

(a) of the toy example of Figure 1
corresponding to the division ¹¹1; 3º; ¹2; 4º; ¹5; 6ºº.

When the problem to solve is that of community detection in temporal multilayer
networks, � D ¹S1; : : : ;Skº is the set of feasible clusterings of a network, while each
Fi W �! R is an objective function determining the feasibility of the obtained clustering.

DMultiMOGA optimizes the two competitive objectives FQ and SQ inside a fixed
timestamp, and FQ and T C when a new timestamp starts. The first two objectives
guarantee dimensional smoothing among the layers of a multidimensional network at a
current timestamp, while the substitution of SQ with T C, when a new timestamp begins,
ensures temporal smoothness between consecutive timestamps. Thus, the DMultiMOGA
method, at each timestamp t , tries to maximize the quality of the clustering obtained for
the multidimensional network T t D

®
N t
1 ;N t

2 ; : : : ;N t
d

¯
at time t and to minimize the

differences with respect to that obtained at time t � 1.

5.2. Genetic Representation and Operators

DMultiMOGA uses the locus-based adjacency representation (Park and Song 1989). An
individual of the population consists of N genes g1; : : : ; gN , where N is the number of
nodes of the network, assuming values in the range ¹1; : : : ; N º. A value j assigned to the
i th node means that there is a link between nodes i and j , and that in the clustering solution,
i and j will be in the same cluster. Figure 2(b) shows the locus-based representation of
an individual when the network N 1

1 , at timestamp 1, of the toy example of Figure 1 is
considered. In such a case, node 1 is connected with node 3, node 3 with node 1, and so
on. The initialization process assigns to each node i one of its neighbors j . The crossover
operator adopted is uniform crossover. Given two parents, a random binary vector is created.
Uniform crossover selects the genes where the vector is a 0 from the first parent and the
genes where the vector is a 1 from the second parent and combines the genes to form the
child. The mutation operator, analogously to the initialization process, randomly assigns to
each node i one of its neighbors.

5.3. Fitness Functions

We adopted the very popular modularity concept of Girvan and Newman (2004) as facet
quality FQ to optimize. Given a network N and a partitioning of N in k communities
S D ¹S1; : : : ; Skº, the modularity Q.S;N / of S is defined as

Q.S;N / D
kX
sD1

"
ls

m
�

�
ds

2m

�2#
(3)
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where the first term of each summand is the fraction of edges inside a community, Ss , while
the second one is the expected value of the fraction of edges that would be in the network if
edges fell at random without considering the community structure.

As regards the computation of similarity between two clusterings, necessary to guar-
antee temporal and dimensional smoothness, we used two measures: the well-known
entropy-based measure of NMI (Danon et al. 2005) and the Hungarian accuracy (Grappiolo,
Togelius, and Yannakakis 2013), based on the Hungarian algorithm for optimal assignment
problems (Kuhn 1955). Let A D ¹A1; : : : ; AcAº be the true partitioning of a network, con-
sisting of N nodes, in cA communities, B D ¹B1; : : : ; BcB º be the community structure
inferred from an algorithm, and C be the cA � cB confusion matrix whose element Cij is
the number of nodes of the community Ai 2 A that are also in the community Bj 2 B .

Normalized mutual information. The NMI of A and B is defined as follows:

NMI.A;B/ D
�2

PcA
iD1

PcB
jD1 Cij log.CijN=Ci:C:j /PcA

iD1 Ci:log.Ci:=N/C
PcB
jD1 C:j log.C:j=N/

(4)

where cA (cB ) is the number of groups in the partitioning A (B), Ci: (C:j ) is the sum
of the elements of C in row i (column j ), and N is the number of nodes. If A D B ,
NMI.A;B/ D 1. If A and B are completely different, NMI.A;B/ D 0.

Hungarian accuracy. Let L D ¹lv1 ; : : : ; lvN º, 1 � lvi � cA and P D ¹pv1 ; : : : ; pvN º,
1 � pvi � cB be two vectors containing the true and predicted, respectively, community
labels of each node. The Hungarian algorithm tries to align L and P , considered as strings,
by using the confusion matrix C . It determines the correspondence of the labels from L
to P , which maximizes their alignment. P is then relabeled based on this correspondence.
The output of the procedure is the number lm of label matches between L and P . The
normalized Hungarian accuracy (NHA) is defined as follows:

NHA.L;P / D
lm

N
(5)

NHA.L;P / takes values from 0 (total mismatch) to 1 (total match).

FIGURE 3. The pseudo-code of the DMultiMOGA algorithm.
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FIGURE 4. The pseudo-code of the MultiMOGA algorithm for a single timestamp.

