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Abstract—A many-objective optimization algorithm for com-
munity detection in multi-layer networks is proposed. The
method exploits the modularity concept as function to be
simultaneously optimized on all the network layers to uncover
multi-layer communities. In addition, three different strategies
to choice the best solution from the set of solutions of the
Pareto front are presented. Simulations on several synthetic
networks reveal that our method is able to extract high quality
communities. A comparison with state-of-the-art approaches
shows that the method is competitive and, in many cases,
it is also able to outperform existing community detection
algorithms for multi-layer networks.

Keywords-Community detection, multi-layer networks,
many-objective optimization.

I. INTRODUCTION

Many real-world complex systems are characterized by
entities intertwined by multiple types of relationships, each
representing a different aspect of interaction. In social
networking environments, for example, a user usually has
multiple relationships on different online social networking
services. Facebook, Twitter, LinkedIn, are just some exam-
ples of the social dimensions an online user may have.
A multi-layer network, consisting of a set of layers, each
representing a kind of relation among entities, has gained
increasing interest in the last years, as a valid formalism to
model the multiple types of social connections between users
with a graph structure. The concept of multi-layer network
to model complex networks has not a unique terminology in
the literature [1], and many different definitions have been
proposed, such as multiplex [2], [3], [4], multirelational [5],
multidimensional [6], [7].

An important problem in the study of multi-layer net-
works is community detection. A community refers to a
set of nodes behaving differently from the rest of the other
nodes. Focusing on the connections between nodes, within
a community the number of edges is usually much higher
than the number of edges with the remaining nodes of the
network. In other words, the number of intra-community
links is much higher than the number of inter-community
links.

The problem of community detection in multi-layer net-
works is more challenging compared to the single-layer case.

Many basic metrics that are commonly used by monoplex
community detection algorithms (e.g. node centrality, node
similarity, modularity, etc.) need to be reformulated and
adapted when dealing with multi-layer networks. Moreover,
how to define a ground-truth for such networks is still an
open problem. As a consequence, assessing the quality of a
partition is not as easy as for a single-layer network.

In recent years, a number of approaches have addressed
the problem of community detection in multi-layer net-
works. The general strategy of existing algorithms is to
reduce the problem to the classical setting of community
detection in a single-layer network [8] [9] [10]. The choice
of the monoplex community detection algorithm is often
independent and in theory, any algorithm can be chosen. An-
other approach consists in extending an existing community
detection algorithm to deal with multiplex networks. The
approach adopted in [2], for example, extends the modularity
quality function to the multi-layer case and then applies
approaches optimizing modularity [11].

In this paper we propose to formulate the community
detection problem in multi-layer networks as a many-
objective optimization problem where a given objective is
contemporarily optimized on all the network layers. The
framework of Pareto optimality [12] is exploited to obtain
a set of solutions corresponding to the best compromise
objective values for all the layers. The method, named
MLMaOP (Multi-Layer Many-objective OPtimization algo-

rithm), obtains the set of competing objectives by evaluating
an objective function on as many different decision domains
as the number of layers. Since the many-objective algorithm
obtains a family of solutions that represent the best trade-off
between the objectives to optimize, a single solution must
be selected and reported as the result of the method. Three
different strategies to choice the best solution from the set
of solutions of the Pareto front are proposed and compared.
An extensive experimentation on several synthetic networks,
for which the ground-truth division is known, reveals that
our method is able to extract high quality communities.
Moreover, a comparison with state-of-the-art approaches
shows that the method is competitive and, in many cases,
it is also able to outperform existing community detection
algorithms for multi-layer networks.
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This paper has been organized as follows. The next
section provides some preliminaries on multi-layer networks
and defines the problem of community detection. Section
III introduces the many-objective optimization concept and
formalizes the community detection problem in multi-layer
networks. Section IV describes the proposed method. Sec-
tion V gives a brief overview of the related multi-layer
community detection methods. Section VI describes the ex-
perimental evaluation and shows the results. Finally, Section
VII concludes the paper.

