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Abstract—Community detection in signed complex networks
is a challenging research problem aiming at finding groups of
entities having positive connections within the same cluster and
negative relationships between different clusters. Most of the
proposed approaches have been developed for networks having
only positive edges. In this paper we propose a multiobjective
approach to detect communities in signed networks. The
method partitions a network in groups of nodes such that two
objectives are contemporarily optimized. The former is that
the partitioning should have dense positive intra-connections
and sparse negative interconnections, the latter is that it
should have as few as possible negative intra-connections and
positive inter-connections. We show that the concepts of signed
modularity and frustration fulfill these objectives, and that the
maximization of signed modularity and the minimization of
frustration allow to obtain very good solutions to the problem.
An extensive set of experiments on both real-life and synthetic
signed networks shows the efficacy of the approach.

Keywords-signed networks; community detection, multiob-

jective genetic algorithms

I. INTRODUCTION

Th field of social network analysis provides a formal

way to define important social concepts and study relations

among actors. Social, and more generally, complex networks

are able to represent many real world systems. Community

structure is an important characteristics of networks that

has been receiving a lot of attention in the last few years.

Many different approaches have been proposed to divide

a network into groups (also called clusters) having dense

intra-connections, and sparse inter-connections. However,

most of the proposed approaches do not take into account

additional information that could be derived by the kind of

ties connecting objects, but mainly focus on link density.

Recently, there has been an increasing interest in developing

methods to find communities in signed networks [12], [11],

[6], [1], [2]. Since the primary studies of Heider [7] on

attitude and perception of social organization of individuals,

it has been pointed out that relationships between individuals

can be either positive or negative, such as like-dislike,

friends-enemies, love-hate, trust-distrust. Signed networks

are defined as extension of networks that include the ad-

ditional information of positive and negative links. Delving

community structure on these types of networks can help

in deeply understand social ties and organization among the

actors constituting the network. One of the fundamental and

intensively investigated aspects of signed networks is the

balance theory. Davis [3] defined a network k-balanced if it

can be divided into k groups such that, edges within groups

are positive and edges between groups are negative. In such

a case the network is also said partitionable or clusterable,

while the term balanced is generally used for 2-way balance.

k-balancing is an important research topic since balancing

assures stability, while imbalance generates tension inside

a group. Doreian and Mrvar [4] proposed a partitioning

approach to structural balance based on the optimization of a

criterion function, named frustration, that tries to minimize

the number of positive ties among different groups and the

number of negative links inside the same group.

In this paper we propose to exploit both concepts of

frustration and modularity [9] to detect communities in

signed networks by applying multiobjective optimization.

We consider, in fact, a multiobjective framework based on

Genetic Algorithms, named SN-MOGA (Signed Networks

with MultiObjective Genetic Algorithm), where the first

objective is modularity maximization, and the second objec-

tive is frustration minimization. The multiobjective genetic

algorithm evolves a population of candidate solutions by

trying to obtain the best trade-off between high modularity

and low frustration. Experiments on synthetic and real life

networks show that the multiobjective genetic approach is

capable to divide signed networks with high accuracy and

low edge misclassification with respect to the true known

partitioning. The paper is organized as follows. In the

next section some preliminary definitions are given and the

problem is defined. Section III describes the algorithm. In

Section IV an extensive experimentation on both real-life

networks and synthetic networks is presented. Section V,

finally, concludes the paper and gives some insights on future

developments.

II. PRELIMINARIES

A signed social network can be modeled as a graph G =
(V, E, W ), where V is the set of n nodes (vertices) and
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Figure 1. A partitionable network [1] of 9 nodes divided in three
communities {0, 1, 2}, {3, 4, 5} and {6, 7, 8}. Red dashed lines correspond
to negative links, solid lines to positive edges. Colors correspond to the true
partitioning. On the right, the locus-based representation of the genotype
corresponding to these three communities.

E is the set of m edges. W : V × V → {−1, 0, 1} is a

function which assigns +1 to edges connecting positively a

pair of nodes, −1 to edges that connect negatively a pair of

nodes and 0 if an edge does not exist between the nodes.