FIGURE 5. The pseudo-code of the ClustGA algorithm for the first dimension of multiplex network at
timestamp t D 1.

5.4. Method Description

The pseudo-code of the DMultiMOGA method is reported in Figure 3. DMulti-
MOGA is composed of two main procedures: the multiobjective genetic algorithm Multi-
MOGA, which finds a clustering of a multiplex network of a generic timestamp, and the
RelabelHungarian method that, by exploiting the Hungarian algorithm, tries to deter-
mine the best correspondence among the communities obtained between two consecutive
timestamps and maintains a trace of the evolution of each community along the time. DMul-
tiMOGA executes MultiMOGA for the first timestamp (step 4). Then, from the second
timestamp on, it repeatedly executes MultiMOGA and RelabelHungarian (steps 5–11)
to obtain the community structure of each multiplex network and the evolution of each
community. In the following, a description of these methods is given.
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FIGURE 6. The pseudo-code of the MultiDim algorithm for the first dimension of multiplex network at
a timestamp t > 1.

FIGURE 7. The pseudo-code of the LabelAssignment algorithm.

MultiMOGA (Figure 4) must distinguish between the first timestamp t D 1 and a
generic timestamp t . In fact, in the former case (step 2), it executes ClustGA (Figure 5), a
standard GA method on the graph G11 of the first dimension to find a division of G11 that
optimizes only the facet quality FQ. In the latter case (step 3), it detects a grouping for the
first graph Gt1 of the t th timestamp by running the multiobjective GA method MultiDim
(Figure 6), which optimizes the facet quality of Gt1 and the temporal cost T C between the
current clustering and that obtained at the previous timestamp CS t�1. The standard GA
method ClustGA (described in Figure 5) on the graph G11 representing the first layer opti-
mizes the fitness function to obtain a clustering CS11 . ClustGA, after a random population
has been created (step 1 in Figure 5), runs for a fixed number of generations by applying the
variation operators described previously (steps 2–6).

ClustGA and MultiDim return a clustering CS t where each node is associated with
a class label. However, because any two objects may interact in one dimension but not in
another one, some nodes may be isolated in some dimension, and thus, they do not have
a cluster label. For these nodes, we then perform a local label propagation (steps 4 and 5
in Figure 4) that, given such a node vj , considers its neighbors vn1 ; : : : ; vnu in all the
dimensions and then assigns to vj the most recurring class label of its neighbors in CS t , as
explained in the LabelAssignment algorithm (Figure 7). An example of label assignment
can be seen in Figure 8. Consider the network N 1

3 of the toy example reported in Figure 1,
whose representation is in Figure 8(a). Node 2 has no connections with the other nodes of
N 1
3 ; thus, the method does not assign it to any cluster. However, node 2 has two types of

links with nodes 1, 3, 4, and 5, that is, nodes 1, 3, and 4 are its neighbors in N 1
1 and 1, 3,



192 COMPUTATIONAL INTELLIGENCE

FIGURE 8. Locus-based representation of an individual for N31 of the toy example of Figure 1. Individ-
ual before label assignment (a). Individual after label assignment (b). The network division of N31 is now
{{1, 2, 3}, {4, 5, 6}}.

FIGURE 9. The pseudo-code of the RelabelHungarian procedure.

and 5 in N 1
2 . Because nodes 1 and 3 are clustered together in N 1

3 , the LabelAssignment
procedure will assign node 2 to the same cluster of its neighbors. The individual after
LabelAssignment is thus that reported in Figure 8(b).

After label assignment, the multiobjective genetic algorithm is iteratively executed for
the d � 1 dimensions (steps 6–12) by optimizing the two objectives FQ and SQ (steps 8.1
and 8.2). For each iteration, the clustering having the best fq value is chosen from the
Pareto front as current solution (step 9). Then again, the procedure LabelAssignment
(steps 10 and 11) is executed on this solution to assign labels to those nodes having no
cluster membership.

The other main procedure of DMultiMOGA is RelabelHungarian, whose task is to
find the best match between communities of two consecutive timestamps. The algorithm
(Figure 9) receives the node cluster labelings Lt and Lt�1, builds the confusion matrix
whose rows correspond to communities in Lt�1 and columns to those in Lt (step 1), and
executes the Hungarian algorithm to obtain a match matrix MM (step 2), that is, a matrix
that if the value at entry .i; j / is 1, it means that community j at time t corresponds
to community i at time t � 1. Then, for each cluster label j in Lt , it finds the corre-
sponding cluster label i determined by the Hungarian algorithm (step 5) and substitutes
all the occurrences of j with i in Lt (step 6). The correspondence .i; j / is maintained
in a vector Corr . Finally, Lt is renumbered to maintain a progressive enumeration of
cluster labels.