II. PRELIMINARIES

A multi-layer network [13] is a pair M = (G, C), where
G = {Gα,α ∈ {1, . . . , d}} is a family of graphs Gα =
(Vα, Eα), called layers of M, and

C = {Eαβ ⊆ Vα × Vβ ,α,β ∈ {1, . . . , d},α ̸= β} (1)

is the set of interconnections between nodes of two different
layers Gα and Gβ . The elements of C are called inter-

layers or crossed layers, while those of Eα are called intra-

layer connections. The adjacency matrix of each layer Gα

is denoted as Aα, where an element Aα
ij = 1 if nodes i

and j are connected in Eα. The projection network of
M is the graph proj(M) = (V

M
, E

M
), where V

M
is the

union of all the Vα and E
M

is the union of intra-layer and
inter-layer connections. The adjacency matrix of proj(M)
is denoted by A

M
. A multiplex network is a particular

multi-layer network where V = V1 = . . . = Vd and the
interlayer connections are implicitly only between a node
in a layer and the counterpart node of the other layers.
This implies that M can be characterized only by G, thus
M = G = {Gα = (V,Eα),α ∈ {1, . . . , d}}.

In the following, we deal with multiplex networks and the
terms multiplex and multi-layer will be used as synonymous.

Community in multiplex networks. The concept of
community in a multiplex network, as outlined in [14],
does not have a generally accepted formal definition, rather
it depends on the problem domain. Loe and Jensen [14]
classify the different ideas of communities into three groups:
local definitions, global definitions and vertex similarity. A
local definition relies on the interactions among the members
of a community and considers a community of high quality
when the information flow among nodes is not interrupted
even if a network layer is no more available. To this end,
the concept of redundancy of a community C ⊆ V has been
proposed in [8] as a quality measure of C. Let P ⊆ C×C be
the set of vertex pairs that are connected in at least a layer.
The set of redundant pairs P ′ ⊆ P are those connected in
at least two layers, then the redundancy of a set of nodes C
is the number of vertex pairs of C that are adjacent in more
that two layers, normalized by the the maximum number of

possible connections:

redundancy(C) =
1

d × |P |

∑
Gα∈G

∑
{u,v}∈P ′

δ(u, v, Eα) (2)

where δ(u, v, Eα) = 1 if (u, v) ∈ Eα, zero otherwise.
As outlined in [14], this definition can give high score to
communities with low density, which does not correspond
to the intuitive idea of community.

The global definition of community takes into account
both the internal and external interactions among communi-
ties. The modularity function, introduced by Newman and
Girvan [15], is a very popular global measure to evaluate the
goodness of a network partitioning in monoplex networks.
Modularity Q is defined as:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj) (3)

where A is the adjacency matrix of the graph, m is the
number of edges of the graph, ki and kj are the degrees of
nodes i and j respectively, and δ(Ci, Cj) yields one if i and
j are in the same community, zero otherwise.

Fixed a partition P = {P1, . . . , Pk} of the set V of
vertices, the modularity Qα(P),α = 1, . . . , d on each of
the layers is different. P is a good community structure of
M if the modularity values on all the layers are high [6],
[7].

The vertex similarity definition of community assumes
that nodes belonging to the same community should be
similar with respect to some measure. To this end, the
Cross-Layer Edge Clustering Coefficient (CLECC) has been
introduced by Bródka et al. [16] to compute the number of
common neighbors between two nodes on all the layers. It
is defined as

CLECC(u, v,α) =
| N(u,α) ∩N(v,α) |

| N(u,α) ∪N(v,α) − {u, v} |
(4)

where N(u,α) are the neighbors of node u in the layer α.
In this paper we adopt the modularity function as criterion
to optimize because for monoplex networks it proved to find
solutions of high quality [11]. However, any other function
could be used. Our objective can be defined as follows.

Problem definition: Find a division of a multiplex

network M such that the modularity of all the graphs

Gα ∈ G is maximized.