Let A denote the weighted adjacency matrix associated with

G, i.e. Ai,j = W (i, j). The matrix A can be split into two

adjacency matrices corresponding to positive and negative

edges by setting A+

i,j = Ai,j if Ai,j > 0, zero otherwise, and

A−

i,j = −Ai,j if Ai,j < 0, zero otherwise, thus A = A+ −

A−. Given a node i ∈ V , a+

i and a−

i are defined respectively

as the positive degree and the negative degree of i. The

Frustration F (C) of a network partition C = {C1, . . . , Ck}
of the graph G into k communities, is defined as the sum

of the number of negative edges between nodes inside the

same community and the number of positive edges between

nodes belonging to different communities:

F (C) =
X

i,j∈V

A−

i,jδ(ci, cj) + A+

i,j(1 − δ(ci, cj)) (1)

where ci (cj) is the community of the node i (j) and δ(ci, cj)
is the Kronecker delta function which takes the value 1 if

nodes i and j belong to the same community, 0 otherwise.

The concept of modularity has been introduced by New-

man and Girvan in [9]. For signed networks the definition of

modularity is modified to take into account the contribution

of positive edges inside communities and negative edges

between communities. The signed modularity can be defined

as [6]:

QS =
1

2m

X

i,j∈V

(Ai,j +
a−

i a−

j

2m
−

a+

i a+

j

2m
)δ(ci, cj) (2)

Our objective is to solve the following problem. Given

a graph G = (V, E, W ) modeling a signed network, find a

partitioning of G in k clusters such that: 1) intra-connections

are dense and most edges within clusters are positive; 2)

inter-connections between clusters are sparse and most of

these edges are negative.

III. ALGORITHM DESCRIPTION

In this section we give a description of the multiobjective

algorithm SN-MOGA for signed networks, the representation

adopted for partitioning the network, and the variation oper-

ators used. The MultiObjective Genetic Algorithm (MOGA)

we used is the Nondominated Sorting Genetic Algorithm

(NSGA-II) proposed by Srinivas and Deb in [10] and imple-

mented in the Genetic Algorithm and Direct Search Toolbox

of MATLAB. NSGA-II builds a population of competing

individuals and ranks them on the basis of nondominance.

In order to employ NSGA-II, SN-MOGA has been adapted

with a customized population type that suitably represents

a partitioning of a network and endowed with the two

complementary objectives of frustration (formula (1)) and

signed modularity (formula (2)). The algorithm uses the

locus-based adjacency representation employed in [5] for

community discovery in dynamic unsigned networks. In this

representation an individual of the population consists of n

genes g1, . . . , gn and each gene can assume a value in the

range {1, . . . , n}. A value j assigned to the ith gene means

that there is an edge (i, j) in E. A main characteristic of this

representation is that the number k of clusters is automati-

cally determined by the number of components contained in

an individual. Figure 1 shows a signed network (originally

reported in [1]) of 9 nodes clusterable in the three groups

{0, 1, 2}, {3, 4, 5} and {6, 7, 8}. Dashed lines correspond

to negative links, while solid lines to positive edges. The

genotype corresponding to this division is showed on the

right part of the figure and it is interpreted as: node 0 is

connected with node 1, node 1 with node 0, node 2 with node

1, and so on. SN-MOGA initializes a population of random

individuals by assigning to each node i one of its neighbors.

Mutation operator, analogously to initialization, randomly

selects one of the neighbors of i and assigns this value to

the i-th gene. The kind of crossover adopted is uniform

crossover. Multiobjective optimization techniques do not

return a unique solution to a problem, but a set of solutions

are found through the use of Pareto optimality theory. In

this context, since a vector of competing objectives must

be simultaneously optimized, the goal is to obtain Pareto-

optimal solutions, i.e. nondominated solutions for which

an improvement in one objective requires a degradation

of another (Pareto front). Thus the Pareto front represents

the best compromise solutions satisfying all the objectives

as best as possible. However, a single solution, out of

the Pareto front, must be selected. In our case, in order

to show the differences in selecting a different solution

from the Pareto front, in the experiments we show the

results obtained by choosing either minimum frustration or

maximum modularity.