5.5. Layer Ordering

The MultiMOGA method considers the elementary layers of a snapshot network T t D
¹N t

1 ;N t
2 ; : : : ;N t

d
º sequentially; thus, processing first one layer instead of another could
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produce different results. Choosing the best ordering is not an easy task. However, we pro-
pose a heuristic to sort the layers based on the Jensen–Shannon distance between graphs,
adopted in De Domenico et al. (2014) for layer aggregation. In Section 6, we show that this
ordering gives good results with respect to a random choice of layers.

Given two layers N t
i and N t

j of T t , let � and � be the normalized Laplacian matri-
ces associated, respectively, with the graphs Gti and Gtj modeling these layers, where
the normalized Laplacian matrix associated with a graph G of N nodes is defined as
LG D I �D

�1A,A being the adjacency matrix ofG, I the identity matrix, andD the diag-
onal matrix of the node degrees of G. The Von Neumann entropy h of G can be computed
from the eigenvalues ¹�1; : : : ; �N º of LG :

h D �

NX
iD1

�i log2.�i / (6)

The Jensen–Shannon divergence between � and � is defined as follows:

DJS .�jj�/ D h.�/ �
1

2
Œh.�/C h.�/� (7)

where � D 1
2
.� C �/ and h is the Von Neumann entropy. The Jensen–Shannon distance

is then

dJS D
p
DJS (8)

dJS has been proven to be symmetric and to range from 0 to 1.
The layers N t

1 ; : : : ;N t
d

of the multidimensional network T t for each timestamp t are
sorted according to the Jensen–Shannon distance in the following way. For each layer N t

i ,
the Jensen–Shannon distance is calculated between this layer and all the other layers of T t ,
and the average of these values is computed. The layers are then sorted in ascending order
according to this average distance values. Because dJS measures the distance between the
normalized Laplacian matrices associated with two graphs Gti and Gtj in terms of informa-
tion gain/loss, the graph having the lowest average value of dJS can be considered the more
informative and representative dimension of a multiplex network because it shares more
information with all the other layers.

6. EXPERIMENTAL RESULTS

In this section, we provide an experimental evaluation of the DMultiMOGA algorithm
on synthetic networks. Then we consider a real-world network generated by De Domenico
et al. (2014) and compare DMultiMOGA with two state-of-the-art methods. As regards the
DMultiMOGA parameters, after properly tuning them, we set population size 500, number
of generations 150, crossover fraction 0.8, and mutation rate 0.2. The elite reproduction
is 10% of the population size, and a roulette selection function is employed. For all the
experiments, a t -test at the 5% significance level has been performed to evaluate the sta-
tistical significance of the produced results. Being the returned p-values very small, the
significance level was very high. The implementation of DMultiMOGA has been written in
MATLAB 7.14 R2012a (MathWorks, Inc., Natick, MA), using the Genetic Algorithms and
Direct Search Toolbox 2.
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FIGURE 10. Normalized mutual information (NMI) and normalized Hungarian accuracy (NHA) obtained
by DMultiMOGA for five timestamps with � D ¹0:5; 0:8º and � D ¹0:1; 0:3; 0:5º, when NMI is used as second
objective function. [Color figure can be viewed at wileyonlinelibrary.com]

6.1. Synthetic Networks

The synthetic networks have been generated by modifying the generator of Tang et
al. (2009) for multidimensional networks by adding the temporal component. The syn-
thetic data set is composed of 1,024 objects divided into eight clusters of 128 objects each.
The number of dimensions is 4, that is, the objects are involved in four different kinds of
relations. The number of timestamps for each dimension is 5. For each timestamp, objects
belonging to the same cluster are connected with a random-generated within-group prob-
ability �. Interaction probability changes between groups for each dimension. To control
noise, a probability parameter � is used to connect any two nodes. If the � value is high and
the � value is low, the network has a clear cluster structure. The � and � values are always
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FIGURE 11. Normalized mutual information (NMI) and normalized Hungarian accuracy (NHA) obtained
by DMultiMOGA for five timestamps with � D ¹0:5; 0:8º and � D ¹0:1; 0:3; 0:5º, when NHA is used as second
objective function. [Color figure can be viewed at wileyonlinelibrary.com]

the same for each multilayer network in each timestamp. To introduce dynamics, 10% of
nodes are moved among communities at each timestamp.

The algorithm has been executed 50 times on 10 randomly generated synthetic networks
by considering different combinations of � and � values, in particular � D ¹0:5; 0:8º and
� D ¹0:1; 0:3; 0:5º. Figures 10 and 11 show the NMI and NHA obtained by DMultiMOGA
when NMI (Figures 10) and NHA (Figures 11) are used as second objective function. More-
over, we show these values when layers are considered either at random or with respect to
the Jensen–Shannon (in parenthesis sorted) order.