To solve this problem, we propose to formalize the detec-
tion of a multiplex network partition as a modified Many-

Objective Optimization Problem [17], where the objective
space is obtained by evaluating the modularity function on
each of the d layers. The next section describes in detail the
proposal.
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III. MANY-OBJECTIVE OPTIMIZATION FOR MULTIPLEX

NETWORKS

A multi-objective optimization problem (MOP ) is de-
fined as [18]

minx F(x ) = (f1(x ), f2(x ), . . . , fd(x ))
subject to x ∈ X

where d is the number of objective functions, x =
(x1, x2, . . . , xn) ∈ X is the decision vector with a domain
of definition X ⊆ Rn, F : X → Z is the mapping from the
decision space X to the objective space Z .

When the number of objectives is more than 3, an MOP
is referred to as Many Objective Optimization Problem
(MaOP ) [17]. In MaOPs conflicting objectives, that must
be simultaneously optimized, prevent to have a unique
optimal solution to the problem, rather a set of solutions
representing the trade-offs between the criteria are obtained.
Since for many-objective problems a complete ordering of
the solutions is difficult to define, in order to compare
solutions, Pareto-dominance relation is used to define a
partial ordering in the objective space [12]. Given two
decision vectors x and y , x is said to dominate y , denoted
as x ≺y , if and only if

∀i ∈ 1, 2, . . . , d : fi(x ) ≤ fi(y ) ∧ ∃ i s.t. fi(x ) < fi(y )

A solution x ∈ Rn is said Pareto optimal if and only if
̸ ∃y ∈ Rn s.t. y ≺x

The Pareto optimal set is the set of all the Pareto optimal
solutions, while the Pareto front is the set of the objective
function values corresponding to the solutions in the Pareto
optimal set.

The goal of optimizing a many-objective optimization
problem is analogous to that of optimizing an MOP, i.e.
find an approximation set of the Pareto front such that the
solutions in this set are diverse in the objective space and
as close as possible to the Pareto front [19].

The problem of detecting a community structure of a
multiplex network G = {Gα,α ∈ {1, . . . , d}} such that the
modularity function is optimized on each Gα layer can be
formalized as an MaOP , as follows.

Let Ω = {P1, . . . ,Pk} be the set of feasible partitions of
the multiplex network G and F = {F1,F2, . . . ,Fd} a set
of d single criterion functions.
A many-objective community detection problem
MaCDP = (Ω,F) on a multiplex network G is
defined as

min F(P) =(F1(P),F2(P), . . . ,Fd(P))

subject to P ∈ Ω
(5)

Each Fα : Ω → R computes the value of the objective
function only on the layer Gα. For our aim, since Q must
be maximized, Fα(P) = −Qα(P). Note that, the main

difference between a classical MaOP and an MaCDP
is that for the former the competing objectives F are all
different and they are evaluated on the same domain, while
in an MaCDP it is possible to have a single criterion and
the d objective values are obtained by evaluating each Fα

on a different domain of decision.
Since F is a vector of competing objectives that must

be simultaneously optimized, this implies that the obtained
nondominated solutions of the Pareto front optimize at the
best the modularity of each layer. In the next Section a
detailed description of the method is given.

IV. METHOD DESCRIPTION

The MLMaOP method uses the locus-based adjacency
representation [20], where an individual I of the population
consists of n =| V | genes I = (g1, . . . , gn). Each gene can
assume a value j in the range {1, . . . , n}. A value j assigned
to the ith gene means that there is a link between the nodes i
and j in at least a layer Gα. A decoding step identifies all the
components, i.e. communities, of the multiplex graph. The
kind of crossover operator is a standard uniform crossover,
where a binary mask of length equal to the number of
nodes is randomly generated, and an offspring is obtained
by selecting from the first parent the genes where the mask
is a 0, and from the second parent the genes where the mask
is a 1. The mutation operator randomly changes the value j
of a i-th gene to one of its the neighbors.

Though crossover and mutation operators, along with
individual representation, can be those used from popular
methods for community detection in monoplex networks,
particular attention must be paid to the initialization process.
In fact, since a couple of nodes can be connected in a layer
but not in another one, and some nodes could be isolated
in some layers, the initialization process assigns a value j
to the i-th gene if there exists an edge (i, j) ∈ E

M
, i.e. if

nodes i and j are connected in one of the layers. This type
of initialization allows the exchange of information among
the layers and avoids solutions with isolated nodes, even if
they are present in some layer.