IV. EXPERIMENTAL RESULTS

In this section we evaluate the capability of our approach

in obtaining meaningful partitions of signed networks. As

regards parameters needed by the genetic approach, we set

crossover rate to 0.8, mutation rate to 0.2, elite reproduction

10% of the population size, roulette selection function,
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Table I
ERROR OBTAINED BY SN-MOGA ON DIFFERENT NETWORKS WHEN THE SOLUTION HAVING MINIMUM FRUSTRATION IS CHOSEN FROM THE PARETO FRONT, WITH THE CORRESPONDING MODULARITY AND NMI VALUES, AND THE MAXIMUM

MODULARITY (MAX MOD.) OBTAINED FROM THE PARETO FRONT WITH THE CORRESPONDING ERROR AND NMI VALUES. IN PARENTHESIS THE STANDARD DEVIATION IS REPORTED. FOR EACH NETWORK THE NUMBER OF NODES AND THE

NUMBER OF POSITIVE (E+ ) AND NEGATIVE (E− ) EDGES ARE ALSO REPORTED. FOR WIKIPEDIA THE ERROR HAS BEEN COMPUTED AS IN [2].

Name nodes E+ E− Error Modularity NMI max Mod. Error NMI

Network1 9 9 6 0 (0) 0.5333 (0) 1 (0) 0.5333 (0) 0 (0) 1 (0)

Network2 28 30 12 0 (0) 0.5612 (0) 1 (0) 0.5612 (0) 0 (0) 1 (0)

Network3 28 30 19 0 (0) 0.5257 (0) 1 (0) 0.5257 (0.0058) 0 (0) 1 (0)

Gahuku-Gama Subtribes 16 29 29 0.0345 (0) 0.4483 (0) 0.7528 (0) 0.4483 (0) 0.0345 (0) 0.7528 (0)

Karate 34 68 10 0 (0) 0.4997 (0) 1 (0) 0.5127 (0.0046) 0.0462 (0.0162) 0.8430 (0.0552)

Football 115 394 219 0.0571 (0.0157) 0.5516 (0.0180) 0.8744 (0.0302) 0.5520 (0.0177) 0.0573 (0.0159) 0.8762 (0.0294)

Dolphins 62 153 6 0 (0) 0.4112 (0) 1 (0) 0.5412 (0.0064) 0.1673 (0.0168) 0.6358 (0.0153)

Krebs 105 371 69 0.0677 (0.0136) 0.4456 (0.0126) 0.6955 (0.0483) 0.4469 (0.0133) 0.0711 (0.0155) 0.6946 (0.0377)

Wikipedia 7118 83953 23118 0.001007158 (0.000063) 0.0105 (0.004132) - 0.07738 (0,011084) 0.001823565 (0,000081) -

population size was 100, number of generations 200. The

algorithm has been executed 10 times and the average values

of error rate and NMI have been computed together with

standard deviation. It is worth to note that there is still no a

general measure to validate and compare methods for signed

networks. Yang et al. [12] employed the frustration concept

to define the error rate of a signed network partitioning C

as

error(C) =
F (C)

P
i

P
j | Ai,j |

× 100% (3)

However, as pointed out by the authors, this error func-

tion considers only the sign of the links, and completely

disregards the edge density, thus we also used Normalized

Mutual Information (NMI), a well known entropy measure

in information theory. The normalized mutual information

NMI(A, B) of two divisions A and B of a network is

defined as follows. Let C be the confusion matrix whose

element Cij is the number of nodes of community i of the

partition A that are also in the community j of the partition

B.

NMI(A, B) =
−2

PcA

i=1

PcB

j=1
Cij log(CijN/Ci.C.j)

PcA

i=1
Ci.log(Ci./N) +

PcB

j=1
C.j log(C.j/N)

(4)

where cA (cB) is the number of groups in the partition

A (B), Ci. (C.j) is the sum of the elements of C in row

i (column j), and N is the number of nodes. If A = B,

NMI(A, B) = 1. If A and B are completely different,

NMI(A, B) = 0.

A. Evaluation on clusterable networks

We first consider the toy example reported in [1] and

shown in Figure 1(a), and the two artificial signed net-

works considered by Yang et al. [12]. Network Network2
in Figure 2(a) is partitionable and can be divided into

the three groups {4, 5, 6, 7, 22, 23, 24, 25, 13, 14, 15, 16},

{8, 9, 26, 27, 17, 18}, and {20, 21, 10, 11, 12, 1, 2, 3, 19, 28}.