The first observation is that values of NMI and NHA are rather similar, although the
Hungarian accuracy values are slightly higher than NMI for all the parameter combinations
and layer orders.
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FIGURE 12. Normalized mutual information (NMI) obtained by DMultiMOGA for five timestamps with
� D ¹0:5; 0:8º and � D 0:1 for the synthetic networks with 10,000 nodes. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1. Normalized Mutual Informa-
tion Values of DMultiMOGA on Synthetic
Networks for the Events: Birth and Death
(B&D), Expansion and Contraction (E&C),
and Merging and Splitting (M&S).

Timestamp B&D E&C M&S

T1 0.9306 0.7035 0.7438
T2 0.9978 0.8298 0.9476
T3 0.9720 0.7660 0.7766
T4 0.9650 0.8059 0.9258
T5 0.9934 0.8269 0.8939

When the objectives SQ and T C are computed as NMI (Figure 10), we can observe that
the Jensen–Shannon layer order gives, in general, better values of both NMI and NHA with
respect to a random choice of the dimensions. This is not true any more when as second
objective NHA is used (Figure 11). Moreover, in such a case, the values of NMI and NHA
are lower with respect to those obtained with NMI as SQ and T C.

However, the figures point out that our approach achieves good accuracy in finding the
true community structure, with NMI and NHA values above 0.95 in some timestamps. From
a deeper analysis on the topology of the obtained communities, we found that when the noise
level � increases, the method has the tendency to split some communities. In particular, it
can split one or at most two communities for � D 0:1; 0:3, while it can split also three
communities for � D 0:5, for example, at timesteps 2 and 4 when � D 0:5 and � D 0:5.

To test the method on large data sets, we generated synthetic networks with two layers of
10,000 nodes each for five timesteps, � D 0:5; 0:8, � D 0:1, and executed DMultiMOGA 50
times. The average NMI values are depicted in Figure 12. In this case, we can observe that
these values are lower than those of the 1,024 nodes networks, because of the behavior of the
method to find many small communities instead of the big ground truth clusters consisting
of 1,250 nodes each.

The synthetic data set described previously maintains constant the number of commu-
nities for all the timestamps. However, dynamic networks are characterized by some types
of events that better describe their evolution, such as birth and death, expansion and con-
traction, and merging and splitting (Asur, Parthasarathy, and Ucar 2009; Greene, Doyle, and
Cunningham 2010). To this end, we modified the synthetic data set to include these types of
events as follows:
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� Birth and death: We choose four communities at the first timestamp, and, from the second
timestamp on, a new community appears, and an existing one is deleted.

� Expansion and contraction: Two out of eight communities are randomly selected and
expanded or contracted by 25% of their size.

� Merging and splitting: At each timestamp, a community is split, and two communities
are merged.

Table 1 shows the average NMI values for each of the described events, along the
five timestamps. In particular, DMultiMOGA behaves very well in case of birth and death,
because it finds communities that correspond almost perfectly to the ground truth division,
by just assigning less than 1% of nodes to a different cluster. Regarding the other two net-
work topologies, expansion and contraction, and merging and splitting, in two out of five
timesteps, DMultiMOGA splits one or two communities. In any case, the table points out
that it is able to successfully face these types of events that a network can incur during
its evolution.

6.2. Real-World Data Set

The real-world temporal multidimensional data set, generated by De Domenico (2014),
describes the interactions among the participants to the European Conference on Complex
Systems (ECCS) 2013, an international conference covering general aspects of complex
systems. The conference lasted 5 days, from September 16 to 20, with 2 days, September
18 and 19, dedicated to satellite meetings. Every day had two sections, the first one in the
morning and the second one in the afternoon. The data set describes the daily interactions
over Twitter between 412 people attending the conference. Three different kinds of relations
are considered: RT (message retweet), RE (reply), and MT (mention). The data set is com-
posed of 5,943 rows, each containing a pair of node identifiers, a timestamp describing the
time in minutes when the relation took place, and the type of relation.

Data set rows have been grouped based on timestamp and type of relationship. This
grouping generated a total of 2,617 timestamps. Because of the too high number of

TABLE 2. Number of Nodes and Edges for Each Timestamp
¹T1; :::; T11º and Dimension {MT, RE, RT} for the European Confer-
ence on Complex Systems Temporal Multiplex Network.