The pseudo-code of the MLMaOP algorithm is reported in
Figure 1. The method initializes the population as described
(step 1), and until the termination condition is not satisfied,
i.e either a maximum number of generations has been
reached or the objective function does not improve anymore,
it evaluates the modularity function of the current solution
of all the layers to obtain {F1, . . . ,Fd} objective values
(steps 3-7). A rank is then assigned to solutions based on
Pareto dominance (step 8), and a new population is created
by applying genetic operators to the best selected points
from the combined parent and offspring populations (steps
10-11). At the end of the computation the method returns
the set of Pareto-optimal solutions (step 13). Though each
of these solutions corresponds to a different tradeoff of
the modularity values on each layer, a criterion should be
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The MLMaOP Method:
Input: A multiplex network M = {Gα = (Vα, Eα),α ∈ {1, . . . , d}}
Output: A partitioning P of the nodes of M in communities

1 Initialize a population of random individuals by using the adjacency

matrix AM of proj(M)
2 while termination condition is not satisfied do
3 for each individual I = {g1, . . . , gn} of the population
4 Decode I to generate a partitioning P of M
5 for α = 1 : d
6 evaluate the objective function on Gα to obtain a value Fα

7 end for
8 Assign a rank based on Pareto dominance
9 end for each
10 Combine parents and offspring and partition into fronts;
11 Select the best points, and apply the variation operators

to create the next population;
12 end while
13 choose a solution from the Pareto front and return it

Figure 1. The pseudo-code of the MLMaOP algorithm.

established to automatically select one solution with respect
to another. In the following, three approaches are described.

Model Selection. Evolutionary many-objective algorithms
obtain a family of solutions that represent the best trade-
off between the objectives to optimize. However, a single
solution must be selected and reported as the result of the
method. In [21] Purshouse et al. classify multiple criteria
decision making techniques into three categories: a pri-
ori, interactive, and a posteriori. In an a priori approach
preferences are included prior to the search process. In
an interactive method preferences are added progressively
during the optimization process. In an a posteriori approach
first an approximation of the optimal Pareto front is obtained,
and then a solution from the trade-off solutions is selected.
Since as MOEA method [18] we use NSGA − II , which
tries to obtain a well-converged and well-distributed set of
solutions, we need to define a strategy to choose one of the
solutions of the approximated optimal Pareto front. To this
end, we propose and compare three strategies.

The former takes the solution having the maximum
modularity value computed on A

M
, the adjacency matrix

of proj(M). In this case the method will be referred as
MLMaOP-proj.

Let yi = (f1, f2, . . . , fd) be the fitness values of the i-th
solution of the Pareto front. The second strategy, referred as
MLMaOP-mf, computes the mean value mfi = (

∑
i

fj)/d)

for each yi, and the solution having the highest value of mf
is chosen as final.

The third strategy, referred as MLMaOP-cspa, relies on
the concept of consensus clustering introduced by Strehl
and Gosh [22] in the context of cluster ensembles, where
different clusterings of a set of data, obtained by multiple
learning models, are combined to improve the quality and

robustness of results. In [22] the authors propose three
consensus functions. We adopt the so-called Cluster-based

Similarity Partitioning Algorithm (CSPA), that induces a

similarity measure among pairs of partitions, used then to re-
cluster objects. For our purposes, we consider the solutions
of the Pareto front returned by MLMaOP as the clusterings
to combine. Let λq ∈ Nn, q = 1, . . . , r, be the label
vector of the r Pareto front clustering solutions, then a
binary indicator matrix H(q) of size n × k is built for
each λq , where k is the number of different labels of λq .
Each row i contains a 1 value in correspondence of the
column j, if the i-th node has been assigned to the j-th
cluster, and zero in all the other positions. Then, based on
the idea that two nodes have similarity 1 if they belong to
the same community, and 0 otherwise, an n × n similarity
matrix S can be created from the concatenated block matrix
H = (H(1)H(2) · · ·H(r)) as S = 1

rHHT . The entries
of S are the fraction of partitionings in which two nodes
belong to the same community. S is used to recluster the
nodes, by executing a single objective genetic algorithm that
optimizes the modularity function having as input network
that corresponding to the matrix S. The genetic algorithm
gives a partitioning that takes into account the agreement
level of all the solutions of the Pareto front.