Network3 (Figure 2(b)) is also partitionable in the same

three groups of Network2. The main difference between

these two networks is that Network2 is also balanced, since

it has a two-way partitioning constituted by the first group

and the union of the other two groups, while Network3
is not balanced. Table I reports, for each network, the

(a) Network2 (b) Network3

Figure 2. Synthetic networks reported in [12]. Network2
(a) is partitionable and can be divided into the three groups
{4, 5, 6, 7, 22, 23, 24, 25, 13, 14, 15, 16}, {8, 9, 26, 27, 17, 18}, and
{20, 21, 10, 11, 12, 1, 2, 3, 19, 28}. Network3 (b) is also partitionable in
the same three groups of network (a). For each network, colors correspond
to the true partitioning, red dotted lines to the negative edges and black
solid lines to the positive edges.

number of nodes, the number of positive and negative

edges, the error rate obtained when the solution having

minimum frustration is chosen from the Pareto front, with

the corresponding modularity and NMI values, and the

maximum modularity obtained from the Pareto front with

the corresponding error rate and NMI values. For these

three networks SN-MOGA finds a unique solution having

both zero frustration and maximum modularity. Anchuri and

Magdon-Ismail’ approach [1], because of the used parameter

setting, needs an improvement step to correctly assign node

8 in Network1. Note that, for Network2 SN-MOGA could

not find a 2-way partition, since there are no connections

between the second and the third groups.

B. Evaluation on real-life networks

Next we consider five real-life networks well known in the

literature. The Gahuku-Gama Subtribes social network has

been studied by Yang et al. [12]. The other four networks

are very popular networks used to compare community

detection methods: Zackary’s Karate Club network, The

American College Football network, Bottlenose Dolphins,

and Krebs’ books on American politics. Since these networks

are unsigned, we transformed them in signed networks

by assigning a positive sign to edges between nodes in

the same community, and negative sign to edges between

communities. From Table I we can observe that SN-MOGA

finds a unique solution for the Gahuku-Gama Subtribes.

The error obtained by SN-MOGA for this network is the
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same of that reported by Yang et al. [12]. As regards

Karate and Dolphins networks, when the Pareto front

solution we select is that having minimum frustration, the

solutions found actually correspond to the ground truth

division in two groups of these networks. However, when

we choose the solution having maximum modularity the

error increases to 0.0462 while NMI diminishes to 0.8430

for Karate, and the error increases to 0.1673, while NMI

diminishes to 0.6358 for Dolphins. These solutions are

also significant since, as regards Karate, the subgroup

constituted by nodes {5, 6, 7, 11, 17} is separated from one

of the two ground truth clusters, while for Dolphins SN-

MOGA divides the bigger ground truth community in three

smaller communities. The values obtained on the other two

networks, Football and Krebs are also very good and

show the capability of SN-MOGA in finding meaningful

partitioning of signed networks.

Figure 3. NMI corresponding to the maximum modularity values obtained
from SN-MOGA for all the possible p+ and p− values at different values
of the μ parameter.

Figure 4. NMI corresponding to the minimum frustration values obtained
from our algorithm for all the possible p+ and p− at different values of
the μ parameter.

C. Evaluation on synthetic networks

In this section a more deep study on synthetic net-

works generated with control parameters that determine the

structure of communities, is performed. In particular, we

modified the benchmark proposed by Lancichinetti et al.

[8], which is an extension of the classical benchmark of

Girvan and Newman, by assigning a controlled sign to

edges. The networks consist of 128 nodes divided into four

communities of 32 nodes each. Every node has an average

degree of 16 and shares a fraction μ of edges with the

other nodes of the network, and 1 − μ of links with the

nodes of its community. μ is called the mixing parameter.

When μ < 0.5 the neighbors of a node inside its group

are more than the neighbors belonging to the other three

groups, thus a good algorithm should discover them. We

generated 10 different networks for values of μ ranging

from 0.1 to 0.5. In order to make the networks signed,

analogously to Yang et al. [12], we used two parameters

p
−

, denoting the probability of negative links appearing

within communities, and p+, denoting the probability of

positive links appearing between communities. Thus, for

all the combinations of p
−

and p+ values ranging in the

interval [0, 0.1, . . . , 1], we randomly assigned a negative sign

to edges inside a community with probability p
−

, and a

positive sign to edges between two different communities

with probability p+. Figure 3 depicts the NMI values ob-

tained by running SN-MOGA for all the combinations of

parameters μ = [0.1, . . . , 0.5], p
−

= [0, 0.1, . . . , 1], and

p+ = [0, 0.1, . . . , 1] and selecting from the Pareto front the

community structure having the highest modularity value.