MT RE RT

Timestamp Nodes Edges Nodes Edges Nodes Edges

T1 84 184 30 27 69 100
T2 109 248 24 21 105 138
T3 83 190 27 21 58 91
T4 96 178 21 16 62 105
T5 83 209 18 14 72 129
T6 91 199 23 24 56 103
T7 70 174 21 14 62 107
T8 90 208 16 12 71 111
T9 103 215 17 14 65 95
T10 88 248 26 24 67 109
T11 112 223 23 15 57 84
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FIGURE 13. Clustering obtained from DMultiMOGA for the (a) aggregated European Conference on
Complex Systems network and for (b–f) timestamps 1–5. [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14. Clustering obtained from DMultiMOGA for the European Conference on Complex Systems
network at timestamps 6–11. [Color figure can be viewed at wileyonlinelibrary.com]
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timestamps, each often containing only very few nodes and interactions, we merged them
in temporal intervals of 4 h, representing the morning and afternoon sessions of every day.
In such a way, we obtained 11 time intervals. The number of nodes and edges for each
timestamp and type of interactions is reported in Table 2. Note that edges are directed. From
the table, we can observe that the networks are rather sparse and that nodes are not present
in each timestamp.

The result of running DMultiMOGA on this real-life directed temporal multiplex net-
work is displayed in Figures 13 and 14, where colors distinguish the different communities
found by the method.1 To understand how communities form and evolve along time, in
Figure 15, we report, for each timestamp, the clusters obtained by DMultiMOGA with the
number of nodes (in parenthesis) that each contains. An arrow from a cluster i at time Tt
to a cluster j at time TtC1 means that community i evolved into community j , as deter-
mined by the algorithm RelabelHungarian, described in Figure 8. It is worth noting that
some communities disappear, while new ones form. For instance, from timestamp T1 to
T2, communities 3, 7, and 10, all composed of only two nodes, die. However, one node of
community 3 moves to community 1 of T2, while the other five nodes disappear. At time
T2, although some nodes do not continue to interact, new nodes become active, and new

1 The figures have been generated with the muxV i´ software, downloadable from http://deim.urv.cat/�
manlio.dedomenico/muxviz.php

FIGURE 15. Tracking of the clusters obtained from DMultiMOGA on the European Conference on
Complex Systems network for the 11 timestamps. The cluster size is reported in parenthesis.
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communities rise. In fact, the number of nodes increases from 89 to 135 and the number of
communities from 10 to 14.

The analysis of the network has pointed out the high relationship dynamism of partici-
pants to the conference. Many of them interact in a time period and then are not interested
any more to communicate with the same people in the next timestamp. For example, from
time T5 to T6, although the total number of nodes is almost the same, 94 and 93, respectively,
47 nodes out of 94 in T5 do not appear any more in T6, while the other nodes reaggregate
and distribute in the new born communities. For instance, class 7 in T5 looses 15 nodes
in T6, and its remaining 11 nodes rearrange among the new communities 1–3 and 6–8.
Thus, even if community 7 in T5 evolves to community 7 in T6, its structure is completely
changed. This behavior is more evident when computing, for each node, the number of
timestamps that it is active, as reported in Table 3. From the table, we can observe that 235
out of 412 exchange messages in two (not necessarily consecutive) timestamps, while only
eight people (i.e., nodes numbered 21, 160, 208, 212, 229, 234, 290, and 307) are active for
all the 11 timestamps. These nodes can play an important role in information diffusion over
the network.

The ground truth division of the ECCS network is not known; thus, we adopted the
suggestion of Lin et al. (2009) to use the clustering obtained on the aggregated network
as reference and then compute the NMI between the communities obtained at each times-
tamp with these reference communities. To this end, we aggregated the ECCS network for
all the timestamps and layers and then computed the community structure by running the

TABLE 3. Number of Nodes That Are Active for a Number of Timestamps, Eventually Not
Consecutive, in the European Conference on Complex Systems Temporal Multiplex Network.

Number of timestamps 1 2 3 4 5 6 7 8 9 10 11

Number of active nodes 412 235 131 86 69 51 41 32 21 12 8

TABLE 4. Confusion Matrix of the First Timestamp on the European
Conference on Complex Systems Temporal Multiplex Network.