V. RELATED WORK

In the last years the interest in multi-layer networks has
generated a consistent number of algorithms to detect com-
munity structure [23], [14]. Many approaches either consider
the projection matrix and optimize a criterion function on
this matrix, or apply an existing method on each layer and
then combine the results.

Because of the high number of proposals, in the following
we review only the methods reported in [14], which will be
compared with our algorithm.

A naive strategy that projects the multi-layer network
into a single graph and then applies a monoplex-community
detection algorithm has been proposed by several authors.
More specifically, the Projection-Average (PA) strategy con-
siders an average adjacency matrix [6] for the multi-layer
network given by Ā = 1

d

∑d
i=1 A

i, where d is the number
of layers, while Projection-Binary (PB) [14] and Projection-
Neighbors (PN) [16] are variants that consider the un-
weighted adjacency matrix, the former, and the adjacency
matrix weighted with the ratio of common neighbors, to take
into account stronger ties, the latter. The Louvain algorithm

[11] is then applied for detecting communities within the
projected graphs.

The Cluster-based Similarity Partition algorithm (CSP)

computes the similarity between node pairs in terms of
occurrences within communities at different layers. Then,
the k-means clustering method is applied to extract the
principal cluster. k is chosen as the value that maximizes
the modularity of the multi-layer network [14].

In the Generalized Canonical Correlations (GCC) algo-
rithm [14], communities on single layers map each vertex of
the multi-layer network within an l-dimensional Euclidean
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space, where the shorter the path between two vertices is
the closer they are in the Euclidean space. Given m graph
layers, for each layer a structural feature matrix Si of size
l × m, where each column is the position of a vertex in
the l-dimensional Euclidean space, is defined. Then, these
matrices are averaged trough a set of linear transformations
maximizing the pairwise correlations of the Si and defining
a principal structural feature matrix S̄. Finally, the principal
partition of the multi-layer network is determined applying
the k-means clustering to S̄.

CLECC Bridge Detection (CLECC-BD) [16] reduces the
graph to a weighted graph and then computes the CLECC
score for each pair. Since pairs with low CLECC score are
considered weak ties and strong ties are desirable within
a community, at each iteration, nodes having low CLECC
values are disconnected until a predefined number of com-
munities is obtained.

VI. EXPERIMENTAL EVALUATION

In this section we test the effectiveness of MLMaOP on
two types of synthetic networks, for which the partitioning
in communities is known. For the former benchmark the
performance of the method is evaluated by varying the
number of layers and the network structure. The second
benchmark, instead, is used to compare MLMaOP with the
methods described in the previous section. The results of
these methods are those reported by Loe and Jensen in [14].
MLMaOP has been written in MATLAB 2015b by using
the Global Optimization Toolbox. The results of MLMaOP
are the average values obtained by running the method 10
times, population size 200, 100 generations, mutation rate
0.2, and crossover fraction 0.8. These parameter values have
been selected as those giving the best results by employing
a trial-and-error procedure on the benchmark data sets.

A. Synthetic networks

mLFR-128. The first collection of synthetic networks
has been generated by using the benchmark1 proposed by
Bródka and Grecki [24], which is an extension of the LFR
benchmark by Lancichinetti et al. [25]. The parameters
used for generating the mLFR datasets are shown in Table
I. Each layer of a multi-layer network consists of 128
nodes partitioned in different non-overlapping communities
having variable sizes. Specifically, we generated multi-layer
networks of 2, 3 and 4 layers, managing the number of inter-
community edges and the difference in terms of a node’s
degree between layers by varying the mixing parameter
µ and the degree change chance (DCC), respectively, as
reported in Table I. The mixing parameter µ is the fraction
of links shared by a node with the nodes of its community.
When µ < 0 .5 the number of neighbors of a node inside its
group are more than the number of neighbors belonging to

1mLFR Java code is available at
https://www.ii.pwr.edu.pl/∼brodka/mlfr.php

Table I
MLFR-128 PARAMETERS SETTING.