The figure points out that, as the network structure becomes

more noisy, i.e. μ increases, the corresponding NMI value

decreases, as expected. However, fixed a μ value, the method

obtains slightly decreasing values of normalized mutual

information until p+ ≤ 0.6 and p
−

≤ 0.3, thus SN-MOGA

is less sensitive to the number of positive edges between

communities, but it is negatively biased by the augmentation

of negative links within a community. A different behavior

can be observed in Figure 4, where the solutions having the

minimum frustration are now selected from the Pareto front.

In this case the NMI values obtained are lower with respect

to the previous case, however SN-MOGA is insensitive to

the variation of both positive and negative edges for p
−
≤ 1

and p+ ≤ 0.4. This behavior is very interesting because

it means that even if the structure is highly unbalanced, the

method is able to unveil the underlying community structure

by searching for dense, but with low frustration, groups of

nodes. Finally Figure 5 shows the error rate obtained by SN-

MOGA, when minimum frustration solutions are chosen, for

mixing parameter μ = 0.2, and the combination values of

p
−

and p+ from 0 to 0.5. The figure points out that, fixed

a p
−

value, the error rate shows a very slight increase for

increasing values of p+, i. e. the augmentation of positive

links between different communities does not provoke abrupt

changes in the frustration value.

D. Comparison with other approaches

Comparing SN-MOGA with the other state-of-the-art

methods is rather difficult since there do not still exist neither

synthetic benchmarks to use like those defined for unsigned
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Figure 5. Error rate values obtained from SN-MOGA for p+ and p−
varying in the interval [0, 0.5] and μ = 0.2.

networks, nor a standard and recognized measure to evaluate

the results. In the existing approaches, frustration is used

to compute the percentage of misclassified edges. However,

while Yang et al. [12] define the error by dividing frustration

by the total number of edges, the error defined by Chiang et

al. [2] divides by the square of the number of nodes, while

that employed by Anchuri and Magdon-Ismail [1] divides

by the number of negative edges. Since we did not have

at disposal the synthetic networks employed by Yang et

al. [12], we used the generator of Lancichinetti et al. [8]

with the same parameters adopted by Yang et al. to generate

similar, though not equal, networks and compute the fraction

of nodes correctly clustered, i.e. 1−error (see formula (3)).

For these networks, the accuracy values are above 80% for

p+ ≤ 1 and p
−

≤ 0.25, while when 0.25 < p
−

≤ 1, the

accuracy is never below 60%, independently the p+ value.

Yang et al. obtained a percentage of correctly clustered

edges near 100% for p
−

≤ 0.35 and p+ ≤ 1. However

the clustering accuracy of their method is not less than

50% for 0.4 < p
−

≤ 0.6. Clustering accuracy of SN-

MOGA, instead, as outlined above, is never less than 60%.

We emphasize that this comparison is between two kind

of networks with similar characteristics, but not exactly the

same. Chiang et al. [2] in their paper computed the error

as formula (3), where denominator is substituted by n2,

i.e. the square of the number of nodes. They applied their

algorithm, among the others, to English Wikipedia network

for admin elections, downloadable from http://konect.uni-

koblenz.de/networks/elec. The empirical error rate they re-

ported is 0.2186, for values of number of communities k

ranging from 3 to 30. The authors observe that, for each k,

the errors are very close. We executed SN-MOGA on this

network and, as reported in Table I, obtained an error rate

of 0.001007158, which is much lower than that obtained by

Chiang et al. The number of clusters found by SN-MOGA

has been, on average, about 100. This means that the range

of values used by Chiang et al. was insufficient to obtain

a reasonable partitioning of the Wikipedia network. This

result confirms the advantage of applying SN-MOGA, which

is capable of finding meaningful k-way divisions with small

frustration values, without any knowledge on the network

structure. Modularity values obtained are however very low,

the maximum value being 0.07738.

V. CONCLUSIONS

The paper proposed a multiobjective approach to detect

communities in signed networks. The method obtains net-

work partitioning by minimizing the number of negative

edges inside communities and positive edges between com-

munities, while maximizing cluster modularity. The opti-

mization of these two objectives allows to find network divi-

sions such that intra-connections are dense and most edges

within clusters are positive, and inter-connections between

clusters are sparse and most of these edges are negative.

An experimental evaluation on both real-life and randomly

generated networks for which the true partitioning is known

proved the ability of the method to find solutions having

low frustration and high NMI values. Future work aims at

extending the method to dynamic and signed networks.
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