T1

C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 C 19 C 110

C1 2 9 0 8 10 7 0 1 2 2
C2 0 2 0 7 0 3 2 0 0 0
C3 5 0 2 4 0 0 0 0 0 0
C4 1 0 0 7 0 0 0 0 0 0
C5 0 0 0 1 0 1 0 0 0 0
C6 0 0 0 0 0 3 0 0 0 0
C7 0 0 0 0 0 0 0 0 2 0
C8 0 1 0 1 0 0 0 0 0 0
C9 0 0 0 0 0 0 0 3 0 0
C10 0 0 0 2 0 0 0 0 0 0
C11 0 0 0 1 0 0 0 0 0 0
C12 0 0 0 0 0 0 0 0 0 0
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Blondel et al. (2008) algorithm, which is one of the most efficient and successful methods
for community discovery in monoplex networks that optimizes modularity. This algorithm,
on the aggregated network of 412 nodes, returned 12 communities each containing 104, 90,
53, 30, 28, 25, 24, 18, 13, 13, 9, and 2 nodes, respectively. Tables 4–14 show the confusion
matrices obtained by using these communities as reference ground truth and the communi-
ties obtained by DMultiMOGA for each timestamp. It is interesting to note that, generally,
the nodes of the reference communities are distributed among the predicted communities.
However, often, DMultiMOGA finds subcommunities entirely contained in the ground truth

TABLE 5. Confusion Matrix of the Second Timestamp on the European Conference on Complex
Systems Temporal Multiplex Network.

T2

C 21 C 22 C 23 C 24 C 25 C 26 C 27 C 28 C 29 C 210 C 211 C 212 C 213 C 214

C1 3 11 0 6 3 1 0 5 9 0 0 0 2 2
C2 0 0 0 0 0 0 0 9 2 7 10 0 2 1
C3 2 0 8 0 0 0 0 4 0 0 0 0 0 0
C4 6 1 0 3 0 0 0 0 0 0 0 2 0 0
C5 0 2 0 0 1 8 0 0 0 0 0 0 0 0
C6 3 1 0 0 0 1 0 0 1 0 0 0 0 0
C7 0 0 0 0 0 1 0 1 0 0 0 0 0 0
C8 0 5 0 0 0 0 0 1 0 0 0 0 0 0
C9 0 1 0 0 0 0 0 0 0 0 0 0 0 0
C10 0 1 0 0 0 0 0 1 0 0 0 0 0 0
C11 0 0 0 0 8 0 0 0 0 0 0 0 0 0
C12 0 0 0 0 0 0 2 0 0 0 0 0 0 0

TABLE 6. Confusion Matrix of the Third Timestamp on the
European Conference on Complex Systems Temporal Multiplex
Network.

T3

C 31 C 32 C 33 C 34 C 35 C 36 C 37 C 38 C 39

C1 7 0 3 2 0 1 4 1 7
C2 0 0 0 0 0 0 0 1 15
C3 0 0 10 1 0 0 0 0 0
C4 0 0 1 4 2 0 0 3 2
C5 0 0 0 0 4 1 0 0 0
C6 0 0 0 0 1 0 0 0 0
C7 0 0 0 0 0 0 0 0 1
C8 0 4 0 0 4 0 0 0 2
C9 0 0 0 0 0 5 0 0 0
C10 0 0 1 0 0 1 0 0 1
C11 0 0 0 0 0 0 0 0 0
C12 0 0 0 0 0 0 0 0 0
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TABLE 7. Confusion Matrix of the Fourth Timestamp
on the European Conference on Complex Systems Temporal
Multiplex Network.

T4

C 41 C 42 C 43 C 44 C 45 C 46 C 47 C 48

C1 6 2 1 9 3 1 6 5
C2 0 0 0 0 0 0 3 17
C3 0 0 11 1 0 0 0 0
C4 1 0 5 2 1 0 0 2
C5 0 1 0 0 0 0 0 2
C6 0 1 0 0 0 0 0 1
C7 0 0 1 1 0 2 0 1
C8 0 3 0 1 0 0 0 1
C9 0 0 0 0 0 0 0 1
C10 0 0 1 0 0 0 0 3
C11 0 0 3 1 0 0 0 0
C12 0 0 0 0 0 0 0 0

TABLE 8. Confusion Matrix of the Fifth
Timestamp on the European Conference on Complex
Systems Temporal Multiplex Network.

T5

C 51 C 52 C 53 C 54 C 55 C 56 C 57

C1 0 4 3 9 2 0 15
C2 0 2 4 1 0 4 6
C3 0 0 4 1 0 0 0
C4 0 2 5 1 0 0 2
C5 0 2 0 4 0 0 1
C6 5 0 0 2 1 0 0
C7 0 7 0 0 2 0 0
C8 0 1 1 0 0 0 1
C9 0 0 1 0 0 0 0
C10 0 0 0 0 0 0 1
C11 0 0 0 0 0 0 0
C12 0 0 0 0 0 0 0

ones. For instance, at time T1, it detects two subcommunities composed of 10 and two nodes
( C 15 and C 110) of the 104 node C1 community, the two node subcommunities C 13 and C 17
of C3 and C2, respectively. At time T2, DMultiMOGA obtains the subcommunities C 23 , C 27 ,
C 210, C 211, and C 212 of C3, C12, C2, and C4, respectively. More notably, community C12 (cor-
responding to C 27 ) of two nodes is found by DMultiMOGA only at time T2, meaning that
these two researchers became active at timestamp T2 and then did not send messages any
more. Moreover, C 210 and C 211 are both subgroups of C2, thus providing a more detailed
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TABLE 9. Confusion Matrix of the Sixth Timestamp on the
European Conference on Complex Systems Temporal Multiplex
Network.