Parameter Value

Number of nodes 128
Node average degree 8
Node maximal degree 16

Mixing parameter [0.1, 0.2, 0.3, 0.4, 0.5]
Exponent for power law creating degree sequence 2
Exponent for power law creating community sizes 1

Overlapping nodes 0
Overlapping memberships 0
Maximal community size 32
Minimal community size 8

Number of layers [2, 3, 4]
Degree change chance [0.2, 0.4, 0.6, 0.8]

Membership swap chance 0
Exponent for power law of nodes through layers 2

the other groups. The degree change chance controls how
much different the network layers are in terms of node
degree. The higher the DCC of a network, the more the
nodes may have different degree values within different
layers, and thus the more diverse the networks on different
layers.

SSRM. A second type of synthetic dataset named Struc-
tured Synthetic Random Multiplex (SSRM) [14] contains a
two-layer network with 128 nodes on each layer. SSRM
starts considering a set of four high-quality multi-layer com-
munities (i.e., good communities on both layers), namely
c1, c2, c3 , c4 , that are successively recombined in order to
create three new partitions that satisfy the quality indexes of
multi-layer network described in Section II, i.e. redundancy,
modularity, and CLECC. The first partition of the two-
layer network in two communities, P1 = {[c1, c2], [c3 , c4 ]},
has high redundancy, low modularity and low CLECC. The
second partition P2 = {[c2, c3 ], [c1, c4 ]} has high CLECC,
but low values for the remaining indexes. Finally, the third
partition P3 = {[c1, c3 ], [c2, c4 ]} has high modularity with
the other indexes with low values.

B. Evaluation measure

Since for both benchmarks the ground truth partitioning
is known, to assess the quality of the solutions we use
the well known evaluation measure of Normalized Mutual
Information (NMI) [26].

The normalized mutual information NMI(A,B) of two
divisions A and B of a network is defined as follows. Let C
be the confusion matrix whose element Cij is the number
of nodes of community i of the partition A that are also in
the community j of the partition B.

NMI(A,B) =
−2

∑cA
i=1

∑cB
j=1

Cij log(Cijn/Ci.C.j)
∑cA

i=1
Ci.log(Ci./n) +

∑cB
j=1

C.j log(C.j/n)
(6)

where cA (cB) is the number of groups in the partition
A (B), Ci. (C.j) is the sum of the elements of C in row
i (column j), and n is the number of nodes. If A = B,
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NMI(A,B) = 1. If A and B are completely different,
NMI(A,B) = 0 .

C. Results

Fig. 2 shows the normalized mutual information results
for the mLFR-128 networks against different values of the
mixing parameter µ. Each point in the plot corresponds to
values averaged over 10 runs. For this first experiment, we
focused on comparing the three MLMaOP strategies, varying
the number d of layers of the multi-layer network and the
degree change chance.

The first observation is that for low µ values (0 .1 ≤ µ ≤
0 .4 ), MLMaOP-cspa outperforms the other two strategies.
For these values, there are few links between commu-
nities and the well defined structure of communities in
distinct groups benefits the consensus-based strategy, which
is able to produce higher NMI values. When the mixing
parameter is 0.5, thus the inter-links between communities
increase, the NMI degrades, as expected, but MLMaOP-mf
and MLMaOP-proj seem to better capture communities with
respect to MLMaOP-cspa.

We further observe that as the number of layer increases,
MLMaOP performs better. For d = 4 , for example, the
NMI values are always greater than 0.75, thus showing
that also high mixing parameter values do not degrade the
performance of our strategies.

We finally highlight that within the considered network
scenarios, the DCC parameter does not significantly influ-
ence our community detection schemes. In other words,
even if the DCC increases making the network layers more
different, MLMaOP is always able to uncover communities
with a high NMI.