T6

C 61 C 62 C 63 C 64 C 65 C 66 C 67 C 68 C 69

C1 3 2 8 2 0 8 7 3 2
C2 5 1 0 0 3 6 0 2 0
C3 0 9 0 0 0 0 1 0 0
C4 0 2 0 0 0 1 0 0 0
C5 0 0 4 4 0 1 0 0 0
C6 0 1 0 1 0 2 0 0 0
C7 0 6 0 0 0 1 0 0 0
C8 0 1 0 0 0 0 1 1 0
C9 0 0 0 0 0 1 0 0 0
C10 0 0 0 0 0 0 1 0 0
C11 0 1 0 0 0 1 1 0 0
C12 0 0 0 0 0 0 0 0 0

TABLE 10. Confusion Matrix of the Seventh
Timestamp on the European Conference on Complex
Systems Temporal Multiplex Network.

T7

C 71 C 72 C 73 C 74 C 75 C 76 C 77

C1 17 0 0 0 0 7 5
C2 2 0 0 0 3 0 0
C3 0 0 0 3 0 2 0
C4 4 0 0 0 0 1 0
C5 0 1 10 0 0 0 2
C6 0 0 0 0 1 1 0
C7 1 6 0 0 0 2 0
C8 1 0 0 0 0 0 0
C9 0 1 0 0 0 0 5
C10 0 0 0 0 0 4 0
C11 0 0 0 0 0 0 0
C12 0 0 0 0 0 0 0

information of C2 at this timestamp. Analogous situations can be observed for the other
timestamps, confirming the advantages of temporal and multiplex networks in analyzing
the original complex system, avoiding to lose important information regarding it, that could
happen when an aggregated network representation is used.

Finally, because at the moment there exist algorithms that are able to deal either with
multiplex or with dynamical networks, but not both, we consider the multiplex approach
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TABLE 11. Confusion Matrix of the Eighth Timestamp on the European
Conference on Complex Systems Temporal Multiplex Network.

T8

C 81 C 82 C 83 C 84 C 85 C 86 C 87 C 88 C 89

C1 5 1 9 1 5 10 1 0 1
C2 0 0 3 0 1 0 0 0 0
C3 0 4 2 1 0 1 0 0 0
C4 0 0 0 0 5 3 0 0 0
C5 0 0 7 0 0 1 2 0 0
C6 0 0 0 0 0 0 1 0 0
C7 6 0 0 0 0 0 0 0 2
C8 4 0 1 1 0 1 0 0 3
C9 0 0 0 0 0 0 4 3 1
C10 0 0 1 1 0 3 0 0 0
C11 1 0 0 0 0 2 0 0 0
C12 0 0 0 0 0 0 0 0 0

TABLE 12. Confusion Matrix of the Ninth Timestamp on the European
Conference on Complex Systems Temporal Multiplex Network.

T9

C 91 C 92 C 93 C 94 C 95 C 96 C 97 C 98 C 99

C1 7 0 6 5 1 2 2 0 12
C2 0 0 8 0 1 0 0 0 0
C3 2 2 2 1 0 4 1 0 0
C4 1 0 0 0 1 1 0 0 1
C5 0 0 2 0 0 1 1 0 0
C6 0 0 1 0 0 3 11 0 0
C7 3 0 5 0 0 0 0 0 2
C8 0 0 1 0 0 4 0 0 2
C9 0 0 1 0 0 0 1 2 1
C10 0 0 0 1 0 1 0 0 0
C11 0 0 1 1 0 1 0 0 0
C12 0 0 0 0 0 0 0 0 0

of Mucha et al. (2010)2 and the dynamic framework of Lin et al. (2009) and compare
DMultiMOGA with the community structure that these two methods find on each times-
tamp. Regarding the former method, we provide as input the multidimensional networks
of each timestamp, one at a time, and thus execute the method 11 times. For FacetNet ,
however, because it can analyze single-dimensional networks, at each timestamp, we provide
the network where the three layers are merged. Table 15 shows, for each timestamp, the

2 We used the algorithm implemented in themuxV i´ software.
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TABLE 13. Confusion Matrix of the 10th Timestamp on the European
Conference on Complex Systems Temporal Multiplex Network.

T10

C 101 C 102 C 103 C 104 C 105 C 106 C 107 C 108

C1 0 0 9 4 4 20 1 1
C2 0 10 11 1 0 0 0 0
C3 0 0 2 0 0 4 0 0
C4 0 0 6 0 0 0 0 1
C5 0 0 1 1 0 0 0 0
C6 0 0 5 0 0 6 0 0
C7 2 0 2 0 0 0 0 0
C8 0 0 0 0 3 0 0 0
C9 0 0 2 1 0 0 0 0
C10 0 0 4 0 0 0 2 0
C11 0 0 0 0 0 1 0 0
C12 0 0 0 0 0 0 0 0

TABLE 14. Confusion Matrix of the 11th Timestamp on the European
Conference on Complex Systems Temporal Multiplex Network.

T11

C 111 C 112 C 113 C 114 C 115 C 116 C 117 C 118

C1 0 0 13 12 0 6 4 3
C2 6 6 19 0 0 1 0 0
C3 0 1 1 2 0 0 0 0
C4 0 0 1 4 1 0 0 1
C5 0 0 2 3 0 0 0 0
C6 0 0 0 0 0 0 4 1
C7 0 0 3 0 0 0 0 0
C8 0 0 0 0 4 0 1 0
C9 0 2 1 4 0 0 0 0
C10 0 0 0 0 0 0 0 5
C11 0 0 0 0 0 0 0 0
C12 0 0 0 0 0 0 0 0

number of active nodes at that time and, for each method, the number of clusters that the
method obtains and the NMI with respect to the reference ground truth. The table clearly
points out the superiority of DMultiMOGA with respect to the other two approaches. It is
worth to observe that both FacetNet and Mucha methods seem not to be able to prop-
erly group nodes when working only with subparts of the overall network. In fact, at each
timestamp, the number of active nodes is between 20% and 30% of the total number of
nodes. DMultiMOGA, instead, is capable to find a more granular community structure,
obtaining a finer and more detailed organization of the people constituting the network, con-
sistent with the division of the aggregated network. This experiment points out the capability
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TABLE 15. Comparison of DMultiMOGA with FacetNet and Mucha

Methods on the ECCS Temporal Multiplex Network.

FacetNet DMultiMOGA Mucha

Time Nodes nClust NMI nClust NMI nClust NMI

T1 89 12 0.1288 10 0.6617 8 0.1175
T2 135 12 0.2141 14 0.6796 12 0.2036
T3 89 12 0.2220 9 0.7293 9 0.1854
T4 100 12 0.2278 8 0.6481 11 0.1601
T5 94 12 0.2346 7 0.6345 10 0.1446
T6 93 12 0.2349 9 0.6371 8 0.1132
T7 79 12 0.2706 7 0.7648 8 0.1998
T8 98 12 0.2787 9 0.6494 8 0.1705
T9 106 12 0.2631 9 0.6097 8 0.1609
T10 104 12 0.2579 8 0.6543 7 0.1689
T11 111 12 0.2555 8 0.6581 10 0.1752

ECCS, European Conference on Complex Systems; NMI, normalized mutual
information.

of DMultiMOGA to successfully deal with the problem of community detection in dynamic
multidimensional networks, by providing an automatic way of finding community structure
in multiplex networks, and to track their evolution along time. Moreover, it allows to study
the behavior of each node as time passes.

7. CONCLUSIONS

The article presented a multiobjective method to uncover community structure in tem-
poral multiplex networks, relying on the new concepts of facet quality and dimensional
sharing, and to track their evolution, by exploiting the Hungarian method. The algorithm
applies also a local label propagation strategy to properly assign nodes, not appearing in all
layers, to clusters. A heuristic that exploits the concept of distance between graphs is also
introduced to select the ordering under which networks should be examined at a particular
timestamp. Experimental results showed the ability of the approach in obtaining mean-
ingful node clustering, also when compared with state-of-the-art methods. The proposed
framework is an advancement in the network analysis field because it allows to study the
topology of complex systems consisting of objects connected by multiple types of interac-
tions, which can change as time goes by. Traditional approaches, treating different links as
either undistinguishable or with a weight quantifying the strength of interactions, have been
recognized to provide descriptions unable to capture the details of real-world phenomena,
and, in some cases, these descriptions could also be incorrect. Temporal multiplex networks,
instead, yield a richer and more natural representation of many real-world systems. The
advantages of employing such networks have been confirmed on the ECCS network, for
which a finer and more detailed group organization, with respect to the community struc-
ture of the aggregated network, has been obtained by DMultiMOGA. The generalization of
the evolutionary clustering approach to multiplex and time-varying networks, by exploit-
ing multiobjective optimization, can be considered a step forward in the research field of
network science.
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