As second experiment, we considered the SSRM network
and compared MLMaOP with the multi-layer community
detection algorithms described in Section V. As already ob-
served, the aim of this experiment is to check the capability
of a method to capture community structure of a multi-
layer network satisfying different concepts of high quality
multiplex partitions, represented by the three ground-truth
partitions P1, P2 and P3. Table II shows the NMI values
obtained for each ground truth and each algorithm. Every
value corresponds to the average value over 10 different
instances of the SSRM network. As regards P1, where
redundancy is high, our three strategies outperform all the
contestant methods, and are able to find communities with
higher NMI value. For P2, where CLECC is high, the
methods based on projection and the CLECC-BD algorithm,
which optimizes the CLECC measure, obtain a much
higher NMI value than the other methods. However, it is
worth noting that our approach is much better than Cluster-

based Similarity Partition and Generalized Canonical Cor-

relations to capture good communities.
In P3, where the modularity is high, our approach outper-

forms all the other methods when the consensus strategy

Table II
THE NMI VALUES FOR THE DIFFERENT ALGORITHMS IN COMPARISON

AND THE DIFFERENT GROUND-TRUTHS IN SSRM DATASET.

Algorithm P1 P2 P3

MLMaOP-proj 0.053 0.271 0.082
MLMaOP-cspa 0.051 0.338 0.169
MLMaOP-mf 0.054 0.282 0.075

Projection Average 0.002 0.94 0.017
Projection Binary 0 0.983 0

Projection Neighbors 0 0.978 0
Cluster-based Similarity Partition 0.019 0.14 0.083

Generalized Canonical Correlations 0.004 0.002 0.158
CLECC-BD 0.006 0.964 0.006

is applied. However, also MLMaOP-proj and MLMaOP-

mf obtain higher values than all the projection methods
and CLECC-BD. These results show that MLMaOP is very
competitive with respect to the other approaches.

VII. CONCLUSIONS

The paper proposed a method for uncovering community
structure in multi-layer networks based on many-objective
optimization. The framework obtains the set of competing
objectives by simultaneously evaluating an objective func-
tion on as many different decision domains as the number
of layers. Moreover, three different strategies to choice the
best solution from the set of solutions of the Pareto front
are proposed and compared. Experimentation on several
synthetic networks, for which the ground-truth division is
known, showed that the method is able to extract high
quality communities, also when compared with state-of-the-
art approaches. It is worth to observe that the consensus
clustering approach for model selection, generally, obtains
better results than the other strategies. The motivation could
be that the execution of a genetic algorithm on the similarity
matrix obtained by the concatenated block matrices tries
to find the latent community structure shared, as much as
possible, among all the already obtained partitionings on
each level. This is similar to the objective of Tang et al. [6]
of finding a shared latent community structure among the
entities of a multi-layer network.

The current implementation of MLMaOP uses the NSGA-

II of Deb et al. [27], optimized for at most three objec-
tives. As pointed out in [28], a main difficulty that Pareto-
based evolutionary algorithms have to face is the loss of
selection pressure due to the high number of nondominated
solutions generated in a population of limited size, when
the number of objectives increases. This leads to lower
convergence rate to the Pareto front. Thus, several extensions
have been proposed to multi-objective methods to overcome
performance deterioration of MaOPs [29], [19]. Even if
MLMaOP obtains good results until four layers, future work
will experiment the method on MOEA frameworks suitably
defined for many-objective optimization, such as NSGA-III
[30], [31], to efficiently deal with many layers, typical in
many real-world complex systems.
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Figure 2. NMI results for mLFR-128 networks with increasing µ, number of layers d, and different degree change chance (DCC).
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[1] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson,
Y. Moreno, and M. A. Porter, “Multilayer networks,”
arXiv:1309.7233v3, 2014.

[2] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela, “Community structure in time-dependent, multiscale,
and multiplex networks,” Science, vol. 328, no. 5980, pp.
876–878, 2010.

[3] M. D. Domenico, A. Sole, S. Gómez, and A. Arenas, “Ran-
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